(parser or code) and to be explicit about cache consumption or production
(rather than making presence of cached_data imply one or the other.)
Also add a --cache flag to d8, to allow testing the functionality.
-----------------------------
API change
Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any).
Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present.
Changes from old behaviour:
- If you previously didn't use caching, nothing changes.
Example:
v8::CompileUnbound(isolate, source, kNoCompileOptions);
- If you previously used caching, it worked like this:
- 1st run:
v8::CompileUnbound(isolate, source, kProduceToCache);
Then, source->cached_data would contain the
data-to-be cached. This remains the same, except you
need to tell V8 which type of data you want.
v8::CompileUnbound(isolate, source, kProduceParserCache);
- 2nd run:
v8::CompileUnbound(isolate, source, kNoCompileOptions);
with source->cached_data set to the data you received in
the first run. This will now ignore the cached data, and
you need to explicitly tell V8 to use it:
v8::CompileUnbound(isolate, source, kConsumeParserCache);
-----------------------------
BUG=
R=marja@chromium.org, yangguo@chromium.org
Review URL: https://codereview.chromium.org/389573006
git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
- Don't bake in length/capacity into full codegen calls of stubs,
allowing boilerplates to increase their capacity without regenerating
code.
- Unify all variants of the clone stub into a single,
length-independent version.
- Various tweaks to make sure that the clone stub doesn't spill and
therefore need an eager stack frame.
- Handle all lengths of array literals in the fast case.
R=mvstanton@chromium.org
Review URL: https://codereview.chromium.org/272513004
git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21230 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
Attempting to re-use the type feedback vector stored in the
SharedFunctionInfo turns out to be difficult among the various cases.
It will be much easier to do this when deferred type feedback processing
is removed, as is in the works.
Created bug v8:3212 to track re-introducing the optimization of reusing
the type vector on recompile before optimization.
The CL also brings back the type vector on the SharedFunctionInfo.
BUG=351257
LOG=Y
R=bmeurer@chromium.org, bmeuer@chromium.org
Review URL: https://codereview.chromium.org/199973004
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19919 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This feature makes it possible to associate data with a script and get it back
when the script is compiled or when an event is handled. It was historically
used by Chromium Dev Tools, but not any more. It is not used by node.js.
Note: this has nothing to do with the preparse data, despite the confusing name.
The preparse data is passed as ScriptData*.
Note 2: This is the same as r19616 ( https://codereview.chromium.org/184403002/ )
with a unused variable fix in bootstrapper.cc.
R=svenpanne@chromium.org
BUG=
Review URL: https://codereview.chromium.org/185533014
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19702 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This feature makes it possible to associate data with a script and get it back
when the script is compiled or when an event is handled. It was historically
used by Chromium Dev Tools, but not any more. It is not used by node.js.
Note: this has nothing to do with the preparse data, despite the confusing name.
The preparse data is passed as ScriptData*.
R=svenpanne@chromium.org
BUG=
Review URL: https://codereview.chromium.org/184403002
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19616 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
Instead of tracking simple absolute offset from the start of the script like other places do, track a pair of (inlining id, offset from the start of inlined function).
This enables us to pinpoint with inlining path an instruction came from. Previously in multi-script environments we emitted positions that made very little sense because inside a single optimized function they would point to different scripts without a way to distinguish them.
Start dumping the source of every inlined function to make possible IR viewing tools with integrated source views as there was previously no way to acquire this information from IR dumps. We also dump source position at which each inlining occured.
Tracked positions are written into hydrogen.cfg as pos:<inlining-id>_<offset>.
Flag --emit-opt-code-positions is renamed by this change into --hydrogen-track-positions to better convey it's meaning.
In addition this change assigned global unique identifier to each optimization performed inside isolate. This allows to precisely match compilation artifacts (e.g. IR and disassembly) and deoptimizations.
BUG=
R=yangguo@chromium.org
Review URL: https://codereview.chromium.org/140683011
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19360 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
If OSR happens before regular recompilation, the unoptimized function code
on the stack may not have deoptimization support. In that case, graph
creation compiles the unoptimized code again to include support. That
code is then installed as shared code. When we patch code for OSR, the
function code on the stack and not the shared code is what we want.
R=titzer@chromium.org
TEST=block-conflicts.js with --always-osr --concurrent-osr
Review URL: https://codereview.chromium.org/99013003
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18261 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This change means that code which is never executed is garbage collected immediately, and code which is only executed once is collected more quickly (limiting heap growth), however, code which is re-executed is reset to the young age, thus being kept around for the same number of GC generations as currently.
BUG=280984
R=danno@chromium.org, hpayer@chromium.org
Review URL: https://codereview.chromium.org/23480031
Patch from Ross McIlroy <rmcilroy@chromium.org>.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@17343 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
InstallOptimizedCode aquires ownership on the compilation info and deletes
it on return, tearing down the attached zone. The OptimizingCompiler
object is a zone object allocated in just that zone, so it also gets
deleted. Effectively, InstallOptimizedCode cleans up when it's done, so
the OptimizingCompiler object it receives is invalidated afterwards.
R=titzer@chromium.org
BUG=
Review URL: https://codereview.chromium.org/23769007
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16609 ce2b1a6d-e550-0410-aec6-3dcde31c8c00