Removes handles from bytecode generation, instead storing
un-internalized AstValues (and other, similar values such as Scopes and
AstRawStrings) in the constant array builder.
This will allow us in the future to generate the bytecode before
internalizing the AST.
BUG=v8:5832
Change-Id: I3b8be8f7329a484eb1e5d12808b001d3475239da
Reviewed-on: https://chromium-review.googlesource.com/439326
Commit-Queue: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Marja Hölttä <marja@chromium.org>
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Cr-Commit-Position: refs/heads/master@{#43115}
Since JumpLoop is always backwards, and other jumps are always forwards,
we can store the jump offset as an always positive integer and decide on
the jump direction based on the bytecode. This will save a small amount
of space for large-ish for loops (>128 bytecodes).
Review-Url: https://codereview.chromium.org/2641443002
Cr-Commit-Position: refs/heads/master@{#42638}
Downside: this adds all kinds of weird includes in the .cc files.
(See design doc linked in the bug.)
BUG=v8:5402
Review-Url: https://codereview.chromium.org/2622503002
Cr-Commit-Position: refs/heads/master@{#42140}
SourcePosition::InliningId() refers to a the new table DeoptimizationInputData::InliningPositions(), which provides the following data for every inlining id:
- The inlined SharedFunctionInfo as an offset into DeoptimizationInfo::LiteralArray
- The SourcePosition of the inlining. Recursively, this yields the full inlining stack.
Before the Code object is created, the same information can be found in CompilationInfo::inlined_functions().
If SourcePosition::InliningId() is SourcePosition::kNotInlined, it refers to the outer (non-inlined) function.
So every SourcePosition has full information about its inlining stack, as long as the corresponding Code object is known. The internal represenation of a source position is a positive 64bit integer.
All compilers create now appropriate source positions for inlined functions. In the case of Turbofan, this required using AstGraphBuilderWithPositions for inlined functions too. So this class is now moved to a header file.
At the moment, the additional information in source positions is only used in --trace-deopt and --code-comments. The profiler needs to be updated, at the moment it gets the correct script offsets from the deopt info, but the wrong script id from the reconstructed deopt stack, which can lead to wrong outputs. This should be resolved by making the profiler use the new inlining information for deopts.
I activated the inlined deoptimization tests in test-cpu-profiler.cc for Turbofan, changing them to a case where the deopt stack and the inlining position agree. It is currently still broken for other cases.
The following additional changes were necessary:
- The source position table (internal::SourcePositionTableBuilder etc.) supports now 64bit source positions. Encoding source positions in a single 64bit int together with the difference encoding in the source position table results in very little overhead for the inlining id, since only 12% of the source positions in Octane have a changed inlining id.
- The class HPositionInfo was effectively dead code and is now removed.
- SourcePosition has new printing and information facilities, including computing a full inlining stack.
- I had to rename compiler/source-position.{h,cc} to compiler/compiler-source-position-table.{h,cc} to avoid clashes with the new src/source-position.cc file.
- I wrote the new wrapper PodArray for ByteArray. It is a template working with any POD-type. This is used in DeoptimizationInputData::InliningPositions().
- I removed HInlinedFunctionInfo and HGraph::inlined_function_infos, because they were only used for the now obsolete Crankshaft inlining ids.
- Crankshaft managed a list of inlined functions in Lithium: LChunk::inlined_functions. This is an analog structure to CompilationInfo::inlined_functions. So I removed LChunk::inlined_functions and made Crankshaft use CompilationInfo::inlined_functions instead, because this was necessary to register the offsets into the literal array in a uniform way. This is a safe change because LChunk::inlined_functions has no other uses and the functions in CompilationInfo::inlined_functions have a strictly longer lifespan, being created earlier (in Hydrogen already).
BUG=v8:5432
Review-Url: https://codereview.chromium.org/2451853002
Cr-Commit-Position: refs/heads/master@{#40975}
Modify the Bytecode Register Optimizer to be an independent component
rather than part of the BytecodePipeline. This means the BytecodeArrayBuilder
can explicitly call it with register operands when outputting a bytecode
and the Bytecode Register Optimizer doesn't need to work out which operands
are register operands. This also means we don't need to build BytecodeNodes
for Ldar / Star / Mov bytecodes unless they are actually emitted by the
optimizer.
This change also modifies the way the BytecodeArrayBuilder converts
operands to make use of the OperandTypes specified in bytecodes.h.
This avoids having to individually convert operands to their raw output
value before calling Output(...).
BUG=v8:4280
Review-Url: https://codereview.chromium.org/2393683004
Cr-Commit-Position: refs/heads/master@{#40543}
This CL optimizes the code in BytecodeArrayBuilder and
BytecodeArrayWriter by making the following main changes:
- Move operand scale calculation out of BytecodeArrayWriter to the
BytecodeNode constructor, where the decision on which operands are
scalable can generally be statically decided by the compiler.
- Move the maximum register calculation out of BytecodeArrayWriter
and into BytecodeRegisterOptimizer (which is the only place outside
BytecodeGenerator which updates which registers are used). This
avoids the BytecodeArrayWriter needing to know the operand types
of a node as it writes it.
- Modify EmitBytecodes to use individual push_backs rather than
building a buffer and calling insert, since this turns out to be faster.
- Initialize BytecodeArrayWriter's bytecode vector by reserving 512
bytes,
- Make common functions in Bytecodes constexpr so that they
can be statically calculated by the compiler.
- Move common functions and constructors in Bytecodes and
BytecodeNode to the header so that they can be inlined.
- Change large static switch statements in Bytecodes to const array
lookups, and move to the header to allow inlining.
I also took the opportunity to remove a number of unused helper
functions, and rework some others for consistency.
This reduces the percentage of time spent in making BytecodeArrays
in CodeLoad from ~15% to ~11% according to perf. The
CoadLoad score increase by around 2%.
BUG=v8:4280
Committed: https://crrev.com/b11a8b4d41bf09d6b3d6cf214fe3fb61faf01a64
Review-Url: https://codereview.chromium.org/2351763002
Cr-Original-Commit-Position: refs/heads/master@{#39599}
Cr-Commit-Position: refs/heads/master@{#39637}
Reason for revert:
Prime suspect for roll blocker: https://codereview.chromium.org/2362503002/
Original issue's description:
> [Interpreter] Optimize BytecodeArrayBuilder and BytecodeArrayWriter.
>
> This CL optimizes the code in BytecodeArrayBuilder and
> BytecodeArrayWriter by making the following main changes:
>
> - Move operand scale calculation out of BytecodeArrayWriter to the
> BytecodeNode constructor, where the decision on which operands are
> scalable can generally be statically decided by the compiler.
> - Move the maximum register calculation out of BytecodeArrayWriter
> and into BytecodeRegisterOptimizer (which is the only place outside
> BytecodeGenerator which updates which registers are used). This
> avoids the BytecodeArrayWriter needing to know the operand types
> of a node as it writes it.
> - Modify EmitBytecodes to use individual push_backs rather than
> building a buffer and calling insert, since this turns out to be faster.
> - Initialize BytecodeArrayWriter's bytecode vector by reserving 512
> bytes,
> - Make common functions in Bytecodes constexpr so that they
> can be statically calculated by the compiler.
> - Move common functions and constructors in Bytecodes and
> BytecodeNode to the header so that they can be inlined.
> - Change large static switch statements in Bytecodes to const array
> lookups, and move to the header to allow inlining.
>
> I also took the opportunity to remove a number of unused helper
> functions, and rework some others for consistency.
>
> This reduces the percentage of time spent in making BytecodeArrays
> in CodeLoad from ~15% to ~11% according to perf. The
> CoadLoad score increase by around 2%.
>
> BUG=v8:4280
>
> Committed: https://crrev.com/b11a8b4d41bf09d6b3d6cf214fe3fb61faf01a64
> Cr-Commit-Position: refs/heads/master@{#39599}
TBR=mythria@chromium.org,leszeks@chromium.org,rmcilroy@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:4280
Review-Url: https://codereview.chromium.org/2360193003
Cr-Commit-Position: refs/heads/master@{#39612}
This CL optimizes the code in BytecodeArrayBuilder and
BytecodeArrayWriter by making the following main changes:
- Move operand scale calculation out of BytecodeArrayWriter to the
BytecodeNode constructor, where the decision on which operands are
scalable can generally be statically decided by the compiler.
- Move the maximum register calculation out of BytecodeArrayWriter
and into BytecodeRegisterOptimizer (which is the only place outside
BytecodeGenerator which updates which registers are used). This
avoids the BytecodeArrayWriter needing to know the operand types
of a node as it writes it.
- Modify EmitBytecodes to use individual push_backs rather than
building a buffer and calling insert, since this turns out to be faster.
- Initialize BytecodeArrayWriter's bytecode vector by reserving 512
bytes,
- Make common functions in Bytecodes constexpr so that they
can be statically calculated by the compiler.
- Move common functions and constructors in Bytecodes and
BytecodeNode to the header so that they can be inlined.
- Change large static switch statements in Bytecodes to const array
lookups, and move to the header to allow inlining.
I also took the opportunity to remove a number of unused helper
functions, and rework some others for consistency.
This reduces the percentage of time spent in making BytecodeArrays
in CodeLoad from ~15% to ~11% according to perf. The
CoadLoad score increase by around 2%.
BUG=v8:4280
Review-Url: https://codereview.chromium.org/2351763002
Cr-Commit-Position: refs/heads/master@{#39599}
This introduces a new {JumpLoop} bytecode to combine the OSR polling
mechanism modeled by {OsrPoll} with the actual {Jump} performing the
backwards branch. This reduces the overall size and also avoids one
additional dispatch. It also makes sure that OSR polling is only done
within real loops.
R=rmcilroy@chromium.org
BUG=v8:4764
Review-Url: https://codereview.chromium.org/2331033002
Cr-Commit-Position: refs/heads/master@{#39384}
These JavaScript operators were special hacks to ensure that we always
operate on Smis for the magic for-in index variable, but this never
really worked in the OSR case, because the OsrValue for the index
variable didn't have the proper information (that we have for the
JSForInPrepare in the non-OSR case).
Now that we have loop induction variable analysis and binary operation
hints, we can just use JSLessThan and JSAdd instead with appropriate
Smi hints, which handle the OSR case by inserting Smi checks (that are
always true). Thanks to OSR deconstruction and loop peeling these Smi
checks will be hoisted so they don't hurt the OSR case too much.
Drive-by-change: Rename the ForInDone bytecode to ForInContinue, since
we have to lower it to JSLessThan to get the loop induction variable
goodness.
R=epertoso@chromium.org
BUG=v8:5267
Review-Url: https://codereview.chromium.org/2289613002
Cr-Commit-Position: refs/heads/master@{#38968}
Removes all accesses to the Isolate during bytecode generation and the
bytecode pipeline. Adds an DisallowIsolateAccessScope which is used to
enforce this invariant within the BytecodeGenerator.
BUG=v8:5203
Review-Url: https://codereview.chromium.org/2242193002
Cr-Commit-Position: refs/heads/master@{#38716}
Now that all backends use the source position builder to record source
positions, simplify the code line logging events to take a source
position table on code creation. This means that the source position
table builder no longer needs to access the isolate until the table is
generated. This is required for off-thread bytecode generation.
BUG=v8:5203
Review-Url: https://codereview.chromium.org/2248673002
Cr-Commit-Position: refs/heads/master@{#38676}
This gets rid of the Star bytecodes that were always dispatched to from
ToObject.
ToObject now outputs to register instead of to the accumulator and
ForInPrepare gets the receiver object from an input register.
BUG=v8:4820
LOG=n
Review-Url: https://codereview.chromium.org/2189463006
Cr-Commit-Position: refs/heads/master@{#38177}
Add explicit state in BytecodeSourceInfo to simplify checks for
validity and whether a statement or expression position.
Remove BytecodeSourceInfo::Update which inherited rules for updating
source position information during bytecode building.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/2048203002
Cr-Commit-Position: refs/heads/master@{#37136}
This moves processing of jumps out of bytecode array builder and into
bytecode array writer. This simplifies the pipeline by avoiding having
to flush for offset and patch up offsets in bytecode array builder based
on what was emitted by the bytecode array writer.
This also enables future refactorings to add dead code elimination back
into the pipeline, and move processing of scalable operand sizes to the
end of the pipeline (in the bytecode array writer) rather than having to
deal with scalable operand types throughout pipeline.
BUG=v8:4280,chromium:616064
Review-Url: https://codereview.chromium.org/2035813002
Cr-Commit-Position: refs/heads/master@{#36716}
This change introduces a pipeline for the final stages of
bytecode generation.
The peephole optimizer is made distinct from the BytecodeArrayBuilder.
A new BytecodeArrayWriter is responsible for writing bytecode. It
also keeps track of the maximum register seen and offers a potentially
smaller frame size.
R=rmcilroy@chromium.org
LOG=N
BUG=v8:4280
Review-Url: https://codereview.chromium.org/1947403002
Cr-Commit-Position: refs/heads/master@{#36220}