Support a binary operation (bitwise OR) so long as it's not nested in
the left subexpression. This ensures that the expression stack never
has height greater than two and so can be kept fully in registers.
The bounded expression stack height and the absence of any side
effects on the fast path allows us to still bailout out to the very
beginning of the function if any of our fast-path checks fail.
Review URL: http://codereview.chromium.org/594008
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3822 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This is a first step towards loading globals directly from property cells instead
of going through a load IC.
This change supports only properties with the DontDelete attribute since
we are only able to bailout into the generic code generated by the secondary
code generator the beginning of a function. The resulting fast-case code is
specialized for a specific context. When invoked with a different global object,
it will always bailout to the secondary code.
When loading a property that does not exist at compile-time or a property
that is deleteable we still generate the generic load IC.
Review URL: http://codereview.chromium.org/565034
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3808 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
Until now we only supported postfix operations on global variables.
This change add generic count operations to the top-level compiler.
I tried to re-use code from the code generator used for assignment expressions
where possible.
Review URL: http://codereview.chromium.org/496009
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3530 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
o.x() and o[expr]()
other changes:
- Fix missing relocation info for StoreIC on global object.
- Generate only one common return sequence instead of always appending
"return <undefined>" at the end of each function: The first JS
return-statement will generate the common return sequence. All
other return-statements will generate a unconditional branch to the common
return sequence.
Review URL: http://codereview.chromium.org/340037
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3183 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
I also added more unit tests for literals.
Right now, the fast compiler produces code very similar to
the existing code generator. We may consider different ways to
further compact the generated code for top-level code.
ARM always goes through a runtime function to initialize computed
properties in an object literal whereas IA32 and x64 use StoreIC.
Review URL: http://codereview.chromium.org/316009
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3129 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
currently compiled the same as with the optimizing compiler: they are
cloned from a boilerplate object and the boilerplate objects are
lazily constructed.
Also changed argument pushing on ARM to use stm (store multiple),
which required changing the order of arguments to the runtime
functions DeclareGlobals and NewClosure. They were only used from
generated code.
Finally, changed the toplevel code generator so that stack pops to
discard a temporary became addition to the stack pointer on ia32 and
x64.
Review URL: http://codereview.chromium.org/303021
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3110 ce2b1a6d-e550-0410-aec6-3dcde31c8c00