// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /** * Constructs a Splay tree. A splay tree is a self-balancing binary * search tree with the additional property that recently accessed * elements are quick to access again. It performs basic operations * such as insertion, look-up and removal in O(log(n)) amortized time. * * @constructor */ export class SplayTree { /** * Pointer to the root node of the tree. * * @type {SplayTreeNode} * @private */ root_ = null; /** * @return {boolean} Whether the tree is empty. */ isEmpty() { return this.root_ === null; } /** * Inserts a node into the tree with the specified key and value if * the tree does not already contain a node with the specified key. If * the value is inserted, it becomes the root of the tree. * * @param {number} key Key to insert into the tree. * @param {*} value Value to insert into the tree. */ insert(key, value) { if (this.isEmpty()) { this.root_ = new SplayTreeNode(key, value); return; } // Splay on the key to move the last node on the search path for // the key to the root of the tree. this.splay_(key); if (this.root_.key == key) return; const node = new SplayTreeNode(key, value); if (key > this.root_.key) { node.left = this.root_; node.right = this.root_.right; this.root_.right = null; } else { node.right = this.root_; node.left = this.root_.left; this.root_.left = null; } this.root_ = node; } /** * Removes a node with the specified key from the tree if the tree * contains a node with this key. The removed node is returned. If the * key is not found, an exception is thrown. * * @param {number} key Key to find and remove from the tree. * @return {SplayTreeNode} The removed node. */ remove(key) { if (this.isEmpty()) { throw Error(`Key not found: ${key}`); } this.splay_(key); if (this.root_.key != key) { throw Error(`Key not found: ${key}`); } const removed = this.root_; if (this.root_.left === null) { this.root_ = this.root_.right; } else { const { right } = this.root_; this.root_ = this.root_.left; // Splay to make sure that the new root has an empty right child. this.splay_(key); // Insert the original right child as the right child of the new // root. this.root_.right = right; } return removed; } /** * Returns the node having the specified key or null if the tree doesn't contain * a node with the specified key. * * @param {number} key Key to find in the tree. * @return {SplayTreeNode} Node having the specified key. */ find(key) { if (this.isEmpty()) return null; this.splay_(key); return this.root_.key == key ? this.root_ : null; } /** * @return {SplayTreeNode} Node having the minimum key value. */ findMin() { if (this.isEmpty()) return null; let current = this.root_; while (current.left !== null) { current = current.left; } return current; } /** * @return {SplayTreeNode} Node having the maximum key value. */ findMax(opt_startNode) { if (this.isEmpty()) return null; let current = opt_startNode || this.root_; while (current.right !== null) { current = current.right; } return current; } /** * @return {SplayTreeNode} Node having the maximum key value that * is less or equal to the specified key value. */ findGreatestLessThan(key) { if (this.isEmpty()) return null; // Splay on the key to move the node with the given key or the last // node on the search path to the top of the tree. this.splay_(key); // Now the result is either the root node or the greatest node in // the left subtree. if (this.root_.key <= key) { return this.root_; } else if (this.root_.left !== null) { return this.findMax(this.root_.left); } else { return null; } } /** * @return {Array<*>} An array containing all the values of tree's nodes paired * with keys. */ exportKeysAndValues() { const result = []; this.traverse_(function(node) { result.push([node.key, node.value]); }); return result; } /** * @return {Array<*>} An array containing all the values of tree's nodes. */ exportValues() { const result = []; this.traverse_(function(node) { result.push(node.value) }); return result; } /** * Perform the splay operation for the given key. Moves the node with * the given key to the top of the tree. If no node has the given * key, the last node on the search path is moved to the top of the * tree. This is the simplified top-down splaying algorithm from: * "Self-adjusting Binary Search Trees" by Sleator and Tarjan * * @param {number} key Key to splay the tree on. * @private */ splay_(key) { if (this.isEmpty()) return; // Create a dummy node. The use of the dummy node is a bit // counter-intuitive: The right child of the dummy node will hold // the L tree of the algorithm. The left child of the dummy node // will hold the R tree of the algorithm. Using a dummy node, left // and right will always be nodes and we avoid special cases. let dummy, left, right; dummy = left = right = new SplayTreeNode(null, null); let current = this.root_; while (true) { if (key < current.key) { if (current.left === null) break; if (key < current.left.key) { // Rotate right. const tmp = current.left; current.left = tmp.right; tmp.right = current; current = tmp; if (current.left === null) break; } // Link right. right.left = current; right = current; current = current.left; } else if (key > current.key) { if (current.right === null) break; if (key > current.right.key) { // Rotate left. const tmp = current.right; current.right = tmp.left; tmp.left = current; current = tmp; if (current.right === null) break; } // Link left. left.right = current; left = current; current = current.right; } else { break; } } // Assemble. left.right = current.left; right.left = current.right; current.left = dummy.right; current.right = dummy.left; this.root_ = current; } /** * Performs a preorder traversal of the tree. * * @param {function(SplayTreeNode)} f Visitor function. * @private */ traverse_(f) { const nodesToVisit = [this.root_]; while (nodesToVisit.length > 0) { const node = nodesToVisit.shift(); if (node === null) continue; f(node); nodesToVisit.push(node.left); nodesToVisit.push(node.right); } } } /** * Constructs a Splay tree node. * * @param {number} key Key. * @param {*} value Value. */ class SplayTreeNode { constructor(key, value) { this.key = key; this.value = value; /** * @type {SplayTreeNode} */ this.left = null; /** * @type {SplayTreeNode} */ this.right = null; } };