Assign feedback slots in the type feedback vector for binary operations.
Update bytecode-generator to use these slots and add them as an operand
to binary operations.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/2209633002
Cr-Commit-Position: refs/heads/master@{#38408}
Add a new bytecode to create a function context. The handler inlines
FastNewFunctionContextStub.
BUG=v8:4280
LOG=n
Review-Url: https://codereview.chromium.org/2187523002
Cr-Commit-Position: refs/heads/master@{#38301}
Introduces fused bytecodes for fusing LdaSmi followed by a binary op bytecode.
The chosen bytecodes are used frequently in Octane: AddSmi, SubSmi,
BitwiseOrSmi, BitwiseAndSmi, ShiftLeftSmi, ShiftRightSmi.
There are additional code stubs for these operations that are biased towards
both the left hand and right hand operands being Smis.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/2111923002
Cr-Commit-Position: refs/heads/master@{#37531}
With this change the bytecode array builder only emits expression
positions for bytecodes that can throw. This allows more peephole
optimization opportunities and results in smaller code.
BUG=v8:4280,chromium:615979
LOG=N
Review-Url: https://codereview.chromium.org/2038323002
Cr-Commit-Position: refs/heads/master@{#36863}
This change introduces five fused bytecodes for common bytecode
sequences on popular websites. These are LdrNamedProperty,
LdrKeyedProperty, LdrGlobal, LdrContextSlot, and LdrUndefined. These
load values into a destination register operand instead of the
accumulator. They are emitted by the peephole optimizer.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1985753002
Cr-Commit-Position: refs/heads/master@{#36507}
The original peephole optimizer logic in the BytecodeArrayBuilder did
not respect source positions as it was written before there were
bytecode source positions. This led to some minor differences to
FCG and was problematic when combined with pending bytecode
optimizations. This change makes the new peephole optimizer fully
respect source positions.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1998203002
Cr-Commit-Position: refs/heads/master@{#36439}
Prints source position information alongside bytecode.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1963663002
Cr-Commit-Position: refs/heads/master@{#36171}
Adapts FastCloneShallowObjectStub to enable it to be used by the
CreateObjectLiteral bytecode.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1922523002
Cr-Commit-Position: refs/heads/master@{#35909}
This change introduces wide prefix bytecodes to support wide (16-bit)
and extra-wide (32-bit) operands. It retires the previous
wide-bytecodes and reduces the number of operand types.
Operands are now either scalable or fixed size. Scalable operands
increase in width when a bytecode is prefixed with wide or extra-wide.
The bytecode handler table is extended to 256*3 entries. The
first 256 entries are used for bytecodes with 8-bit operands,
the second 256 entries are used for bytecodes with operands that
scale to 16-bits, and the third group of 256 entries are used for
bytecodes with operands that scale to 32-bits.
LOG=N
BUG=v8:4747,v8:4280
Review URL: https://codereview.chromium.org/1783483002
Cr-Commit-Position: refs/heads/master@{#34955}
This mechanism was used to ensure that functions ended up as constants on the map of prototypes defined using object literals, e.g.,:
function.prototype = {
method: function() { ... }
}
Nowadays we treat prototypes specially, and make all their functions constants when an object turns prototype. Hence this special custom code isn't necessary anymore.
This also affects boilerplates that do not become prototypes. Their functions will not be constants but fields instead. Calling their methods will slow down. However, multiple instances of the same boilerplate will stay monomorphic. We'll have to see what the impact is for such objects, but preliminary benchmarks do not show this as an important regression.
BUG=chromium:593008
LOG=n
Review URL: https://codereview.chromium.org/1772423002
Cr-Commit-Position: refs/heads/master@{#34602}
Bytecode expectations have been moved to external (.golden) files,
one per test. Each test in the suite builds a representation of the
the compiled bytecode using BytecodeExpectationsPrinter. The output is
then compared to the golden file. If the comparision fails, a textual
diff can be used to identify the discrepancies.
Only the test snippets are left in the cc file, which also allows to
make it more compact and meaningful. Leaving the snippets in the cc
file was a deliberate choice to allow keeping the "truth" about the
tests in the cc file, which will rarely change, as opposed to golden
files.
Golden files can be generated and kept up to date using
generate-bytecode-expectations, which also means that the test suite
can be batch updated whenever the bytecode or golden format changes.
The golden format has been slightly amended (no more comments about
`void*`, add size of the bytecode array) following the consideration
made while converting the tests.
There is also a fix: BytecodeExpectationsPrinter::top_level_ was left
uninitialized, leading to undefined behaviour.
BUG=v8:4280
LOG=N
Review URL: https://codereview.chromium.org/1717293002
Cr-Commit-Position: refs/heads/master@{#34285}