// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #if V8_TARGET_ARCH_ARM #include "src/arm/constants-arm.h" #include "src/arm/simulator-arm.h" #include "src/assembler.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/runtime/runtime-utils.h" #if defined(USE_SIMULATOR) // Only build the simulator if not compiling for real ARM hardware. namespace v8 { namespace internal { // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent way through // ::v8::internal::OS in the same way as SNPrintF is that the // Windows C Run-Time Library does not provide vsscanf. #define SScanF sscanf // NOLINT // The ArmDebugger class is used by the simulator while debugging simulated ARM // code. class ArmDebugger { public: explicit ArmDebugger(Simulator* sim) : sim_(sim) { } void Stop(Instruction* instr); void Debug(); private: static const Instr kBreakpointInstr = (al | (7*B25) | (1*B24) | kBreakpoint); static const Instr kNopInstr = (al | (13*B21)); Simulator* sim_; int32_t GetRegisterValue(int regnum); double GetRegisterPairDoubleValue(int regnum); double GetVFPDoubleRegisterValue(int regnum); bool GetValue(const char* desc, int32_t* value); bool GetVFPSingleValue(const char* desc, float* value); bool GetVFPDoubleValue(const char* desc, double* value); // Set or delete a breakpoint. Returns true if successful. bool SetBreakpoint(Instruction* breakpc); bool DeleteBreakpoint(Instruction* breakpc); // Undo and redo all breakpoints. This is needed to bracket disassembly and // execution to skip past breakpoints when run from the debugger. void UndoBreakpoints(); void RedoBreakpoints(); }; void ArmDebugger::Stop(Instruction* instr) { // Get the stop code. uint32_t code = instr->SvcValue() & kStopCodeMask; // Print the stop message and code if it is not the default code. if (code != kMaxStopCode) { PrintF("Simulator hit stop %u\n", code); } else { PrintF("Simulator hit\n"); } sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); Debug(); } int32_t ArmDebugger::GetRegisterValue(int regnum) { if (regnum == kPCRegister) { return sim_->get_pc(); } else { return sim_->get_register(regnum); } } double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { return sim_->get_double_from_register_pair(regnum); } double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { return sim_->get_double_from_d_register(regnum); } bool ArmDebugger::GetValue(const char* desc, int32_t* value) { int regnum = Registers::Number(desc); if (regnum != kNoRegister) { *value = GetRegisterValue(regnum); return true; } else { if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc + 2, "%x", reinterpret_cast(value)) == 1; } else { return SScanF(desc, "%u", reinterpret_cast(value)) == 1; } } return false; } bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { bool is_double; int regnum = VFPRegisters::Number(desc, &is_double); if (regnum != kNoRegister && !is_double) { *value = sim_->get_float_from_s_register(regnum); return true; } return false; } bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { bool is_double; int regnum = VFPRegisters::Number(desc, &is_double); if (regnum != kNoRegister && is_double) { *value = sim_->get_double_from_d_register(regnum); return true; } return false; } bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { // Check if a breakpoint can be set. If not return without any side-effects. if (sim_->break_pc_ != NULL) { return false; } // Set the breakpoint. sim_->break_pc_ = breakpc; sim_->break_instr_ = breakpc->InstructionBits(); // Not setting the breakpoint instruction in the code itself. It will be set // when the debugger shell continues. return true; } bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } sim_->break_pc_ = NULL; sim_->break_instr_ = 0; return true; } void ArmDebugger::UndoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } } void ArmDebugger::RedoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(kBreakpointInstr); } } void ArmDebugger::Debug() { intptr_t last_pc = -1; bool done = false; #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = { cmd, arg1, arg2 }; // make sure to have a proper terminating character if reaching the limit cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; // Undo all set breakpoints while running in the debugger shell. This will // make them invisible to all commands. UndoBreakpoints(); while (!done && !sim_->has_bad_pc()) { if (last_pc != sim_->get_pc()) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; dasm.InstructionDecode(buffer, reinterpret_cast(sim_->get_pc())); PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); last_pc = sim_->get_pc(); } char* line = ReadLine("sim> "); if (line == NULL) { break; } else { char* last_input = sim_->last_debugger_input(); if (strcmp(line, "\n") == 0 && last_input != NULL) { line = last_input; } else { // Ownership is transferred to sim_; sim_->set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { sim_->InstructionDecode(reinterpret_cast(sim_->get_pc())); } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { // Execute the one instruction we broke at with breakpoints disabled. sim_->InstructionDecode(reinterpret_cast(sim_->get_pc())); // Leave the debugger shell. done = true; } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { int32_t value; float svalue; double dvalue; if (strcmp(arg1, "all") == 0) { for (int i = 0; i < kNumRegisters; i++) { value = GetRegisterValue(i); PrintF( "%3s: 0x%08x %10d", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( i), value, value); if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && (i % 2) == 0) { dvalue = GetRegisterPairDoubleValue(i); PrintF(" (%f)\n", dvalue); } else { PrintF("\n"); } } for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { dvalue = GetVFPDoubleRegisterValue(i); uint64_t as_words = bit_cast(dvalue); PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true), dvalue, static_cast(as_words >> 32), static_cast(as_words & 0xffffffff)); } } else { if (GetValue(arg1, &value)) { PrintF("%s: 0x%08x %d \n", arg1, value, value); } else if (GetVFPSingleValue(arg1, &svalue)) { uint32_t as_word = bit_cast(svalue); PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); } else if (GetVFPDoubleValue(arg1, &dvalue)) { uint64_t as_words = bit_cast(dvalue); PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, static_cast(as_words >> 32), static_cast(as_words & 0xffffffff)); } else { PrintF("%s unrecognized\n", arg1); } } } else { PrintF("print \n"); } } else if ((strcmp(cmd, "po") == 0) || (strcmp(cmd, "printobject") == 0)) { if (argc == 2) { int32_t value; OFStream os(stdout); if (GetValue(arg1, &value)) { Object* obj = reinterpret_cast(value); os << arg1 << ": \n"; #ifdef DEBUG obj->Print(os); os << "\n"; #else os << Brief(obj) << "\n"; #endif } else { os << arg1 << " unrecognized\n"; } } else { PrintF("printobject \n"); } } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { int32_t* cur = NULL; int32_t* end = NULL; int next_arg = 1; if (strcmp(cmd, "stack") == 0) { cur = reinterpret_cast(sim_->get_register(Simulator::sp)); } else { // "mem" int32_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } cur = reinterpret_cast(value); next_arg++; } int32_t words; if (argc == next_arg) { words = 10; } else { if (!GetValue(argv[next_arg], &words)) { words = 10; } } end = cur + words; while (cur < end) { PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d", reinterpret_cast(cur), *cur, *cur); HeapObject* obj = reinterpret_cast(*cur); int value = *cur; Heap* current_heap = sim_->isolate_->heap(); if (((value & 1) == 0) || current_heap->ContainsSlow(obj->address())) { PrintF(" ("); if ((value & 1) == 0) { PrintF("smi %d", value / 2); } else { obj->ShortPrint(); } PrintF(")"); } PrintF("\n"); cur++; } } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; byte* prev = NULL; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int regnum = Registers::Number(arg1); if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { // The argument is an address or a register name. int32_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast(value); // Disassemble 10 instructions at . end = cur + (10 * Instruction::kInstrSize); } } else { // The argument is the number of instructions. int32_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast(sim_->get_pc()); // Disassemble instructions. end = cur + (value * Instruction::kInstrSize); } } } else { int32_t value1; int32_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { prev = cur; cur += dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast(prev), buffer.start()); } } else if (strcmp(cmd, "gdb") == 0) { PrintF("relinquishing control to gdb\n"); v8::base::OS::DebugBreak(); PrintF("regaining control from gdb\n"); } else if (strcmp(cmd, "break") == 0) { if (argc == 2) { int32_t value; if (GetValue(arg1, &value)) { if (!SetBreakpoint(reinterpret_cast(value))) { PrintF("setting breakpoint failed\n"); } } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("break
\n"); } } else if (strcmp(cmd, "del") == 0) { if (!DeleteBreakpoint(NULL)) { PrintF("deleting breakpoint failed\n"); } } else if (strcmp(cmd, "flags") == 0) { PrintF("N flag: %d; ", sim_->n_flag_); PrintF("Z flag: %d; ", sim_->z_flag_); PrintF("C flag: %d; ", sim_->c_flag_); PrintF("V flag: %d\n", sim_->v_flag_); PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); } else if (strcmp(cmd, "stop") == 0) { int32_t value; intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; Instruction* stop_instr = reinterpret_cast(stop_pc); Instruction* msg_address = reinterpret_cast(stop_pc + Instruction::kInstrSize); if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { // Remove the current stop. if (sim_->isStopInstruction(stop_instr)) { stop_instr->SetInstructionBits(kNopInstr); msg_address->SetInstructionBits(kNopInstr); } else { PrintF("Not at debugger stop.\n"); } } else if (argc == 3) { // Print information about all/the specified breakpoint(s). if (strcmp(arg1, "info") == 0) { if (strcmp(arg2, "all") == 0) { PrintF("Stop information:\n"); for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->PrintStopInfo(i); } } else if (GetValue(arg2, &value)) { sim_->PrintStopInfo(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "enable") == 0) { // Enable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->EnableStop(i); } } else if (GetValue(arg2, &value)) { sim_->EnableStop(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "disable") == 0) { // Disable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->DisableStop(i); } } else if (GetValue(arg2, &value)) { sim_->DisableStop(value); } else { PrintF("Unrecognized argument.\n"); } } } else { PrintF("Wrong usage. Use help command for more information.\n"); } } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; PrintF("Trace of executed instructions is %s\n", ::v8::internal::FLAG_trace_sim ? "on" : "off"); } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { PrintF("cont\n"); PrintF(" continue execution (alias 'c')\n"); PrintF("stepi\n"); PrintF(" step one instruction (alias 'si')\n"); PrintF("print \n"); PrintF(" print register content (alias 'p')\n"); PrintF(" use register name 'all' to print all registers\n"); PrintF(" add argument 'fp' to print register pair double values\n"); PrintF("printobject \n"); PrintF(" print an object from a register (alias 'po')\n"); PrintF("flags\n"); PrintF(" print flags\n"); PrintF("stack []\n"); PrintF(" dump stack content, default dump 10 words)\n"); PrintF("mem
[]\n"); PrintF(" dump memory content, default dump 10 words)\n"); PrintF("disasm []\n"); PrintF("disasm [
]\n"); PrintF("disasm [[
] ]\n"); PrintF(" disassemble code, default is 10 instructions\n"); PrintF(" from pc (alias 'di')\n"); PrintF("gdb\n"); PrintF(" enter gdb\n"); PrintF("break
\n"); PrintF(" set a break point on the address\n"); PrintF("del\n"); PrintF(" delete the breakpoint\n"); PrintF("trace (alias 't')\n"); PrintF(" toogle the tracing of all executed statements\n"); PrintF("stop feature:\n"); PrintF(" Description:\n"); PrintF(" Stops are debug instructions inserted by\n"); PrintF(" the Assembler::stop() function.\n"); PrintF(" When hitting a stop, the Simulator will\n"); PrintF(" stop and and give control to the ArmDebugger.\n"); PrintF(" The first %d stop codes are watched:\n", Simulator::kNumOfWatchedStops); PrintF(" - They can be enabled / disabled: the Simulator\n"); PrintF(" will / won't stop when hitting them.\n"); PrintF(" - The Simulator keeps track of how many times they \n"); PrintF(" are met. (See the info command.) Going over a\n"); PrintF(" disabled stop still increases its counter. \n"); PrintF(" Commands:\n"); PrintF(" stop info all/ : print infos about number \n"); PrintF(" or all stop(s).\n"); PrintF(" stop enable/disable all/ : enables / disables\n"); PrintF(" all or number stop(s)\n"); PrintF(" stop unstop\n"); PrintF(" ignore the stop instruction at the current location\n"); PrintF(" from now on\n"); } else { PrintF("Unknown command: %s\n", cmd); } } } // Add all the breakpoints back to stop execution and enter the debugger // shell when hit. RedoBreakpoints(); #undef COMMAND_SIZE #undef ARG_SIZE #undef STR #undef XSTR } static bool ICacheMatch(void* one, void* two) { DCHECK((reinterpret_cast(one) & CachePage::kPageMask) == 0); DCHECK((reinterpret_cast(two) & CachePage::kPageMask) == 0); return one == two; } static uint32_t ICacheHash(void* key) { return static_cast(reinterpret_cast(key)) >> 2; } static bool AllOnOnePage(uintptr_t start, int size) { intptr_t start_page = (start & ~CachePage::kPageMask); intptr_t end_page = ((start + size) & ~CachePage::kPageMask); return start_page == end_page; } void Simulator::set_last_debugger_input(char* input) { DeleteArray(last_debugger_input_); last_debugger_input_ = input; } void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, void* start_addr, size_t size) { intptr_t start = reinterpret_cast(start_addr); int intra_line = (start & CachePage::kLineMask); start -= intra_line; size += intra_line; size = ((size - 1) | CachePage::kLineMask) + 1; int offset = (start & CachePage::kPageMask); while (!AllOnOnePage(start, size - 1)) { int bytes_to_flush = CachePage::kPageSize - offset; FlushOnePage(i_cache, start, bytes_to_flush); start += bytes_to_flush; size -= bytes_to_flush; DCHECK_EQ(0, start & CachePage::kPageMask); offset = 0; } if (size != 0) { FlushOnePage(i_cache, start, size); } } CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, void* page) { base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); if (entry->value == NULL) { CachePage* new_page = new CachePage(); entry->value = new_page; } return reinterpret_cast(entry->value); } // Flush from start up to and not including start + size. void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, int size) { DCHECK(size <= CachePage::kPageSize); DCHECK(AllOnOnePage(start, size - 1)); DCHECK((start & CachePage::kLineMask) == 0); DCHECK((size & CachePage::kLineMask) == 0); void* page = reinterpret_cast(start & (~CachePage::kPageMask)); int offset = (start & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* valid_bytemap = cache_page->ValidityByte(offset); memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); } void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr) { intptr_t address = reinterpret_cast(instr); void* page = reinterpret_cast(address & (~CachePage::kPageMask)); void* line = reinterpret_cast(address & (~CachePage::kLineMask)); int offset = (address & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* cache_valid_byte = cache_page->ValidityByte(offset); bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); if (cache_hit) { // Check that the data in memory matches the contents of the I-cache. CHECK_EQ(0, memcmp(reinterpret_cast(instr), cache_page->CachedData(offset), Instruction::kInstrSize)); } else { // Cache miss. Load memory into the cache. memcpy(cached_line, line, CachePage::kLineLength); *cache_valid_byte = CachePage::LINE_VALID; } } void Simulator::Initialize(Isolate* isolate) { if (isolate->simulator_initialized()) return; isolate->set_simulator_initialized(true); ::v8::internal::ExternalReference::set_redirector(isolate, &RedirectExternalReference); } Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { i_cache_ = isolate_->simulator_i_cache(); if (i_cache_ == NULL) { i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); isolate_->set_simulator_i_cache(i_cache_); } Initialize(isolate); // Set up simulator support first. Some of this information is needed to // setup the architecture state. size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack stack_ = reinterpret_cast(malloc(stack_size)); pc_modified_ = false; icount_ = 0; break_pc_ = NULL; break_instr_ = 0; // Set up architecture state. // All registers are initialized to zero to start with. for (int i = 0; i < num_registers; i++) { registers_[i] = 0; } n_flag_ = false; z_flag_ = false; c_flag_ = false; v_flag_ = false; // Initializing VFP registers. // All registers are initialized to zero to start with // even though s_registers_ & d_registers_ share the same // physical registers in the target. for (int i = 0; i < num_d_registers * 2; i++) { vfp_registers_[i] = 0; } n_flag_FPSCR_ = false; z_flag_FPSCR_ = false; c_flag_FPSCR_ = false; v_flag_FPSCR_ = false; FPSCR_rounding_mode_ = RN; FPSCR_default_NaN_mode_ = false; inv_op_vfp_flag_ = false; div_zero_vfp_flag_ = false; overflow_vfp_flag_ = false; underflow_vfp_flag_ = false; inexact_vfp_flag_ = false; // The sp is initialized to point to the bottom (high address) of the // allocated stack area. To be safe in potential stack underflows we leave // some buffer below. registers_[sp] = reinterpret_cast(stack_) + stack_size - 64; // The lr and pc are initialized to a known bad value that will cause an // access violation if the simulator ever tries to execute it. registers_[pc] = bad_lr; registers_[lr] = bad_lr; last_debugger_input_ = NULL; } Simulator::~Simulator() { free(stack_); } // When the generated code calls an external reference we need to catch that in // the simulator. The external reference will be a function compiled for the // host architecture. We need to call that function instead of trying to // execute it with the simulator. We do that by redirecting the external // reference to a svc (Supervisor Call) instruction that is handled by // the simulator. We write the original destination of the jump just at a known // offset from the svc instruction so the simulator knows what to call. class Redirection { public: Redirection(Isolate* isolate, void* external_function, ExternalReference::Type type) : external_function_(external_function), swi_instruction_(al | (0xf * B24) | kCallRtRedirected), type_(type), next_(NULL) { next_ = isolate->simulator_redirection(); Simulator::current(isolate)-> FlushICache(isolate->simulator_i_cache(), reinterpret_cast(&swi_instruction_), Instruction::kInstrSize); isolate->set_simulator_redirection(this); } void* address_of_swi_instruction() { return reinterpret_cast(&swi_instruction_); } void* external_function() { return external_function_; } ExternalReference::Type type() { return type_; } static Redirection* Get(Isolate* isolate, void* external_function, ExternalReference::Type type) { Redirection* current = isolate->simulator_redirection(); for (; current != NULL; current = current->next_) { if (current->external_function_ == external_function) { DCHECK_EQ(current->type(), type); return current; } } return new Redirection(isolate, external_function, type); } static Redirection* FromSwiInstruction(Instruction* swi_instruction) { char* addr_of_swi = reinterpret_cast(swi_instruction); char* addr_of_redirection = addr_of_swi - offsetof(Redirection, swi_instruction_); return reinterpret_cast(addr_of_redirection); } static void* ReverseRedirection(int32_t reg) { Redirection* redirection = FromSwiInstruction( reinterpret_cast(reinterpret_cast(reg))); return redirection->external_function(); } static void DeleteChain(Redirection* redirection) { while (redirection != nullptr) { Redirection* next = redirection->next_; delete redirection; redirection = next; } } private: void* external_function_; uint32_t swi_instruction_; ExternalReference::Type type_; Redirection* next_; }; // static void Simulator::TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first) { Redirection::DeleteChain(first); if (i_cache != nullptr) { for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; entry = i_cache->Next(entry)) { delete static_cast(entry->value); } delete i_cache; } } void* Simulator::RedirectExternalReference(Isolate* isolate, void* external_function, ExternalReference::Type type) { Redirection* redirection = Redirection::Get(isolate, external_function, type); return redirection->address_of_swi_instruction(); } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { v8::internal::Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); DCHECK(isolate_data != NULL); Simulator* sim = isolate_data->simulator(); if (sim == NULL) { // TODO(146): delete the simulator object when a thread/isolate goes away. sim = new Simulator(isolate); isolate_data->set_simulator(sim); } return sim; } // Sets the register in the architecture state. It will also deal with updating // Simulator internal state for special registers such as PC. void Simulator::set_register(int reg, int32_t value) { DCHECK((reg >= 0) && (reg < num_registers)); if (reg == pc) { pc_modified_ = true; } registers_[reg] = value; } // Get the register from the architecture state. This function does handle // the special case of accessing the PC register. int32_t Simulator::get_register(int reg) const { DCHECK((reg >= 0) && (reg < num_registers)); // Stupid code added to avoid bug in GCC. // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 if (reg >= num_registers) return 0; // End stupid code. return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); } double Simulator::get_double_from_register_pair(int reg) { DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); double dm_val = 0.0; // Read the bits from the unsigned integer register_[] array // into the double precision floating point value and return it. char buffer[2 * sizeof(vfp_registers_[0])]; memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); return(dm_val); } void Simulator::set_register_pair_from_double(int reg, double* value) { DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); memcpy(registers_ + reg, value, sizeof(*value)); } void Simulator::set_dw_register(int dreg, const int* dbl) { DCHECK((dreg >= 0) && (dreg < num_d_registers)); registers_[dreg] = dbl[0]; registers_[dreg + 1] = dbl[1]; } void Simulator::get_d_register(int dreg, uint64_t* value) { DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); } void Simulator::set_d_register(int dreg, const uint64_t* value) { DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); } void Simulator::get_d_register(int dreg, uint32_t* value) { DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); } void Simulator::set_d_register(int dreg, const uint32_t* value) { DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); } void Simulator::get_q_register(int qreg, uint64_t* value) { DCHECK((qreg >= 0) && (qreg < num_q_registers)); memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); } void Simulator::set_q_register(int qreg, const uint64_t* value) { DCHECK((qreg >= 0) && (qreg < num_q_registers)); memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); } void Simulator::get_q_register(int qreg, uint32_t* value) { DCHECK((qreg >= 0) && (qreg < num_q_registers)); memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); } void Simulator::set_q_register(int qreg, const uint32_t* value) { DCHECK((qreg >= 0) && (qreg < num_q_registers)); memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); } // Raw access to the PC register. void Simulator::set_pc(int32_t value) { pc_modified_ = true; registers_[pc] = value; } bool Simulator::has_bad_pc() const { return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); } // Raw access to the PC register without the special adjustment when reading. int32_t Simulator::get_pc() const { return registers_[pc]; } // Getting from and setting into VFP registers. void Simulator::set_s_register(int sreg, unsigned int value) { DCHECK((sreg >= 0) && (sreg < num_s_registers)); vfp_registers_[sreg] = value; } unsigned int Simulator::get_s_register(int sreg) const { DCHECK((sreg >= 0) && (sreg < num_s_registers)); return vfp_registers_[sreg]; } template void Simulator::SetVFPRegister(int reg_index, const InputType& value) { DCHECK(reg_index >= 0); if (register_size == 1) DCHECK(reg_index < num_s_registers); if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); char buffer[register_size * sizeof(vfp_registers_[0])]; memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); memcpy(&vfp_registers_[reg_index * register_size], buffer, register_size * sizeof(vfp_registers_[0])); } template ReturnType Simulator::GetFromVFPRegister(int reg_index) { DCHECK(reg_index >= 0); if (register_size == 1) DCHECK(reg_index < num_s_registers); if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); ReturnType value = 0; char buffer[register_size * sizeof(vfp_registers_[0])]; memcpy(buffer, &vfp_registers_[register_size * reg_index], register_size * sizeof(vfp_registers_[0])); memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0])); return value; } void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value) { // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented. if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) { n_flag_ = ((value & (1 << 31)) != 0); z_flag_ = ((value & (1 << 30)) != 0); c_flag_ = ((value & (1 << 29)) != 0); v_flag_ = ((value & (1 << 28)) != 0); } else { UNIMPLEMENTED(); } } uint32_t Simulator::GetFromSpecialRegister(SRegister reg) { uint32_t result = 0; // Only CPSR_f is implemented. if (reg == CPSR) { if (n_flag_) result |= (1 << 31); if (z_flag_) result |= (1 << 30); if (c_flag_) result |= (1 << 29); if (v_flag_) result |= (1 << 28); } else { UNIMPLEMENTED(); } return result; } // Runtime FP routines take: // - two double arguments // - one double argument and zero or one integer arguments. // All are consructed here from r0-r3 or d0, d1 and r0. void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { if (use_eabi_hardfloat()) { *x = get_double_from_d_register(0); *y = get_double_from_d_register(1); *z = get_register(0); } else { // Registers 0 and 1 -> x. *x = get_double_from_register_pair(0); // Register 2 and 3 -> y. *y = get_double_from_register_pair(2); // Register 2 -> z *z = get_register(2); } } // The return value is either in r0/r1 or d0. void Simulator::SetFpResult(const double& result) { if (use_eabi_hardfloat()) { char buffer[2 * sizeof(vfp_registers_[0])]; memcpy(buffer, &result, sizeof(buffer)); // Copy result to d0. memcpy(vfp_registers_, buffer, sizeof(buffer)); } else { char buffer[2 * sizeof(registers_[0])]; memcpy(buffer, &result, sizeof(buffer)); // Copy result to r0 and r1. memcpy(registers_, buffer, sizeof(buffer)); } } void Simulator::TrashCallerSaveRegisters() { // We don't trash the registers with the return value. registers_[2] = 0x50Bad4U; registers_[3] = 0x50Bad4U; registers_[12] = 0x50Bad4U; } int Simulator::ReadW(int32_t addr, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. intptr_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. intptr_t* ptr = reinterpret_cast(addr); *ptr = value; } uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. uint16_t* ptr = reinterpret_cast(addr); return *ptr; } int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. int16_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. uint16_t* ptr = reinterpret_cast(addr); *ptr = value; } void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. int16_t* ptr = reinterpret_cast(addr); *ptr = value; } uint8_t Simulator::ReadBU(int32_t addr) { uint8_t* ptr = reinterpret_cast(addr); return *ptr; } int8_t Simulator::ReadB(int32_t addr) { int8_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteB(int32_t addr, uint8_t value) { uint8_t* ptr = reinterpret_cast(addr); *ptr = value; } void Simulator::WriteB(int32_t addr, int8_t value) { int8_t* ptr = reinterpret_cast(addr); *ptr = value; } int32_t* Simulator::ReadDW(int32_t addr) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. int32_t* ptr = reinterpret_cast(addr); return ptr; } void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { // All supported ARM targets allow unaligned accesses, so we don't need to // check the alignment here. int32_t* ptr = reinterpret_cast(addr); *ptr++ = value1; *ptr = value2; } // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { // The simulator uses a separate JS stack. If we have exhausted the C stack, // we also drop down the JS limit to reflect the exhaustion on the JS stack. if (GetCurrentStackPosition() < c_limit) { return reinterpret_cast(get_sp()); } // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes // to prevent overrunning the stack when pushing values. return reinterpret_cast(stack_) + 1024; } // Unsupported instructions use Format to print an error and stop execution. void Simulator::Format(Instruction* instr, const char* format) { PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", reinterpret_cast(instr), format); UNIMPLEMENTED(); } // Checks if the current instruction should be executed based on its // condition bits. bool Simulator::ConditionallyExecute(Instruction* instr) { switch (instr->ConditionField()) { case eq: return z_flag_; case ne: return !z_flag_; case cs: return c_flag_; case cc: return !c_flag_; case mi: return n_flag_; case pl: return !n_flag_; case vs: return v_flag_; case vc: return !v_flag_; case hi: return c_flag_ && !z_flag_; case ls: return !c_flag_ || z_flag_; case ge: return n_flag_ == v_flag_; case lt: return n_flag_ != v_flag_; case gt: return !z_flag_ && (n_flag_ == v_flag_); case le: return z_flag_ || (n_flag_ != v_flag_); case al: return true; default: UNREACHABLE(); } return false; } // Calculate and set the Negative and Zero flags. void Simulator::SetNZFlags(int32_t val) { n_flag_ = (val < 0); z_flag_ = (val == 0); } // Set the Carry flag. void Simulator::SetCFlag(bool val) { c_flag_ = val; } // Set the oVerflow flag. void Simulator::SetVFlag(bool val) { v_flag_ = val; } // Calculate C flag value for additions. bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { uint32_t uleft = static_cast(left); uint32_t uright = static_cast(right); uint32_t urest = 0xffffffffU - uleft; return (uright > urest) || (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); } // Calculate C flag value for subtractions. bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) { uint32_t uleft = static_cast(left); uint32_t uright = static_cast(right); return (uright > uleft) || (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1)))); } // Calculate V flag value for additions and subtractions. bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition) { bool overflow; if (addition) { // operands have the same sign overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) // and operands and result have different sign && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } else { // operands have different signs overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) // and first operand and result have different signs && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } return overflow; } // Support for VFP comparisons. void Simulator::Compute_FPSCR_Flags(float val1, float val2) { if (std::isnan(val1) || std::isnan(val2)) { n_flag_FPSCR_ = false; z_flag_FPSCR_ = false; c_flag_FPSCR_ = true; v_flag_FPSCR_ = true; // All non-NaN cases. } else if (val1 == val2) { n_flag_FPSCR_ = false; z_flag_FPSCR_ = true; c_flag_FPSCR_ = true; v_flag_FPSCR_ = false; } else if (val1 < val2) { n_flag_FPSCR_ = true; z_flag_FPSCR_ = false; c_flag_FPSCR_ = false; v_flag_FPSCR_ = false; } else { // Case when (val1 > val2). n_flag_FPSCR_ = false; z_flag_FPSCR_ = false; c_flag_FPSCR_ = true; v_flag_FPSCR_ = false; } } void Simulator::Compute_FPSCR_Flags(double val1, double val2) { if (std::isnan(val1) || std::isnan(val2)) { n_flag_FPSCR_ = false; z_flag_FPSCR_ = false; c_flag_FPSCR_ = true; v_flag_FPSCR_ = true; // All non-NaN cases. } else if (val1 == val2) { n_flag_FPSCR_ = false; z_flag_FPSCR_ = true; c_flag_FPSCR_ = true; v_flag_FPSCR_ = false; } else if (val1 < val2) { n_flag_FPSCR_ = true; z_flag_FPSCR_ = false; c_flag_FPSCR_ = false; v_flag_FPSCR_ = false; } else { // Case when (val1 > val2). n_flag_FPSCR_ = false; z_flag_FPSCR_ = false; c_flag_FPSCR_ = true; v_flag_FPSCR_ = false; } } void Simulator::Copy_FPSCR_to_APSR() { n_flag_ = n_flag_FPSCR_; z_flag_ = z_flag_FPSCR_; c_flag_ = c_flag_FPSCR_; v_flag_ = v_flag_FPSCR_; } // Addressing Mode 1 - Data-processing operands: // Get the value based on the shifter_operand with register. int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { ShiftOp shift = instr->ShiftField(); int shift_amount = instr->ShiftAmountValue(); int32_t result = get_register(instr->RmValue()); if (instr->Bit(4) == 0) { // by immediate if ((shift == ROR) && (shift_amount == 0)) { UNIMPLEMENTED(); return result; } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { shift_amount = 32; } switch (shift) { case ASR: { if (shift_amount == 0) { if (result < 0) { result = 0xffffffff; *carry_out = true; } else { result = 0; *carry_out = false; } } else { result >>= (shift_amount - 1); *carry_out = (result & 1) == 1; result >>= 1; } break; } case LSL: { if (shift_amount == 0) { *carry_out = c_flag_; } else { result <<= (shift_amount - 1); *carry_out = (result < 0); result <<= 1; } break; } case LSR: { if (shift_amount == 0) { result = 0; *carry_out = c_flag_; } else { uint32_t uresult = static_cast(result); uresult >>= (shift_amount - 1); *carry_out = (uresult & 1) == 1; uresult >>= 1; result = static_cast(uresult); } break; } case ROR: { if (shift_amount == 0) { *carry_out = c_flag_; } else { uint32_t left = static_cast(result) >> shift_amount; uint32_t right = static_cast(result) << (32 - shift_amount); result = right | left; *carry_out = (static_cast(result) >> 31) != 0; } break; } default: { UNREACHABLE(); break; } } } else { // by register int rs = instr->RsValue(); shift_amount = get_register(rs) &0xff; switch (shift) { case ASR: { if (shift_amount == 0) { *carry_out = c_flag_; } else if (shift_amount < 32) { result >>= (shift_amount - 1); *carry_out = (result & 1) == 1; result >>= 1; } else { DCHECK(shift_amount >= 32); if (result < 0) { *carry_out = true; result = 0xffffffff; } else { *carry_out = false; result = 0; } } break; } case LSL: { if (shift_amount == 0) { *carry_out = c_flag_; } else if (shift_amount < 32) { result <<= (shift_amount - 1); *carry_out = (result < 0); result <<= 1; } else if (shift_amount == 32) { *carry_out = (result & 1) == 1; result = 0; } else { DCHECK(shift_amount > 32); *carry_out = false; result = 0; } break; } case LSR: { if (shift_amount == 0) { *carry_out = c_flag_; } else if (shift_amount < 32) { uint32_t uresult = static_cast(result); uresult >>= (shift_amount - 1); *carry_out = (uresult & 1) == 1; uresult >>= 1; result = static_cast(uresult); } else if (shift_amount == 32) { *carry_out = (result < 0); result = 0; } else { *carry_out = false; result = 0; } break; } case ROR: { if (shift_amount == 0) { *carry_out = c_flag_; } else { uint32_t left = static_cast(result) >> shift_amount; uint32_t right = static_cast(result) << (32 - shift_amount); result = right | left; *carry_out = (static_cast(result) >> 31) != 0; } break; } default: { UNREACHABLE(); break; } } } return result; } // Addressing Mode 1 - Data-processing operands: // Get the value based on the shifter_operand with immediate. int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { int rotate = instr->RotateValue() * 2; int immed8 = instr->Immed8Value(); int imm = base::bits::RotateRight32(immed8, rotate); *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); return imm; } static int count_bits(int bit_vector) { int count = 0; while (bit_vector != 0) { if ((bit_vector & 1) != 0) { count++; } bit_vector >>= 1; } return count; } int32_t Simulator::ProcessPU(Instruction* instr, int num_regs, int reg_size, intptr_t* start_address, intptr_t* end_address) { int rn = instr->RnValue(); int32_t rn_val = get_register(rn); switch (instr->PUField()) { case da_x: { UNIMPLEMENTED(); break; } case ia_x: { *start_address = rn_val; *end_address = rn_val + (num_regs * reg_size) - reg_size; rn_val = rn_val + (num_regs * reg_size); break; } case db_x: { *start_address = rn_val - (num_regs * reg_size); *end_address = rn_val - reg_size; rn_val = *start_address; break; } case ib_x: { *start_address = rn_val + reg_size; *end_address = rn_val + (num_regs * reg_size); rn_val = *end_address; break; } default: { UNREACHABLE(); break; } } return rn_val; } // Addressing Mode 4 - Load and Store Multiple void Simulator::HandleRList(Instruction* instr, bool load) { int rlist = instr->RlistValue(); int num_regs = count_bits(rlist); intptr_t start_address = 0; intptr_t end_address = 0; int32_t rn_val = ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); intptr_t* address = reinterpret_cast(start_address); // Catch null pointers a little earlier. DCHECK(start_address > 8191 || start_address < 0); int reg = 0; while (rlist != 0) { if ((rlist & 1) != 0) { if (load) { set_register(reg, *address); } else { *address = get_register(reg); } address += 1; } reg++; rlist >>= 1; } DCHECK(end_address == ((intptr_t)address) - 4); if (instr->HasW()) { set_register(instr->RnValue(), rn_val); } } // Addressing Mode 6 - Load and Store Multiple Coprocessor registers. void Simulator::HandleVList(Instruction* instr) { VFPRegPrecision precision = (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; int operand_size = (precision == kSinglePrecision) ? 4 : 8; bool load = (instr->VLValue() == 0x1); int vd; int num_regs; vd = instr->VFPDRegValue(precision); if (precision == kSinglePrecision) { num_regs = instr->Immed8Value(); } else { num_regs = instr->Immed8Value() / 2; } intptr_t start_address = 0; intptr_t end_address = 0; int32_t rn_val = ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); intptr_t* address = reinterpret_cast(start_address); for (int reg = vd; reg < vd + num_regs; reg++) { if (precision == kSinglePrecision) { if (load) { set_s_register_from_sinteger( reg, ReadW(reinterpret_cast(address), instr)); } else { WriteW(reinterpret_cast(address), get_sinteger_from_s_register(reg), instr); } address += 1; } else { if (load) { int32_t data[] = { ReadW(reinterpret_cast(address), instr), ReadW(reinterpret_cast(address + 1), instr) }; set_d_register(reg, reinterpret_cast(data)); } else { uint32_t data[2]; get_d_register(reg, data); WriteW(reinterpret_cast(address), data[0], instr); WriteW(reinterpret_cast(address + 1), data[1], instr); } address += 2; } } DCHECK(reinterpret_cast(address) - operand_size == end_address); if (instr->HasW()) { set_register(instr->RnValue(), rn_val); } } // Calls into the V8 runtime are based on this very simple interface. // Note: To be able to return two values from some calls the code in runtime.cc // uses the ObjectPair which is essentially two 32-bit values stuffed into a // 64-bit value. With the code below we assume that all runtime calls return // 64 bits of result. If they don't, the r1 result register contains a bogus // value, which is fine because it is caller-saved. typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, int32_t arg4, int32_t arg5); typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, int32_t arg4); // These prototypes handle the four types of FP calls. typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPCall)(double darg0); typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1); // This signature supports direct call to accessor getter callback. typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); typedef void (*SimulatorRuntimeProfilingGetterCall)( int32_t arg0, int32_t arg1, void* arg2); // Software interrupt instructions are used by the simulator to call into the // C-based V8 runtime. void Simulator::SoftwareInterrupt(Instruction* instr) { int svc = instr->SvcValue(); switch (svc) { case kCallRtRedirected: { // Check if stack is aligned. Error if not aligned is reported below to // include information on the function called. bool stack_aligned = (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; Redirection* redirection = Redirection::FromSwiInstruction(instr); int32_t arg0 = get_register(r0); int32_t arg1 = get_register(r1); int32_t arg2 = get_register(r2); int32_t arg3 = get_register(r3); int32_t* stack_pointer = reinterpret_cast(get_register(sp)); int32_t arg4 = stack_pointer[0]; int32_t arg5 = stack_pointer[1]; bool fp_call = (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); // This is dodgy but it works because the C entry stubs are never moved. // See comment in codegen-arm.cc and bug 1242173. int32_t saved_lr = get_register(lr); intptr_t external = reinterpret_cast(redirection->external_function()); if (fp_call) { double dval0, dval1; // one or two double parameters int32_t ival; // zero or one integer parameters int64_t iresult = 0; // integer return value double dresult = 0; // double return value GetFpArgs(&dval0, &dval1, &ival); if (::v8::internal::FLAG_trace_sim || !stack_aligned) { SimulatorRuntimeCall generic_target = reinterpret_cast(external); switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Call to host function at %p with args %f, %f", static_cast(FUNCTION_ADDR(generic_target)), dval0, dval1); break; case ExternalReference::BUILTIN_FP_CALL: PrintF("Call to host function at %p with arg %f", static_cast(FUNCTION_ADDR(generic_target)), dval0); break; case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Call to host function at %p with args %f, %d", static_cast(FUNCTION_ADDR(generic_target)), dval0, ival); break; default: UNREACHABLE(); break; } if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: { SimulatorRuntimeCompareCall target = reinterpret_cast(external); iresult = target(dval0, dval1); set_register(r0, static_cast(iresult)); set_register(r1, static_cast(iresult >> 32)); break; } case ExternalReference::BUILTIN_FP_FP_CALL: { SimulatorRuntimeFPFPCall target = reinterpret_cast(external); dresult = target(dval0, dval1); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_CALL: { SimulatorRuntimeFPCall target = reinterpret_cast(external); dresult = target(dval0); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_INT_CALL: { SimulatorRuntimeFPIntCall target = reinterpret_cast(external); dresult = target(dval0, ival); SetFpResult(dresult); break; } default: UNREACHABLE(); break; } if (::v8::internal::FLAG_trace_sim || !stack_aligned) { switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Returned %08x\n", static_cast(iresult)); break; case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_FP_CALL: case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Returned %f\n", dresult); break; default: UNREACHABLE(); break; } } } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08x", reinterpret_cast(external), arg0); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectApiCall target = reinterpret_cast(external); target(arg0); } else if ( redirection->type() == ExternalReference::PROFILING_API_CALL) { if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08x %08x", reinterpret_cast(external), arg0, arg1); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeProfilingApiCall target = reinterpret_cast(external); target(arg0, Redirection::ReverseRedirection(arg1)); } else if ( redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08x %08x", reinterpret_cast(external), arg0, arg1); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectGetterCall target = reinterpret_cast(external); target(arg0, arg1); } else if ( redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08x %08x %08x", reinterpret_cast(external), arg0, arg1, arg2); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeProfilingGetterCall target = reinterpret_cast( external); target(arg0, arg1, Redirection::ReverseRedirection(arg2)); } else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) { // builtin call returning ObjectTriple. SimulatorRuntimeTripleCall target = reinterpret_cast(external); if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF( "Call to host triple returning runtime function %p " "args %08x, %08x, %08x, %08x, %08x", static_cast(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4, arg5); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); // arg0 is a hidden argument pointing to the return location, so don't // pass it to the target function. ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned { %p, %p, %p }\n", static_cast(result.x), static_cast(result.y), static_cast(result.z)); } // Return is passed back in address pointed to by hidden first argument. ObjectTriple* sim_result = reinterpret_cast(arg0); *sim_result = result; set_register(r0, arg0); } else { // builtin call. DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); SimulatorRuntimeCall target = reinterpret_cast(external); if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF( "Call to host function at %p " "args %08x, %08x, %08x, %08x, %08x, %08x", static_cast(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, arg4, arg5); if (!stack_aligned) { PrintF(" with unaligned stack %08x\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); int32_t lo_res = static_cast(result); int32_t hi_res = static_cast(result >> 32); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned %08x\n", lo_res); } set_register(r0, lo_res); set_register(r1, hi_res); } set_register(lr, saved_lr); set_pc(get_register(lr)); break; } case kBreakpoint: { ArmDebugger dbg(this); dbg.Debug(); break; } // stop uses all codes greater than 1 << 23. default: { if (svc >= (1 << 23)) { uint32_t code = svc & kStopCodeMask; if (isWatchedStop(code)) { IncreaseStopCounter(code); } // Stop if it is enabled, otherwise go on jumping over the stop // and the message address. if (isEnabledStop(code)) { ArmDebugger dbg(this); dbg.Stop(instr); } else { set_pc(get_pc() + 2 * Instruction::kInstrSize); } } else { // This is not a valid svc code. UNREACHABLE(); break; } } } } float Simulator::canonicalizeNaN(float value) { // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation // choices" of the ARM Reference Manual. const uint32_t kDefaultNaN = 0x7FC00000u; if (FPSCR_default_NaN_mode_ && std::isnan(value)) { value = bit_cast(kDefaultNaN); } return value; } double Simulator::canonicalizeNaN(double value) { // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation // choices" of the ARM Reference Manual. const uint64_t kDefaultNaN = V8_UINT64_C(0x7FF8000000000000); if (FPSCR_default_NaN_mode_ && std::isnan(value)) { value = bit_cast(kDefaultNaN); } return value; } // Stop helper functions. bool Simulator::isStopInstruction(Instruction* instr) { return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); } bool Simulator::isWatchedStop(uint32_t code) { DCHECK(code <= kMaxStopCode); return code < kNumOfWatchedStops; } bool Simulator::isEnabledStop(uint32_t code) { DCHECK(code <= kMaxStopCode); // Unwatched stops are always enabled. return !isWatchedStop(code) || !(watched_stops_[code].count & kStopDisabledBit); } void Simulator::EnableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (!isEnabledStop(code)) { watched_stops_[code].count &= ~kStopDisabledBit; } } void Simulator::DisableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (isEnabledStop(code)) { watched_stops_[code].count |= kStopDisabledBit; } } void Simulator::IncreaseStopCounter(uint32_t code) { DCHECK(code <= kMaxStopCode); DCHECK(isWatchedStop(code)); if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { PrintF("Stop counter for code %i has overflowed.\n" "Enabling this code and reseting the counter to 0.\n", code); watched_stops_[code].count = 0; EnableStop(code); } else { watched_stops_[code].count++; } } // Print a stop status. void Simulator::PrintStopInfo(uint32_t code) { DCHECK(code <= kMaxStopCode); if (!isWatchedStop(code)) { PrintF("Stop not watched."); } else { const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; int32_t count = watched_stops_[code].count & ~kStopDisabledBit; // Don't print the state of unused breakpoints. if (count != 0) { if (watched_stops_[code].desc) { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, count, watched_stops_[code].desc); } else { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, count); } } } } // Handle execution based on instruction types. // Instruction types 0 and 1 are both rolled into one function because they // only differ in the handling of the shifter_operand. void Simulator::DecodeType01(Instruction* instr) { int type = instr->TypeValue(); if ((type == 0) && instr->IsSpecialType0()) { // multiply instruction or extra loads and stores if (instr->Bits(7, 4) == 9) { if (instr->Bit(24) == 0) { // Raw field decoding here. Multiply instructions have their Rd in // funny places. int rn = instr->RnValue(); int rm = instr->RmValue(); int rs = instr->RsValue(); int32_t rs_val = get_register(rs); int32_t rm_val = get_register(rm); if (instr->Bit(23) == 0) { if (instr->Bit(21) == 0) { // The MUL instruction description (A 4.1.33) refers to Rd as being // the destination for the operation, but it confusingly uses the // Rn field to encode it. // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); int rd = rn; // Remap the rn field to the Rd register. int32_t alu_out = rm_val * rs_val; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); } } else { int rd = instr->RdValue(); int32_t acc_value = get_register(rd); if (instr->Bit(22) == 0) { // The MLA instruction description (A 4.1.28) refers to the order // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the // Rn field to encode the Rd register and the Rd field to encode // the Rn register. // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); int32_t mul_out = rm_val * rs_val; int32_t result = acc_value + mul_out; set_register(rn, result); } else { // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); int32_t mul_out = rm_val * rs_val; int32_t result = acc_value - mul_out; set_register(rn, result); } } } else { // The signed/long multiply instructions use the terms RdHi and RdLo // when referring to the target registers. They are mapped to the Rn // and Rd fields as follows: // RdLo == Rd // RdHi == Rn (This is confusingly stored in variable rd here // because the mul instruction from above uses the // Rn field to encode the Rd register. Good luck figuring // this out without reading the ARM instruction manual // at a very detailed level.) // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); int rd_hi = rn; // Remap the rn field to the RdHi register. int rd_lo = instr->RdValue(); int32_t hi_res = 0; int32_t lo_res = 0; if (instr->Bit(22) == 1) { int64_t left_op = static_cast(rm_val); int64_t right_op = static_cast(rs_val); uint64_t result = left_op * right_op; hi_res = static_cast(result >> 32); lo_res = static_cast(result & 0xffffffff); } else { // unsigned multiply uint64_t left_op = static_cast(rm_val); uint64_t right_op = static_cast(rs_val); uint64_t result = left_op * right_op; hi_res = static_cast(result >> 32); lo_res = static_cast(result & 0xffffffff); } set_register(rd_lo, lo_res); set_register(rd_hi, hi_res); if (instr->HasS()) { UNIMPLEMENTED(); } } } else { UNIMPLEMENTED(); // Not used by V8. } } else { // extra load/store instructions int rd = instr->RdValue(); int rn = instr->RnValue(); int32_t rn_val = get_register(rn); int32_t addr = 0; if (instr->Bit(22) == 0) { int rm = instr->RmValue(); int32_t rm_val = get_register(rm); switch (instr->PUField()) { case da_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); DCHECK(!instr->HasW()); addr = rn_val; rn_val -= rm_val; set_register(rn, rn_val); break; } case ia_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); DCHECK(!instr->HasW()); addr = rn_val; rn_val += rm_val; set_register(rn, rn_val); break; } case db_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); rn_val -= rm_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } case ib_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); rn_val += rm_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } default: { // The PU field is a 2-bit field. UNREACHABLE(); break; } } } else { int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); switch (instr->PUField()) { case da_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); DCHECK(!instr->HasW()); addr = rn_val; rn_val -= imm_val; set_register(rn, rn_val); break; } case ia_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); DCHECK(!instr->HasW()); addr = rn_val; rn_val += imm_val; set_register(rn, rn_val); break; } case db_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); rn_val -= imm_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } case ib_x: { // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); rn_val += imm_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } default: { // The PU field is a 2-bit field. UNREACHABLE(); break; } } } if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { DCHECK((rd % 2) == 0); if (instr->HasH()) { // The strd instruction. int32_t value1 = get_register(rd); int32_t value2 = get_register(rd+1); WriteDW(addr, value1, value2); } else { // The ldrd instruction. int* rn_data = ReadDW(addr); set_dw_register(rd, rn_data); } } else if (instr->HasH()) { if (instr->HasSign()) { if (instr->HasL()) { int16_t val = ReadH(addr, instr); set_register(rd, val); } else { int16_t val = get_register(rd); WriteH(addr, val, instr); } } else { if (instr->HasL()) { uint16_t val = ReadHU(addr, instr); set_register(rd, val); } else { uint16_t val = get_register(rd); WriteH(addr, val, instr); } } } else { // signed byte loads DCHECK(instr->HasSign()); DCHECK(instr->HasL()); int8_t val = ReadB(addr); set_register(rd, val); } return; } } else if ((type == 0) && instr->IsMiscType0()) { if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && (instr->Bits(15, 4) == 0xf00)) { // MSR int rm = instr->RmValue(); DCHECK_NE(pc, rm); // UNPREDICTABLE SRegisterFieldMask sreg_and_mask = instr->BitField(22, 22) | instr->BitField(19, 16); SetSpecialRegister(sreg_and_mask, get_register(rm)); } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && (instr->Bits(11, 0) == 0)) { // MRS int rd = instr->RdValue(); DCHECK_NE(pc, rd); // UNPREDICTABLE SRegister sreg = static_cast(instr->BitField(22, 22)); set_register(rd, GetFromSpecialRegister(sreg)); } else if (instr->Bits(22, 21) == 1) { int rm = instr->RmValue(); switch (instr->BitField(7, 4)) { case BX: set_pc(get_register(rm)); break; case BLX: { uint32_t old_pc = get_pc(); set_pc(get_register(rm)); set_register(lr, old_pc + Instruction::kInstrSize); break; } case BKPT: { ArmDebugger dbg(this); PrintF("Simulator hit BKPT.\n"); dbg.Debug(); break; } default: UNIMPLEMENTED(); } } else if (instr->Bits(22, 21) == 3) { int rm = instr->RmValue(); int rd = instr->RdValue(); switch (instr->BitField(7, 4)) { case CLZ: { uint32_t bits = get_register(rm); int leading_zeros = 0; if (bits == 0) { leading_zeros = 32; } else { while ((bits & 0x80000000u) == 0) { bits <<= 1; leading_zeros++; } } set_register(rd, leading_zeros); break; } default: UNIMPLEMENTED(); } } else { PrintF("%08x\n", instr->InstructionBits()); UNIMPLEMENTED(); } } else if ((type == 1) && instr->IsNopType1()) { // NOP. } else { int rd = instr->RdValue(); int rn = instr->RnValue(); int32_t rn_val = get_register(rn); int32_t shifter_operand = 0; bool shifter_carry_out = 0; if (type == 0) { shifter_operand = GetShiftRm(instr, &shifter_carry_out); } else { DCHECK(instr->TypeValue() == 1); shifter_operand = GetImm(instr, &shifter_carry_out); } int32_t alu_out; switch (instr->OpcodeField()) { case AND: { // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "and'cond's 'rd, 'rn, 'imm"); alu_out = rn_val & shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } case EOR: { // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); alu_out = rn_val ^ shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } case SUB: { // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); alu_out = rn_val - shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(!BorrowFrom(rn_val, shifter_operand)); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); } break; } case RSB: { // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); alu_out = shifter_operand - rn_val; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(!BorrowFrom(shifter_operand, rn_val)); SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); } break; } case ADD: { // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "add'cond's 'rd, 'rn, 'imm"); alu_out = rn_val + shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(CarryFrom(rn_val, shifter_operand)); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); } break; } case ADC: { // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); alu_out = rn_val + shifter_operand + GetCarry(); set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); } break; } case SBC: { // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1); set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry())); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); } break; } case RSC: { Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); break; } case TST: { if (instr->HasS()) { // Format(instr, "tst'cond 'rn, 'shift_rm"); // Format(instr, "tst'cond 'rn, 'imm"); alu_out = rn_val & shifter_operand; SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } else { // Format(instr, "movw'cond 'rd, 'imm"). alu_out = instr->ImmedMovwMovtValue(); set_register(rd, alu_out); } break; } case TEQ: { if (instr->HasS()) { // Format(instr, "teq'cond 'rn, 'shift_rm"); // Format(instr, "teq'cond 'rn, 'imm"); alu_out = rn_val ^ shifter_operand; SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } else { // Other instructions matching this pattern are handled in the // miscellaneous instructions part above. UNREACHABLE(); } break; } case CMP: { if (instr->HasS()) { // Format(instr, "cmp'cond 'rn, 'shift_rm"); // Format(instr, "cmp'cond 'rn, 'imm"); alu_out = rn_val - shifter_operand; SetNZFlags(alu_out); SetCFlag(!BorrowFrom(rn_val, shifter_operand)); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); } else { // Format(instr, "movt'cond 'rd, 'imm"). alu_out = (get_register(rd) & 0xffff) | (instr->ImmedMovwMovtValue() << 16); set_register(rd, alu_out); } break; } case CMN: { if (instr->HasS()) { // Format(instr, "cmn'cond 'rn, 'shift_rm"); // Format(instr, "cmn'cond 'rn, 'imm"); alu_out = rn_val + shifter_operand; SetNZFlags(alu_out); SetCFlag(CarryFrom(rn_val, shifter_operand)); SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); } else { // Other instructions matching this pattern are handled in the // miscellaneous instructions part above. UNREACHABLE(); } break; } case ORR: { // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); alu_out = rn_val | shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } case MOV: { // Format(instr, "mov'cond's 'rd, 'shift_rm"); // Format(instr, "mov'cond's 'rd, 'imm"); alu_out = shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } case BIC: { // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); alu_out = rn_val & ~shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } case MVN: { // Format(instr, "mvn'cond's 'rd, 'shift_rm"); // Format(instr, "mvn'cond's 'rd, 'imm"); alu_out = ~shifter_operand; set_register(rd, alu_out); if (instr->HasS()) { SetNZFlags(alu_out); SetCFlag(shifter_carry_out); } break; } default: { UNREACHABLE(); break; } } } } void Simulator::DecodeType2(Instruction* instr) { int rd = instr->RdValue(); int rn = instr->RnValue(); int32_t rn_val = get_register(rn); int32_t im_val = instr->Offset12Value(); int32_t addr = 0; switch (instr->PUField()) { case da_x: { // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); DCHECK(!instr->HasW()); addr = rn_val; rn_val -= im_val; set_register(rn, rn_val); break; } case ia_x: { // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); DCHECK(!instr->HasW()); addr = rn_val; rn_val += im_val; set_register(rn, rn_val); break; } case db_x: { // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); rn_val -= im_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } case ib_x: { // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); rn_val += im_val; addr = rn_val; if (instr->HasW()) { set_register(rn, rn_val); } break; } default: { UNREACHABLE(); break; } } if (instr->HasB()) { if (instr->HasL()) { byte val = ReadBU(addr); set_register(rd, val); } else { byte val = get_register(rd); WriteB(addr, val); } } else { if (instr->HasL()) { set_register(rd, ReadW(addr, instr)); } else { WriteW(addr, get_register(rd), instr); } } } void Simulator::DecodeType3(Instruction* instr) { int rd = instr->RdValue(); int rn = instr->RnValue(); int32_t rn_val = get_register(rn); bool shifter_carry_out = 0; int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); int32_t addr = 0; switch (instr->PUField()) { case da_x: { DCHECK(!instr->HasW()); Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); UNIMPLEMENTED(); break; } case ia_x: { if (instr->Bit(4) == 0) { // Memop. } else { if (instr->Bit(5) == 0) { switch (instr->Bits(22, 21)) { case 0: if (instr->Bit(20) == 0) { if (instr->Bit(6) == 0) { // Pkhbt. uint32_t rn_val = get_register(rn); uint32_t rm_val = get_register(instr->RmValue()); int32_t shift = instr->Bits(11, 7); rm_val <<= shift; set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); } else { // Pkhtb. uint32_t rn_val = get_register(rn); int32_t rm_val = get_register(instr->RmValue()); int32_t shift = instr->Bits(11, 7); if (shift == 0) { shift = 32; } rm_val >>= shift; set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); } } else { UNIMPLEMENTED(); } break; case 1: UNIMPLEMENTED(); break; case 2: UNIMPLEMENTED(); break; case 3: { // Usat. int32_t sat_pos = instr->Bits(20, 16); int32_t sat_val = (1 << sat_pos) - 1; int32_t shift = instr->Bits(11, 7); int32_t shift_type = instr->Bit(6); int32_t rm_val = get_register(instr->RmValue()); if (shift_type == 0) { // LSL rm_val <<= shift; } else { // ASR rm_val >>= shift; } // If saturation occurs, the Q flag should be set in the CPSR. // There is no Q flag yet, and no instruction (MRS) to read the // CPSR directly. if (rm_val > sat_val) { rm_val = sat_val; } else if (rm_val < 0) { rm_val = 0; } set_register(rd, rm_val); break; } } } else { switch (instr->Bits(22, 21)) { case 0: UNIMPLEMENTED(); break; case 1: if (instr->Bits(9, 6) == 1) { if (instr->Bit(20) == 0) { if (instr->Bits(19, 16) == 0xF) { // Sxtb. int32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, static_cast(rm_val)); } else { // Sxtab. int32_t rn_val = get_register(rn); int32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, rn_val + static_cast(rm_val)); } } else { if (instr->Bits(19, 16) == 0xF) { // Sxth. int32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, static_cast(rm_val)); } else { // Sxtah. int32_t rn_val = get_register(rn); int32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, rn_val + static_cast(rm_val)); } } } else { UNREACHABLE(); } break; case 2: if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { if (instr->Bits(19, 16) == 0xF) { // Uxtb16. uint32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); } else { UNIMPLEMENTED(); } } else { UNIMPLEMENTED(); } break; case 3: if ((instr->Bits(9, 6) == 1)) { if (instr->Bit(20) == 0) { if (instr->Bits(19, 16) == 0xF) { // Uxtb. uint32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, (rm_val & 0xFF)); } else { // Uxtab. uint32_t rn_val = get_register(rn); uint32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, rn_val + (rm_val & 0xFF)); } } else { if (instr->Bits(19, 16) == 0xF) { // Uxth. uint32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, (rm_val & 0xFFFF)); } else { // Uxtah. uint32_t rn_val = get_register(rn); uint32_t rm_val = get_register(instr->RmValue()); int32_t rotate = instr->Bits(11, 10); switch (rotate) { case 0: break; case 1: rm_val = (rm_val >> 8) | (rm_val << 24); break; case 2: rm_val = (rm_val >> 16) | (rm_val << 16); break; case 3: rm_val = (rm_val >> 24) | (rm_val << 8); break; } set_register(rd, rn_val + (rm_val & 0xFFFF)); } } } else { // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001 if ((instr->Bits(20, 16) == 0x1f) && (instr->Bits(11, 4) == 0xf3)) { // Rbit. uint32_t rm_val = get_register(instr->RmValue()); set_register(rd, base::bits::ReverseBits(rm_val)); } else { UNIMPLEMENTED(); } } break; } } return; } break; } case db_x: { if (instr->Bits(22, 20) == 0x5) { if (instr->Bits(7, 4) == 0x1) { int rm = instr->RmValue(); int32_t rm_val = get_register(rm); int rs = instr->RsValue(); int32_t rs_val = get_register(rs); if (instr->Bits(15, 12) == 0xF) { // SMMUL (in V8 notation matching ARM ISA format) // Format(instr, "smmul'cond 'rn, 'rm, 'rs"); rn_val = base::bits::SignedMulHigh32(rm_val, rs_val); } else { // SMMLA (in V8 notation matching ARM ISA format) // Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); int rd = instr->RdValue(); int32_t rd_val = get_register(rd); rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val); } set_register(rn, rn_val); return; } } if (instr->Bits(5, 4) == 0x1) { if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs); int rm = instr->RmValue(); int32_t rm_val = get_register(rm); int rs = instr->RsValue(); int32_t rs_val = get_register(rs); int32_t ret_val = 0; // udiv if (instr->Bit(21) == 0x1) { ret_val = bit_cast(base::bits::UnsignedDiv32( bit_cast(rm_val), bit_cast(rs_val))); } else { ret_val = base::bits::SignedDiv32(rm_val, rs_val); } set_register(rn, ret_val); return; } } // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); addr = rn_val - shifter_operand; if (instr->HasW()) { set_register(rn, addr); } break; } case ib_x: { if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { uint32_t widthminus1 = static_cast(instr->Bits(20, 16)); uint32_t lsbit = static_cast(instr->Bits(11, 7)); uint32_t msbit = widthminus1 + lsbit; if (msbit <= 31) { if (instr->Bit(22)) { // ubfx - unsigned bitfield extract. uint32_t rm_val = static_cast(get_register(instr->RmValue())); uint32_t extr_val = rm_val << (31 - msbit); extr_val = extr_val >> (31 - widthminus1); set_register(instr->RdValue(), extr_val); } else { // sbfx - signed bitfield extract. int32_t rm_val = get_register(instr->RmValue()); int32_t extr_val = rm_val << (31 - msbit); extr_val = extr_val >> (31 - widthminus1); set_register(instr->RdValue(), extr_val); } } else { UNREACHABLE(); } return; } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { uint32_t lsbit = static_cast(instr->Bits(11, 7)); uint32_t msbit = static_cast(instr->Bits(20, 16)); if (msbit >= lsbit) { // bfc or bfi - bitfield clear/insert. uint32_t rd_val = static_cast(get_register(instr->RdValue())); uint32_t bitcount = msbit - lsbit + 1; uint32_t mask = 0xffffffffu >> (32 - bitcount); rd_val &= ~(mask << lsbit); if (instr->RmValue() != 15) { // bfi - bitfield insert. uint32_t rm_val = static_cast(get_register(instr->RmValue())); rm_val &= mask; rd_val |= rm_val << lsbit; } set_register(instr->RdValue(), rd_val); } else { UNREACHABLE(); } return; } else { // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); addr = rn_val + shifter_operand; if (instr->HasW()) { set_register(rn, addr); } } break; } default: { UNREACHABLE(); break; } } if (instr->HasB()) { if (instr->HasL()) { uint8_t byte = ReadB(addr); set_register(rd, byte); } else { uint8_t byte = get_register(rd); WriteB(addr, byte); } } else { if (instr->HasL()) { set_register(rd, ReadW(addr, instr)); } else { WriteW(addr, get_register(rd), instr); } } } void Simulator::DecodeType4(Instruction* instr) { DCHECK(instr->Bit(22) == 0); // only allowed to be set in privileged mode if (instr->HasL()) { // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); HandleRList(instr, true); } else { // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); HandleRList(instr, false); } } void Simulator::DecodeType5(Instruction* instr) { // Format(instr, "b'l'cond 'target"); int off = (instr->SImmed24Value() << 2); intptr_t pc_address = get_pc(); if (instr->HasLink()) { set_register(lr, pc_address + Instruction::kInstrSize); } int pc_reg = get_register(pc); set_pc(pc_reg + off); } void Simulator::DecodeType6(Instruction* instr) { DecodeType6CoprocessorIns(instr); } void Simulator::DecodeType7(Instruction* instr) { if (instr->Bit(24) == 1) { SoftwareInterrupt(instr); } else { switch (instr->CoprocessorValue()) { case 10: // Fall through. case 11: DecodeTypeVFP(instr); break; case 15: DecodeTypeCP15(instr); break; default: UNIMPLEMENTED(); } } } // void Simulator::DecodeTypeVFP(Instruction* instr) // The Following ARMv7 VFPv instructions are currently supported. // vmov :Sn = Rt // vmov :Rt = Sn // vcvt: Dd = Sm // vcvt: Sd = Dm // vcvt.f64.s32 Dd, Dd, # // Dd = vabs(Dm) // Sd = vabs(Sm) // Dd = vneg(Dm) // Sd = vneg(Sm) // Dd = vadd(Dn, Dm) // Sd = vadd(Sn, Sm) // Dd = vsub(Dn, Dm) // Sd = vsub(Sn, Sm) // Dd = vmul(Dn, Dm) // Sd = vmul(Sn, Sm) // Dd = vdiv(Dn, Dm) // Sd = vdiv(Sn, Sm) // vcmp(Dd, Dm) // vcmp(Sd, Sm) // Dd = vsqrt(Dm) // Sd = vsqrt(Sm) // vmrs void Simulator::DecodeTypeVFP(Instruction* instr) { DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); DCHECK(instr->Bits(11, 9) == 0x5); // Obtain single precision register codes. int m = instr->VFPMRegValue(kSinglePrecision); int d = instr->VFPDRegValue(kSinglePrecision); int n = instr->VFPNRegValue(kSinglePrecision); // Obtain double precision register codes. int vm = instr->VFPMRegValue(kDoublePrecision); int vd = instr->VFPDRegValue(kDoublePrecision); int vn = instr->VFPNRegValue(kDoublePrecision); if (instr->Bit(4) == 0) { if (instr->Opc1Value() == 0x7) { // Other data processing instructions if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { // vmov register to register. if (instr->SzValue() == 0x1) { uint32_t data[2]; get_d_register(vm, data); set_d_register(vd, data); } else { set_s_register(d, get_s_register(m)); } } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { // vabs if (instr->SzValue() == 0x1) { double dm_value = get_double_from_d_register(vm); double dd_value = std::fabs(dm_value); dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sm_value = get_float_from_s_register(m); float sd_value = std::fabs(sm_value); sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { // vneg if (instr->SzValue() == 0x1) { double dm_value = get_double_from_d_register(vm); double dd_value = -dm_value; dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sm_value = get_float_from_s_register(m); float sd_value = -sm_value; sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { DecodeVCVTBetweenDoubleAndSingle(instr); } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { DecodeVCVTBetweenFloatingPointAndInteger(instr); } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && (instr->Bit(8) == 1)) { // vcvt.f64.s32 Dd, Dd, # int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); int fixed_value = get_sinteger_from_s_register(vd * 2); double divide = 1 << fraction_bits; set_d_register_from_double(vd, fixed_value / divide); } else if (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)) { DecodeVCVTBetweenFloatingPointAndInteger(instr); } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && (instr->Opc3Value() & 0x1)) { DecodeVCMP(instr); } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { // vsqrt lazily_initialize_fast_sqrt(isolate_); if (instr->SzValue() == 0x1) { double dm_value = get_double_from_d_register(vm); double dd_value = fast_sqrt(dm_value, isolate_); dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sm_value = get_float_from_s_register(m); float sd_value = fast_sqrt(sm_value, isolate_); sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else if (instr->Opc3Value() == 0x0) { // vmov immediate. if (instr->SzValue() == 0x1) { set_d_register_from_double(vd, instr->DoubleImmedVmov()); } else { set_s_register_from_float(d, instr->DoubleImmedVmov()); } } else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) { // vrintz - truncate if (instr->SzValue() == 0x1) { double dm_value = get_double_from_d_register(vm); double dd_value = trunc(dm_value); dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sm_value = get_float_from_s_register(m); float sd_value = truncf(sm_value); sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else { UNREACHABLE(); // Not used by V8. } } else if (instr->Opc1Value() == 0x3) { if (instr->Opc3Value() & 0x1) { // vsub if (instr->SzValue() == 0x1) { double dn_value = get_double_from_d_register(vn); double dm_value = get_double_from_d_register(vm); double dd_value = dn_value - dm_value; dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sn_value = get_float_from_s_register(n); float sm_value = get_float_from_s_register(m); float sd_value = sn_value - sm_value; sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else { // vadd if (instr->SzValue() == 0x1) { double dn_value = get_double_from_d_register(vn); double dm_value = get_double_from_d_register(vm); double dd_value = dn_value + dm_value; dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sn_value = get_float_from_s_register(n); float sm_value = get_float_from_s_register(m); float sd_value = sn_value + sm_value; sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { // vmul if (instr->SzValue() == 0x1) { double dn_value = get_double_from_d_register(vn); double dm_value = get_double_from_d_register(vm); double dd_value = dn_value * dm_value; dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sn_value = get_float_from_s_register(n); float sm_value = get_float_from_s_register(m); float sd_value = sn_value * sm_value; sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else if ((instr->Opc1Value() == 0x0)) { // vmla, vmls const bool is_vmls = (instr->Opc3Value() & 0x1); if (instr->SzValue() == 0x1) { const double dd_val = get_double_from_d_register(vd); const double dn_val = get_double_from_d_register(vn); const double dm_val = get_double_from_d_register(vm); // Note: we do the mul and add/sub in separate steps to avoid getting a // result with too high precision. set_d_register_from_double(vd, dn_val * dm_val); if (is_vmls) { set_d_register_from_double( vd, canonicalizeNaN(dd_val - get_double_from_d_register(vd))); } else { set_d_register_from_double( vd, canonicalizeNaN(dd_val + get_double_from_d_register(vd))); } } else { const float sd_val = get_float_from_s_register(d); const float sn_val = get_float_from_s_register(n); const float sm_val = get_float_from_s_register(m); // Note: we do the mul and add/sub in separate steps to avoid getting a // result with too high precision. set_s_register_from_float(d, sn_val * sm_val); if (is_vmls) { set_s_register_from_float( d, canonicalizeNaN(sd_val - get_float_from_s_register(d))); } else { set_s_register_from_float( d, canonicalizeNaN(sd_val + get_float_from_s_register(d))); } } } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { // vdiv if (instr->SzValue() == 0x1) { double dn_value = get_double_from_d_register(vn); double dm_value = get_double_from_d_register(vm); double dd_value = dn_value / dm_value; div_zero_vfp_flag_ = (dm_value == 0); dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { float sn_value = get_float_from_s_register(n); float sm_value = get_float_from_s_register(m); float sd_value = sn_value / sm_value; div_zero_vfp_flag_ = (sm_value == 0); sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else { UNIMPLEMENTED(); // Not used by V8. } } else { if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) { DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) && (instr->Bit(23) == 0x0)) { // vmov (ARM core register to scalar) int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4); uint32_t data[2]; get_d_register(vd, data); data[instr->Bit(21)] = get_register(instr->RtValue()); set_d_register(vd, data); } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) && (instr->Bit(23) == 0x0)) { // vmov (scalar to ARM core register) int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4); double dn_value = get_double_from_d_register(vn); int32_t data[2]; memcpy(data, &dn_value, 8); set_register(instr->RtValue(), data[instr->Bit(21)]); } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) && (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) { // vmrs uint32_t rt = instr->RtValue(); if (rt == 0xF) { Copy_FPSCR_to_APSR(); } else { // Emulate FPSCR from the Simulator flags. uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) | (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) | (FPSCR_default_NaN_mode_ << 25) | (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) | (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) | (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_); set_register(rt, fpscr); } } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) && (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) { // vmsr uint32_t rt = instr->RtValue(); if (rt == pc) { UNREACHABLE(); } else { uint32_t rt_value = get_register(rt); n_flag_FPSCR_ = (rt_value >> 31) & 1; z_flag_FPSCR_ = (rt_value >> 30) & 1; c_flag_FPSCR_ = (rt_value >> 29) & 1; v_flag_FPSCR_ = (rt_value >> 28) & 1; FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; inexact_vfp_flag_ = (rt_value >> 4) & 1; underflow_vfp_flag_ = (rt_value >> 3) & 1; overflow_vfp_flag_ = (rt_value >> 2) & 1; div_zero_vfp_flag_ = (rt_value >> 1) & 1; inv_op_vfp_flag_ = (rt_value >> 0) & 1; FPSCR_rounding_mode_ = static_cast((rt_value) & kVFPRoundingModeMask); } } else { UNIMPLEMENTED(); // Not used by V8. } } } void Simulator::DecodeTypeCP15(Instruction* instr) { DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); DCHECK(instr->CoprocessorValue() == 15); if (instr->Bit(4) == 1) { // mcr int crn = instr->Bits(19, 16); int crm = instr->Bits(3, 0); int opc1 = instr->Bits(23, 21); int opc2 = instr->Bits(7, 5); if ((opc1 == 0) && (crn == 7)) { // ARMv6 memory barrier operations. // Details available in ARM DDI 0406C.b, B3-1750. if (((crm == 10) && (opc2 == 5)) || // CP15DMB ((crm == 10) && (opc2 == 4)) || // CP15DSB ((crm == 5) && (opc2 == 4))) { // CP15ISB // These are ignored by the simulator for now. } else { UNIMPLEMENTED(); } } } else { UNIMPLEMENTED(); } } void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( Instruction* instr) { DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)); int t = instr->RtValue(); int n = instr->VFPNRegValue(kSinglePrecision); bool to_arm_register = (instr->VLValue() == 0x1); if (to_arm_register) { int32_t int_value = get_sinteger_from_s_register(n); set_register(t, int_value); } else { int32_t rs_val = get_register(t); set_s_register_from_sinteger(n, rs_val); } } void Simulator::DecodeVCMP(Instruction* instr) { DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && (instr->Opc3Value() & 0x1)); // Comparison. VFPRegPrecision precision = kSinglePrecision; if (instr->SzValue() == 0x1) { precision = kDoublePrecision; } int d = instr->VFPDRegValue(precision); int m = 0; if (instr->Opc2Value() == 0x4) { m = instr->VFPMRegValue(precision); } if (precision == kDoublePrecision) { double dd_value = get_double_from_d_register(d); double dm_value = 0.0; if (instr->Opc2Value() == 0x4) { dm_value = get_double_from_d_register(m); } // Raise exceptions for quiet NaNs if necessary. if (instr->Bit(7) == 1) { if (std::isnan(dd_value)) { inv_op_vfp_flag_ = true; } } Compute_FPSCR_Flags(dd_value, dm_value); } else { float sd_value = get_float_from_s_register(d); float sm_value = 0.0; if (instr->Opc2Value() == 0x4) { sm_value = get_float_from_s_register(m); } // Raise exceptions for quiet NaNs if necessary. if (instr->Bit(7) == 1) { if (std::isnan(sd_value)) { inv_op_vfp_flag_ = true; } } Compute_FPSCR_Flags(sd_value, sm_value); } } void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); VFPRegPrecision dst_precision = kDoublePrecision; VFPRegPrecision src_precision = kSinglePrecision; if (instr->SzValue() == 1) { dst_precision = kSinglePrecision; src_precision = kDoublePrecision; } int dst = instr->VFPDRegValue(dst_precision); int src = instr->VFPMRegValue(src_precision); if (dst_precision == kSinglePrecision) { double val = get_double_from_d_register(src); set_s_register_from_float(dst, static_cast(val)); } else { float val = get_float_from_s_register(src); set_d_register_from_double(dst, static_cast(val)); } } bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, bool unsigned_) { DCHECK((mode == RN) || (mode == RM) || (mode == RZ)); double max_uint = static_cast(0xffffffffu); double max_int = static_cast(kMaxInt); double min_int = static_cast(kMinInt); // Check for NaN. if (val != val) { return true; } // Check for overflow. This code works because 32bit integers can be // exactly represented by ieee-754 64bit floating-point values. switch (mode) { case RN: return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5) : (val >= (max_int + 0.5)) || (val < (min_int - 0.5)); case RM: return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0) : (val >= (max_int + 1.0)) || (val < min_int); case RZ: return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1) : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0)); default: UNREACHABLE(); return true; } } // We call this function only if we had a vfp invalid exception. // It returns the correct saturated value. int VFPConversionSaturate(double val, bool unsigned_res) { if (val != val) { return 0; } else { if (unsigned_res) { return (val < 0) ? 0 : 0xffffffffu; } else { return (val < 0) ? kMinInt : kMaxInt; } } } void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && (instr->Bits(27, 23) == 0x1D)); DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); // Conversion between floating-point and integer. bool to_integer = (instr->Bit(18) == 1); VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision : kSinglePrecision; if (to_integer) { // We are playing with code close to the C++ standard's limits below, // hence the very simple code and heavy checks. // // Note: // C++ defines default type casting from floating point to integer as // (close to) rounding toward zero ("fractional part discarded"). int dst = instr->VFPDRegValue(kSinglePrecision); int src = instr->VFPMRegValue(src_precision); // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding // mode or the default Round to Zero mode. VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ : RZ; DCHECK((mode == RM) || (mode == RZ) || (mode == RN)); bool unsigned_integer = (instr->Bit(16) == 0); bool double_precision = (src_precision == kDoublePrecision); double val = double_precision ? get_double_from_d_register(src) : get_float_from_s_register(src); int temp = unsigned_integer ? static_cast(val) : static_cast(val); inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); double abs_diff = unsigned_integer ? std::fabs(val - static_cast(temp)) : std::fabs(val - temp); inexact_vfp_flag_ = (abs_diff != 0); if (inv_op_vfp_flag_) { temp = VFPConversionSaturate(val, unsigned_integer); } else { switch (mode) { case RN: { int val_sign = (val > 0) ? 1 : -1; if (abs_diff > 0.5) { temp += val_sign; } else if (abs_diff == 0.5) { // Round to even if exactly halfway. temp = ((temp % 2) == 0) ? temp : temp + val_sign; } break; } case RM: temp = temp > val ? temp - 1 : temp; break; case RZ: // Nothing to do. break; default: UNREACHABLE(); } } // Update the destination register. set_s_register_from_sinteger(dst, temp); } else { bool unsigned_integer = (instr->Bit(7) == 0); int dst = instr->VFPDRegValue(src_precision); int src = instr->VFPMRegValue(kSinglePrecision); int val = get_sinteger_from_s_register(src); if (src_precision == kDoublePrecision) { if (unsigned_integer) { set_d_register_from_double( dst, static_cast(static_cast(val))); } else { set_d_register_from_double(dst, static_cast(val)); } } else { if (unsigned_integer) { set_s_register_from_float( dst, static_cast(static_cast(val))); } else { set_s_register_from_float(dst, static_cast(val)); } } } } // void Simulator::DecodeType6CoprocessorIns(Instruction* instr) // Decode Type 6 coprocessor instructions. // Dm = vmov(Rt, Rt2) // = vmov(Dm) // Ddst = MEM(Rbase + 4*offset). // MEM(Rbase + 4*offset) = Dsrc. void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { DCHECK((instr->TypeValue() == 6)); if (instr->CoprocessorValue() == 0xA) { switch (instr->OpcodeValue()) { case 0x8: case 0xA: case 0xC: case 0xE: { // Load and store single precision float to memory. int rn = instr->RnValue(); int vd = instr->VFPDRegValue(kSinglePrecision); int offset = instr->Immed8Value(); if (!instr->HasU()) { offset = -offset; } int32_t address = get_register(rn) + 4 * offset; // Load and store address for singles must be at least four-byte // aligned. DCHECK((address % 4) == 0); if (instr->HasL()) { // Load single from memory: vldr. set_s_register_from_sinteger(vd, ReadW(address, instr)); } else { // Store single to memory: vstr. WriteW(address, get_sinteger_from_s_register(vd), instr); } break; } case 0x4: case 0x5: case 0x6: case 0x7: case 0x9: case 0xB: // Load/store multiple single from memory: vldm/vstm. HandleVList(instr); break; default: UNIMPLEMENTED(); // Not used by V8. } } else if (instr->CoprocessorValue() == 0xB) { switch (instr->OpcodeValue()) { case 0x2: // Load and store double to two GP registers if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { UNIMPLEMENTED(); // Not used by V8. } else { int rt = instr->RtValue(); int rn = instr->RnValue(); int vm = instr->VFPMRegValue(kDoublePrecision); if (instr->HasL()) { uint32_t data[2]; get_d_register(vm, data); set_register(rt, data[0]); set_register(rn, data[1]); } else { int32_t data[] = { get_register(rt), get_register(rn) }; set_d_register(vm, reinterpret_cast(data)); } } break; case 0x8: case 0xA: case 0xC: case 0xE: { // Load and store double to memory. int rn = instr->RnValue(); int vd = instr->VFPDRegValue(kDoublePrecision); int offset = instr->Immed8Value(); if (!instr->HasU()) { offset = -offset; } int32_t address = get_register(rn) + 4 * offset; // Load and store address for doubles must be at least four-byte // aligned. DCHECK((address % 4) == 0); if (instr->HasL()) { // Load double from memory: vldr. int32_t data[] = { ReadW(address, instr), ReadW(address + 4, instr) }; set_d_register(vd, reinterpret_cast(data)); } else { // Store double to memory: vstr. uint32_t data[2]; get_d_register(vd, data); WriteW(address, data[0], instr); WriteW(address + 4, data[1], instr); } break; } case 0x4: case 0x5: case 0x6: case 0x7: case 0x9: case 0xB: // Load/store multiple double from memory: vldm/vstm. HandleVList(instr); break; default: UNIMPLEMENTED(); // Not used by V8. } } else { UNIMPLEMENTED(); // Not used by V8. } } void Simulator::DecodeSpecialCondition(Instruction* instr) { switch (instr->SpecialValue()) { case 4: if (instr->Bits(21, 20) == 2 && instr->Bits(11, 8) == 1 && instr->Bit(4) == 1) { // vmov Qd, Qm int Vd = instr->VFPDRegValue(kSimd128Precision); int Vm = instr->VFPMRegValue(kSimd128Precision); uint32_t data[4]; get_q_register(Vm, data); set_q_register(Vd, data); } else { UNIMPLEMENTED(); } break; case 5: if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && (instr->Bit(4) == 1)) { // vmovl signed if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); int Vm = (instr->Bit(5) << 4) | instr->VmValue(); int imm3 = instr->Bits(21, 19); if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); int esize = 8 * imm3; int elements = 64 / esize; int8_t from[8]; get_d_register(Vm, reinterpret_cast(from)); int16_t to[8]; int e = 0; while (e < elements) { to[e] = from[e]; e++; } set_q_register(Vd, reinterpret_cast(to)); } else { UNIMPLEMENTED(); } break; case 6: if (instr->Bits(21, 20) == 0 && instr->Bits(11, 8) == 1 && instr->Bit(4) == 1) { if (instr->Bit(6) == 0) { // veor Dd, Dn, Dm int Vd = instr->VFPDRegValue(kDoublePrecision); int Vn = instr->VFPNRegValue(kDoublePrecision); int Vm = instr->VFPMRegValue(kDoublePrecision); uint64_t n_data, m_data; get_d_register(Vn, &n_data); get_d_register(Vm, &m_data); n_data ^= m_data; set_d_register(Vd, &n_data); } else { // veor Qd, Qn, Qm int Vd = instr->VFPDRegValue(kSimd128Precision); int Vn = instr->VFPNRegValue(kSimd128Precision); int Vm = instr->VFPMRegValue(kSimd128Precision); uint32_t n_data[4], m_data[4]; get_q_register(Vn, n_data); get_q_register(Vm, m_data); for (int i = 0; i < 4; i++) n_data[i] ^= m_data[i]; set_q_register(Vd, n_data); } } else { UNIMPLEMENTED(); } break; case 7: if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && (instr->Bit(4) == 1)) { // vmovl unsigned if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); int Vm = (instr->Bit(5) << 4) | instr->VmValue(); int imm3 = instr->Bits(21, 19); if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); int esize = 8 * imm3; int elements = 64 / esize; uint8_t from[8]; get_d_register(Vm, reinterpret_cast(from)); uint16_t to[8]; int e = 0; while (e < elements) { to[e] = from[e]; e++; } set_q_register(Vd, reinterpret_cast(to)); } else if ((instr->Bits(21, 16) == 0x32) && (instr->Bits(11, 7) == 0) && (instr->Bit(4) == 0)) { if (instr->Bit(6) == 0) { // vswp Dd, Dm. uint64_t dval, mval; int vd = instr->VFPDRegValue(kDoublePrecision); int vm = instr->VFPMRegValue(kDoublePrecision); get_d_register(vd, &dval); get_d_register(vm, &mval); set_d_register(vm, &dval); set_d_register(vd, &mval); } else { // vswp Qd, Qm. uint32_t dval[4], mval[4]; int vd = instr->VFPDRegValue(kSimd128Precision); int vm = instr->VFPMRegValue(kSimd128Precision); get_q_register(vd, dval); get_q_register(vm, mval); set_q_register(vm, dval); set_q_register(vd, mval); } } else { UNIMPLEMENTED(); } break; case 8: if (instr->Bits(21, 20) == 0) { // vst1 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); int Rn = instr->VnValue(); int type = instr->Bits(11, 8); int Rm = instr->VmValue(); int32_t address = get_register(Rn); int regs = 0; switch (type) { case nlt_1: regs = 1; break; case nlt_2: regs = 2; break; case nlt_3: regs = 3; break; case nlt_4: regs = 4; break; default: UNIMPLEMENTED(); break; } int r = 0; while (r < regs) { uint32_t data[2]; get_d_register(Vd + r, data); WriteW(address, data[0], instr); WriteW(address + 4, data[1], instr); address += 8; r++; } if (Rm != 15) { if (Rm == 13) { set_register(Rn, address); } else { set_register(Rn, get_register(Rn) + get_register(Rm)); } } } else if (instr->Bits(21, 20) == 2) { // vld1 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); int Rn = instr->VnValue(); int type = instr->Bits(11, 8); int Rm = instr->VmValue(); int32_t address = get_register(Rn); int regs = 0; switch (type) { case nlt_1: regs = 1; break; case nlt_2: regs = 2; break; case nlt_3: regs = 3; break; case nlt_4: regs = 4; break; default: UNIMPLEMENTED(); break; } int r = 0; while (r < regs) { uint32_t data[2]; data[0] = ReadW(address, instr); data[1] = ReadW(address + 4, instr); set_d_register(Vd + r, data); address += 8; r++; } if (Rm != 15) { if (Rm == 13) { set_register(Rn, address); } else { set_register(Rn, get_register(Rn) + get_register(Rm)); } } } else { UNIMPLEMENTED(); } break; case 0xA: case 0xB: if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { // pld: ignore instruction. } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) { // dsb, dmb, isb: ignore instruction for now. // TODO(binji): implement // Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15. } else { UNIMPLEMENTED(); } break; case 0x1D: if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 && instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) { if (instr->SzValue() == 0x1) { int vm = instr->VFPMRegValue(kDoublePrecision); int vd = instr->VFPDRegValue(kDoublePrecision); double dm_value = get_double_from_d_register(vm); double dd_value = 0.0; int rounding_mode = instr->Bits(17, 16); switch (rounding_mode) { case 0x0: // vrinta - round with ties to away from zero dd_value = round(dm_value); break; case 0x1: { // vrintn - round with ties to even dd_value = nearbyint(dm_value); break; } case 0x2: // vrintp - ceil dd_value = ceil(dm_value); break; case 0x3: // vrintm - floor dd_value = floor(dm_value); break; default: UNREACHABLE(); // Case analysis is exhaustive. break; } dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(vd, dd_value); } else { int m = instr->VFPMRegValue(kSinglePrecision); int d = instr->VFPDRegValue(kSinglePrecision); float sm_value = get_float_from_s_register(m); float sd_value = 0.0; int rounding_mode = instr->Bits(17, 16); switch (rounding_mode) { case 0x0: // vrinta - round with ties to away from zero sd_value = roundf(sm_value); break; case 0x1: { // vrintn - round with ties to even sd_value = nearbyintf(sm_value); break; } case 0x2: // vrintp - ceil sd_value = ceilf(sm_value); break; case 0x3: // vrintm - floor sd_value = floorf(sm_value); break; default: UNREACHABLE(); // Case analysis is exhaustive. break; } sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) && (instr->Bit(4) == 0x0)) { if (instr->SzValue() == 0x1) { int m = instr->VFPMRegValue(kDoublePrecision); int n = instr->VFPNRegValue(kDoublePrecision); int d = instr->VFPDRegValue(kDoublePrecision); double dn_value = get_double_from_d_register(n); double dm_value = get_double_from_d_register(m); double dd_value; if (instr->Bit(6) == 0x1) { // vminnm if ((dn_value < dm_value) || std::isnan(dm_value)) { dd_value = dn_value; } else if ((dm_value < dn_value) || std::isnan(dn_value)) { dd_value = dm_value; } else { DCHECK_EQ(dn_value, dm_value); // Make sure that we pick the most negative sign for +/-0. dd_value = std::signbit(dn_value) ? dn_value : dm_value; } } else { // vmaxnm if ((dn_value > dm_value) || std::isnan(dm_value)) { dd_value = dn_value; } else if ((dm_value > dn_value) || std::isnan(dn_value)) { dd_value = dm_value; } else { DCHECK_EQ(dn_value, dm_value); // Make sure that we pick the most positive sign for +/-0. dd_value = std::signbit(dn_value) ? dm_value : dn_value; } } dd_value = canonicalizeNaN(dd_value); set_d_register_from_double(d, dd_value); } else { int m = instr->VFPMRegValue(kSinglePrecision); int n = instr->VFPNRegValue(kSinglePrecision); int d = instr->VFPDRegValue(kSinglePrecision); float sn_value = get_float_from_s_register(n); float sm_value = get_float_from_s_register(m); float sd_value; if (instr->Bit(6) == 0x1) { // vminnm if ((sn_value < sm_value) || std::isnan(sm_value)) { sd_value = sn_value; } else if ((sm_value < sn_value) || std::isnan(sn_value)) { sd_value = sm_value; } else { DCHECK_EQ(sn_value, sm_value); // Make sure that we pick the most negative sign for +/-0. sd_value = std::signbit(sn_value) ? sn_value : sm_value; } } else { // vmaxnm if ((sn_value > sm_value) || std::isnan(sm_value)) { sd_value = sn_value; } else if ((sm_value > sn_value) || std::isnan(sn_value)) { sd_value = sm_value; } else { DCHECK_EQ(sn_value, sm_value); // Make sure that we pick the most positive sign for +/-0. sd_value = std::signbit(sn_value) ? sm_value : sn_value; } } sd_value = canonicalizeNaN(sd_value); set_s_register_from_float(d, sd_value); } } else { UNIMPLEMENTED(); } break; case 0x1C: if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) && (instr->Bit(4) == 0)) { // VSEL* (floating-point) bool condition_holds; switch (instr->Bits(21, 20)) { case 0x0: // VSELEQ condition_holds = (z_flag_ == 1); break; case 0x1: // VSELVS condition_holds = (v_flag_ == 1); break; case 0x2: // VSELGE condition_holds = (n_flag_ == v_flag_); break; case 0x3: // VSELGT condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_)); break; default: UNREACHABLE(); // Case analysis is exhaustive. break; } if (instr->SzValue() == 0x1) { int n = instr->VFPNRegValue(kDoublePrecision); int m = instr->VFPMRegValue(kDoublePrecision); int d = instr->VFPDRegValue(kDoublePrecision); double result = get_double_from_d_register(condition_holds ? n : m); set_d_register_from_double(d, result); } else { int n = instr->VFPNRegValue(kSinglePrecision); int m = instr->VFPMRegValue(kSinglePrecision); int d = instr->VFPDRegValue(kSinglePrecision); float result = get_float_from_s_register(condition_holds ? n : m); set_s_register_from_float(d, result); } } else { UNIMPLEMENTED(); } break; default: UNIMPLEMENTED(); break; } } // Executes the current instruction. void Simulator::InstructionDecode(Instruction* instr) { if (v8::internal::FLAG_check_icache) { CheckICache(isolate_->simulator_i_cache(), instr); } pc_modified_ = false; if (::v8::internal::FLAG_trace_sim) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; dasm.InstructionDecode(buffer, reinterpret_cast(instr)); PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast(instr), buffer.start()); } if (instr->ConditionField() == kSpecialCondition) { DecodeSpecialCondition(instr); } else if (ConditionallyExecute(instr)) { switch (instr->TypeValue()) { case 0: case 1: { DecodeType01(instr); break; } case 2: { DecodeType2(instr); break; } case 3: { DecodeType3(instr); break; } case 4: { DecodeType4(instr); break; } case 5: { DecodeType5(instr); break; } case 6: { DecodeType6(instr); break; } case 7: { DecodeType7(instr); break; } default: { UNIMPLEMENTED(); break; } } // If the instruction is a non taken conditional stop, we need to skip the // inlined message address. } else if (instr->IsStop()) { set_pc(get_pc() + 2 * Instruction::kInstrSize); } if (!pc_modified_) { set_register(pc, reinterpret_cast(instr) + Instruction::kInstrSize); } } void Simulator::Execute() { // Get the PC to simulate. Cannot use the accessor here as we need the // raw PC value and not the one used as input to arithmetic instructions. int program_counter = get_pc(); if (::v8::internal::FLAG_stop_sim_at == 0) { // Fast version of the dispatch loop without checking whether the simulator // should be stopping at a particular executed instruction. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast(program_counter); icount_++; InstructionDecode(instr); program_counter = get_pc(); } } else { // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when // we reach the particular instuction count. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast(program_counter); icount_++; if (icount_ == ::v8::internal::FLAG_stop_sim_at) { ArmDebugger dbg(this); dbg.Debug(); } else { InstructionDecode(instr); } program_counter = get_pc(); } } } void Simulator::CallInternal(byte* entry) { // Adjust JS-based stack limit to C-based stack limit. isolate_->stack_guard()->AdjustStackLimitForSimulator(); // Prepare to execute the code at entry set_register(pc, reinterpret_cast(entry)); // Put down marker for end of simulation. The simulator will stop simulation // when the PC reaches this value. By saving the "end simulation" value into // the LR the simulation stops when returning to this call point. set_register(lr, end_sim_pc); // Remember the values of callee-saved registers. // The code below assumes that r9 is not used as sb (static base) in // simulator code and therefore is regarded as a callee-saved register. int32_t r4_val = get_register(r4); int32_t r5_val = get_register(r5); int32_t r6_val = get_register(r6); int32_t r7_val = get_register(r7); int32_t r8_val = get_register(r8); int32_t r9_val = get_register(r9); int32_t r10_val = get_register(r10); int32_t r11_val = get_register(r11); // Set up the callee-saved registers with a known value. To be able to check // that they are preserved properly across JS execution. int32_t callee_saved_value = icount_; set_register(r4, callee_saved_value); set_register(r5, callee_saved_value); set_register(r6, callee_saved_value); set_register(r7, callee_saved_value); set_register(r8, callee_saved_value); set_register(r9, callee_saved_value); set_register(r10, callee_saved_value); set_register(r11, callee_saved_value); // Start the simulation Execute(); // Check that the callee-saved registers have been preserved. CHECK_EQ(callee_saved_value, get_register(r4)); CHECK_EQ(callee_saved_value, get_register(r5)); CHECK_EQ(callee_saved_value, get_register(r6)); CHECK_EQ(callee_saved_value, get_register(r7)); CHECK_EQ(callee_saved_value, get_register(r8)); CHECK_EQ(callee_saved_value, get_register(r9)); CHECK_EQ(callee_saved_value, get_register(r10)); CHECK_EQ(callee_saved_value, get_register(r11)); // Restore callee-saved registers with the original value. set_register(r4, r4_val); set_register(r5, r5_val); set_register(r6, r6_val); set_register(r7, r7_val); set_register(r8, r8_val); set_register(r9, r9_val); set_register(r10, r10_val); set_register(r11, r11_val); } int32_t Simulator::Call(byte* entry, int argument_count, ...) { va_list parameters; va_start(parameters, argument_count); // Set up arguments // First four arguments passed in registers. DCHECK(argument_count >= 4); set_register(r0, va_arg(parameters, int32_t)); set_register(r1, va_arg(parameters, int32_t)); set_register(r2, va_arg(parameters, int32_t)); set_register(r3, va_arg(parameters, int32_t)); // Remaining arguments passed on stack. int original_stack = get_register(sp); // Compute position of stack on entry to generated code. int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); if (base::OS::ActivationFrameAlignment() != 0) { entry_stack &= -base::OS::ActivationFrameAlignment(); } // Store remaining arguments on stack, from low to high memory. intptr_t* stack_argument = reinterpret_cast(entry_stack); for (int i = 4; i < argument_count; i++) { stack_argument[i - 4] = va_arg(parameters, int32_t); } va_end(parameters); set_register(sp, entry_stack); CallInternal(entry); // Pop stack passed arguments. CHECK_EQ(entry_stack, get_register(sp)); set_register(sp, original_stack); int32_t result = get_register(r0); return result; } void Simulator::CallFP(byte* entry, double d0, double d1) { if (use_eabi_hardfloat()) { set_d_register_from_double(0, d0); set_d_register_from_double(1, d1); } else { set_register_pair_from_double(0, &d0); set_register_pair_from_double(2, &d1); } CallInternal(entry); } int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { CallFP(entry, d0, d1); int32_t result = get_register(r0); return result; } double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { CallFP(entry, d0, d1); if (use_eabi_hardfloat()) { return get_double_from_d_register(0); } else { return get_double_from_register_pair(0); } } uintptr_t Simulator::PushAddress(uintptr_t address) { int new_sp = get_register(sp) - sizeof(uintptr_t); uintptr_t* stack_slot = reinterpret_cast(new_sp); *stack_slot = address; set_register(sp, new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { int current_sp = get_register(sp); uintptr_t* stack_slot = reinterpret_cast(current_sp); uintptr_t address = *stack_slot; set_register(sp, current_sp + sizeof(uintptr_t)); return address; } } // namespace internal } // namespace v8 #endif // USE_SIMULATOR #endif // V8_TARGET_ARCH_ARM