// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "ia32/lithium-codegen-ia32.h" #include "code-stubs.h" #include "deoptimizer.h" #include "stub-cache.h" #include "codegen.h" namespace v8 { namespace internal { // When invoking builtins, we need to record the safepoint in the middle of // the invoke instruction sequence generated by the macro assembler. class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {} virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const {} virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { HPhase phase("Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; CpuFeatures::Scope scope(SSE2); CodeStub::GenerateFPStubs(); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::MANUAL); dynamic_frame_alignment_ = chunk()->num_double_slots() > 2 || info()->osr_ast_id() != AstNode::kNoNumber; return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle code) { ASSERT(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); } void LCodeGen::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartArrayPointer name( info()->shared_info()->DebugName()->ToCString()); PrintF("Aborting LCodeGen in @\"%s\": ", *name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. size_t length = builder.position(); Vector copy = Vector::New(length + 1); memcpy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif // Strict mode functions and builtins need to replace the receiver // with undefined when called as functions (without an explicit // receiver object). ecx is zero for method calls and non-zero for // function calls. if (!info_->is_classic_mode() || info_->is_native()) { Label ok; __ test(ecx, Operand(ecx)); __ j(zero, &ok, Label::kNear); // +1 for return address. int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize; __ mov(Operand(esp, receiver_offset), Immediate(isolate()->factory()->undefined_value())); __ bind(&ok); } if (dynamic_frame_alignment_) { Label do_not_pad, align_loop; STATIC_ASSERT(kDoubleSize == 2 * kPointerSize); // Align esp to a multiple of 2 * kPointerSize. __ test(esp, Immediate(kPointerSize)); __ j(zero, &do_not_pad, Label::kNear); __ push(Immediate(0)); __ mov(ebx, esp); // Copy arguments, receiver, and return address. __ mov(ecx, Immediate(scope()->num_parameters() + 2)); __ bind(&align_loop); __ mov(eax, Operand(ebx, 1 * kPointerSize)); __ mov(Operand(ebx, 0), eax); __ add(Operand(ebx), Immediate(kPointerSize)); __ dec(ecx); __ j(not_zero, &align_loop, Label::kNear); __ mov(Operand(ebx, 0), Immediate(isolate()->factory()->frame_alignment_marker())); __ bind(&do_not_pad); } __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS function. // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ mov(Operand(eax), Immediate(slots)); Label loop; __ bind(&loop); __ push(Immediate(kSlotsZapValue)); __ dec(eax); __ j(not_zero, &loop); } else { __ sub(Operand(esp), Immediate(slots * kPointerSize)); #ifdef _MSC_VER // On windows, you may not access the stack more than one page below // the most recently mapped page. To make the allocated area randomly // accessible, we write to each page in turn (the value is irrelevant). const int kPageSize = 4 * KB; for (int offset = slots * kPointerSize - kPageSize; offset > 0; offset -= kPageSize) { __ mov(Operand(esp, offset), eax); } #endif } } // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is still in edi. __ push(edi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } RecordSafepoint(Safepoint::kNoLazyDeopt); // Context is returned in both eax and esi. It replaces the context // passed to us. It's saved in the stack and kept live in esi. __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); // Copy parameters into context if necessary. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ mov(eax, Operand(ebp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ mov(Operand(esi, context_offset), eax); // Update the write barrier. This clobbers eax and ebx. __ RecordWriteContextSlot(esi, context_offset, eax, ebx, kDontSaveFPRegs); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace) { // We have not executed any compiled code yet, so esi still holds the // incoming context. __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); if (instr->IsLabel()) { LLabel* label = LLabel::cast(instr); emit_instructions = !label->HasReplacement(); } if (emit_instructions) { Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); instr->CompileToNative(this); } } EnsureSpaceForLazyDeopt(); return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; __ bind(code->entry()); Comment(";;; Deferred code @%d: %s.", code->instruction_index(), code->instr()->Mnemonic()); code->Generate(); __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } XMMRegister LCodeGen::ToDoubleRegister(int index) const { return XMMRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } int LCodeGen::ToInteger32(LConstantOperand* op) const { Handle value = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); ASSERT(static_cast(static_cast(value->Number())) == value->Number()); return static_cast(value->Number()); } Handle LCodeGen::ToHandle(LConstantOperand* op) const { Handle literal = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); return literal; } double LCodeGen::ToDouble(LConstantOperand* op) const { Handle value = chunk_->LookupLiteral(op); return value->Number(); } Immediate LCodeGen::ToImmediate(LOperand* op) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); return Immediate(static_cast(literal->Number())); } else if (r.IsDouble()) { Abort("unsupported double immediate"); } ASSERT(r.IsTagged()); return Immediate(literal); } Operand LCodeGen::ToOperand(LOperand* op) const { if (op->IsRegister()) return Operand(ToRegister(op)); if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op)); ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return Operand(ebp, -(index + 3) * kPointerSize); } else { // Incoming parameter. Skip the return address. return Operand(ebp, -(index - 1) * kPointerSize); } } Operand LCodeGen::HighOperand(LOperand* op) { ASSERT(op->IsDoubleStackSlot()); int index = op->index(); int offset = (index >= 0) ? index + 3 : index - 1; return Operand(ebp, -offset * kPointerSize); } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->values()->length(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); int closure_id = DefineDeoptimizationLiteral(environment->closure()); translation->BeginFrame(environment->ast_id(), closure_id, height); for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (environment->spilled_registers() != NULL && value != NULL) { if (value->IsRegister() && environment->spilled_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation(translation, environment->spilled_registers()[value->index()], environment->HasTaggedValueAt(i)); } else if ( value->IsDoubleRegister() && environment->spilled_double_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation( translation, environment->spilled_double_registers()[value->index()], false); } } AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged) { if (op == NULL) { // TODO(twuerthinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. translation->StoreArgumentsObject(); } else if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = GetStackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { XMMRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { Handle literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(literal); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc, LInstruction* instr) { ASSERT(instr != NULL); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ CallRuntime(fun, argc); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { if (context->IsRegister()) { if (!ToRegister(context).is(esi)) { __ mov(esi, ToRegister(context)); } } else if (context->IsStackSlot()) { __ mov(esi, ToOperand(context)); } else if (context->IsConstantOperand()) { Handle literal = chunk_->LookupLiteral(LConstantOperand::cast(context)); __ LoadHeapObject(esi, Handle::cast(literal)); } else { UNREACHABLE(); } __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization( LEnvironment* environment, Safepoint::DeoptMode mode) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; } Translation translation(&translations_, frame_count); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); ASSERT(entry != NULL); if (entry == NULL) { Abort("bailout was not prepared"); return; } if (FLAG_deopt_every_n_times != 0) { Handle shared(info_->shared_info()); Label no_deopt; __ pushfd(); __ push(eax); __ push(ebx); __ mov(ebx, shared); __ mov(eax, FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset)); __ sub(Operand(eax), Immediate(Smi::FromInt(1))); __ j(not_zero, &no_deopt, Label::kNear); if (FLAG_trap_on_deopt) __ int3(); __ mov(eax, Immediate(Smi::FromInt(FLAG_deopt_every_n_times))); __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax); __ pop(ebx); __ pop(eax); __ popfd(); __ jmp(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&no_deopt); __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax); __ pop(ebx); __ pop(eax); __ popfd(); } if (cc == no_condition) { if (FLAG_trap_on_deopt) __ int3(); __ jmp(entry, RelocInfo::RUNTIME_ENTRY); } else { if (FLAG_trap_on_deopt) { Label done; __ j(NegateCondition(cc), &done, Label::kNear); __ int3(); __ jmp(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&done); } else { __ j(cc, entry, RelocInfo::RUNTIME_ENTRY); } } } void LCodeGen::PopulateDeoptimizationData(Handle code) { int length = deoptimizations_.length(); if (length == 0) return; ASSERT(FLAG_deopt); Handle data = factory()->NewDeoptimizationInputData(length, TENURED); Handle translations = translations_.CreateByteArray(); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, Smi::FromInt(env->ast_id())); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); data->SetPc(i, Smi::FromInt(env->pc_offset())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { ASSERT(kind == expected_safepoint_kind_); const ZoneList* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer)); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) { LPointerMap empty_pointers(RelocInfo::kNoPosition); RecordSafepoint(&empty_pointers, mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode); } void LCodeGen::RecordPosition(int position) { if (position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } void LCodeGen::DoLabel(LLabel* label) { if (label->is_loop_header()) { Comment(";;; B%d - LOOP entry", label->block_id()); } else { Comment(";;; B%d", label->block_id()); } __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->result()).is(eax)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringAdd: { StringAddStub stub(NO_STRING_ADD_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Nothing to do. } void LCodeGen::DoModI(LModI* instr) { if (instr->hydrogen()->HasPowerOf2Divisor()) { Register dividend = ToRegister(instr->InputAt(0)); int32_t divisor = HConstant::cast(instr->hydrogen()->right())->Integer32Value(); if (divisor < 0) divisor = -divisor; Label positive_dividend, done; __ test(dividend, Operand(dividend)); __ j(not_sign, &positive_dividend, Label::kNear); __ neg(dividend); __ and_(dividend, divisor - 1); __ neg(dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); } else { __ jmp(&done, Label::kNear); } __ bind(&positive_dividend); __ and_(dividend, divisor - 1); __ bind(&done); } else { Label done, remainder_eq_dividend, slow, do_subtraction, both_positive; Register left_reg = ToRegister(instr->InputAt(0)); Register right_reg = ToRegister(instr->InputAt(1)); Register result_reg = ToRegister(instr->result()); ASSERT(left_reg.is(eax)); ASSERT(result_reg.is(edx)); ASSERT(!right_reg.is(eax)); ASSERT(!right_reg.is(edx)); // Check for x % 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ test(right_reg, Operand(right_reg)); DeoptimizeIf(zero, instr->environment()); } __ test(left_reg, Operand(left_reg)); __ j(zero, &remainder_eq_dividend, Label::kNear); __ j(sign, &slow, Label::kNear); __ test(right_reg, Operand(right_reg)); __ j(not_sign, &both_positive, Label::kNear); // The sign of the divisor doesn't matter. __ neg(right_reg); __ bind(&both_positive); // If the dividend is smaller than the nonnegative // divisor, the dividend is the result. __ cmp(left_reg, Operand(right_reg)); __ j(less, &remainder_eq_dividend, Label::kNear); // Check if the divisor is a PowerOfTwo integer. Register scratch = ToRegister(instr->TempAt(0)); __ mov(scratch, right_reg); __ sub(Operand(scratch), Immediate(1)); __ test(scratch, Operand(right_reg)); __ j(not_zero, &do_subtraction, Label::kNear); __ and_(left_reg, Operand(scratch)); __ jmp(&remainder_eq_dividend, Label::kNear); __ bind(&do_subtraction); const int kUnfolds = 3; // Try a few subtractions of the dividend. __ mov(scratch, left_reg); for (int i = 0; i < kUnfolds; i++) { // Reduce the dividend by the divisor. __ sub(left_reg, Operand(right_reg)); // Check if the dividend is less than the divisor. __ cmp(left_reg, Operand(right_reg)); __ j(less, &remainder_eq_dividend, Label::kNear); } __ mov(left_reg, scratch); // Slow case, using idiv instruction. __ bind(&slow); // Sign extend to edx. __ cdq(); // Check for (0 % -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label positive_left; Label done; __ test(left_reg, Operand(left_reg)); __ j(not_sign, &positive_left, Label::kNear); __ idiv(right_reg); // Test the remainder for 0, because then the result would be -0. __ test(result_reg, Operand(result_reg)); __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); __ bind(&positive_left); __ idiv(right_reg); __ bind(&done); } else { __ idiv(right_reg); } __ jmp(&done, Label::kNear); __ bind(&remainder_eq_dividend); __ mov(result_reg, left_reg); __ bind(&done); } } void LCodeGen::DoDivI(LDivI* instr) { LOperand* right = instr->InputAt(1); ASSERT(ToRegister(instr->result()).is(eax)); ASSERT(ToRegister(instr->InputAt(0)).is(eax)); ASSERT(!ToRegister(instr->InputAt(1)).is(eax)); ASSERT(!ToRegister(instr->InputAt(1)).is(edx)); Register left_reg = eax; // Check for x / 0. Register right_reg = ToRegister(right); if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ test(right_reg, ToOperand(right)); DeoptimizeIf(zero, instr->environment()); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ test(left_reg, Operand(left_reg)); __ j(not_zero, &left_not_zero, Label::kNear); __ test(right_reg, ToOperand(right)); DeoptimizeIf(sign, instr->environment()); __ bind(&left_not_zero); } // Check for (-kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmp(left_reg, kMinInt); __ j(not_zero, &left_not_min_int, Label::kNear); __ cmp(right_reg, -1); DeoptimizeIf(zero, instr->environment()); __ bind(&left_not_min_int); } // Sign extend to edx. __ cdq(); __ idiv(right_reg); // Deoptimize if remainder is not 0. __ test(edx, Operand(edx)); DeoptimizeIf(not_zero, instr->environment()); } void LCodeGen::DoMulI(LMulI* instr) { Register left = ToRegister(instr->InputAt(0)); LOperand* right = instr->InputAt(1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ mov(ToRegister(instr->TempAt(0)), left); } if (right->IsConstantOperand()) { // Try strength reductions on the multiplication. // All replacement instructions are at most as long as the imul // and have better latency. int constant = ToInteger32(LConstantOperand::cast(right)); if (constant == -1) { __ neg(left); } else if (constant == 0) { __ xor_(left, Operand(left)); } else if (constant == 2) { __ add(left, Operand(left)); } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { // If we know that the multiplication can't overflow, it's safe to // use instructions that don't set the overflow flag for the // multiplication. switch (constant) { case 1: // Do nothing. break; case 3: __ lea(left, Operand(left, left, times_2, 0)); break; case 4: __ shl(left, 2); break; case 5: __ lea(left, Operand(left, left, times_4, 0)); break; case 8: __ shl(left, 3); break; case 9: __ lea(left, Operand(left, left, times_8, 0)); break; case 16: __ shl(left, 4); break; default: __ imul(left, left, constant); break; } } else { __ imul(left, left, constant); } } else { __ imul(left, ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; __ test(left, Operand(left)); __ j(not_zero, &done, Label::kNear); if (right->IsConstantOperand()) { if (ToInteger32(LConstantOperand::cast(right)) <= 0) { DeoptimizeIf(no_condition, instr->environment()); } } else { // Test the non-zero operand for negative sign. __ or_(ToRegister(instr->TempAt(0)), ToOperand(right)); DeoptimizeIf(sign, instr->environment()); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsConstantOperand()) { int right_operand = ToInteger32(LConstantOperand::cast(right)); switch (instr->op()) { case Token::BIT_AND: __ and_(ToRegister(left), right_operand); break; case Token::BIT_OR: __ or_(ToRegister(left), right_operand); break; case Token::BIT_XOR: __ xor_(ToRegister(left), right_operand); break; default: UNREACHABLE(); break; } } else { switch (instr->op()) { case Token::BIT_AND: __ and_(ToRegister(left), ToOperand(right)); break; case Token::BIT_OR: __ or_(ToRegister(left), ToOperand(right)); break; case Token::BIT_XOR: __ xor_(ToRegister(left), ToOperand(right)); break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsRegister()) { ASSERT(ToRegister(right).is(ecx)); switch (instr->op()) { case Token::SAR: __ sar_cl(ToRegister(left)); break; case Token::SHR: __ shr_cl(ToRegister(left)); if (instr->can_deopt()) { __ test(ToRegister(left), Immediate(0x80000000)); DeoptimizeIf(not_zero, instr->environment()); } break; case Token::SHL: __ shl_cl(ToRegister(left)); break; default: UNREACHABLE(); break; } } else { int value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast(value & 0x1F); switch (instr->op()) { case Token::SAR: if (shift_count != 0) { __ sar(ToRegister(left), shift_count); } break; case Token::SHR: if (shift_count == 0 && instr->can_deopt()) { __ test(ToRegister(left), Immediate(0x80000000)); DeoptimizeIf(not_zero, instr->environment()); } else { __ shr(ToRegister(left), shift_count); } break; case Token::SHL: if (shift_count != 0) { __ shl(ToRegister(left), shift_count); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ sub(ToOperand(left), ToImmediate(right)); } else { __ sub(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoConstantI(LConstantI* instr) { ASSERT(instr->result()->IsRegister()); __ Set(ToRegister(instr->result()), Immediate(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); XMMRegister res = ToDoubleRegister(instr->result()); double v = instr->value(); // Use xor to produce +0.0 in a fast and compact way, but avoid to // do so if the constant is -0.0. if (BitCast(v) == 0) { __ xorps(res, res); } else { Register temp = ToRegister(instr->TempAt(0)); uint64_t int_val = BitCast(v); int32_t lower = static_cast(int_val); int32_t upper = static_cast(int_val >> (kBitsPerInt)); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatures::Scope scope(SSE4_1); if (lower != 0) { __ Set(temp, Immediate(lower)); __ movd(res, Operand(temp)); __ Set(temp, Immediate(upper)); __ pinsrd(res, Operand(temp), 1); } else { __ xorps(res, res); __ Set(temp, Immediate(upper)); __ pinsrd(res, Operand(temp), 1); } } else { __ Set(temp, Immediate(upper)); __ movd(res, Operand(temp)); __ psllq(res, 32); if (lower != 0) { __ Set(temp, Immediate(lower)); __ movd(xmm0, Operand(temp)); __ por(res, xmm0); } } } } void LCodeGen::DoConstantT(LConstantT* instr) { Register reg = ToRegister(instr->result()); Handle handle = instr->value(); if (handle->IsHeapObject()) { __ LoadHeapObject(reg, Handle::cast(handle)); } else { __ Set(reg, Immediate(handle)); } } void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ mov(result, FieldOperand(array, JSArray::kLengthOffset)); } void LCodeGen::DoFixedArrayBaseLength( LFixedArrayBaseLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ mov(result, FieldOperand(array, FixedArrayBase::kLengthOffset)); } void LCodeGen::DoElementsKind(LElementsKind* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); // Load map into |result|. __ mov(result, FieldOperand(input, HeapObject::kMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ mov(result, FieldOperand(result, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(result, Map::kElementsKindMask); __ shr(result, Map::kElementsKindShift); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register map = ToRegister(instr->TempAt(0)); ASSERT(input.is(result)); Label done; // If the object is a smi return the object. __ JumpIfSmi(input, &done, Label::kNear); // If the object is not a value type, return the object. __ CmpObjectType(input, JS_VALUE_TYPE, map); __ j(not_equal, &done, Label::kNear); __ mov(result, FieldOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoBitNotI(LBitNotI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->Equals(instr->result())); __ not_(ToRegister(input)); } void LCodeGen::DoThrow(LThrow* instr) { __ push(ToOperand(instr->value())); ASSERT(ToRegister(instr->context()).is(esi)); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { Comment("Unreachable code."); __ int3(); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ add(ToOperand(left), ToImmediate(right)); } else { __ add(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { XMMRegister left = ToDoubleRegister(instr->InputAt(0)); XMMRegister right = ToDoubleRegister(instr->InputAt(1)); XMMRegister result = ToDoubleRegister(instr->result()); // Modulo uses a fixed result register. ASSERT(instr->op() == Token::MOD || left.is(result)); switch (instr->op()) { case Token::ADD: __ addsd(left, right); break; case Token::SUB: __ subsd(left, right); break; case Token::MUL: __ mulsd(left, right); break; case Token::DIV: __ divsd(left, right); break; case Token::MOD: { // Pass two doubles as arguments on the stack. __ PrepareCallCFunction(4, eax); __ movdbl(Operand(esp, 0 * kDoubleSize), left); __ movdbl(Operand(esp, 1 * kDoubleSize), right); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 4); // Return value is in st(0) on ia32. // Store it into the (fixed) result register. __ sub(Operand(esp), Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movdbl(result, Operand(esp, 0)); __ add(Operand(esp), Immediate(kDoubleSize)); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->left()).is(edx)); ASSERT(ToRegister(instr->right()).is(eax)); ASSERT(ToRegister(instr->result()).is(eax)); BinaryOpStub stub(instr->op(), NO_OVERWRITE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ nop(); // Signals no inlined code. } int LCodeGen::GetNextEmittedBlock(int block) { for (int i = block + 1; i < graph()->blocks()->length(); ++i) { LLabel* label = chunk_->GetLabel(i); if (!label->HasReplacement()) return i; } return -1; } void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ j(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(left_block)); __ jmp(chunk_->GetAssemblyLabel(right_block)); } } void LCodeGen::DoBranch(LBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32()) { Register reg = ToRegister(instr->InputAt(0)); __ test(reg, Operand(reg)); EmitBranch(true_block, false_block, not_zero); } else if (r.IsDouble()) { XMMRegister reg = ToDoubleRegister(instr->InputAt(0)); __ xorps(xmm0, xmm0); __ ucomisd(reg, xmm0); EmitBranch(true_block, false_block, not_equal); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->InputAt(0)); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { __ cmp(reg, factory()->true_value()); EmitBranch(true_block, false_block, equal); } else if (type.IsSmi()) { __ test(reg, Operand(reg)); EmitBranch(true_block, false_block, not_equal); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); if (expected.Contains(ToBooleanStub::UNDEFINED)) { // undefined -> false. __ cmp(reg, factory()->undefined_value()); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::BOOLEAN)) { // true -> true. __ cmp(reg, factory()->true_value()); __ j(equal, true_label); // false -> false. __ cmp(reg, factory()->false_value()); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::NULL_TYPE)) { // 'null' -> false. __ cmp(reg, factory()->null_value()); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::SMI)) { // Smis: 0 -> false, all other -> true. __ test(reg, Operand(reg)); __ j(equal, false_label); __ JumpIfSmi(reg, true_label); } else if (expected.NeedsMap()) { // If we need a map later and have a Smi -> deopt. __ test(reg, Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr->environment()); } Register map = no_reg; // Keep the compiler happy. if (expected.NeedsMap()) { map = ToRegister(instr->TempAt(0)); ASSERT(!map.is(reg)); __ mov(map, FieldOperand(reg, HeapObject::kMapOffset)); if (expected.CanBeUndetectable()) { // Undetectable -> false. __ test_b(FieldOperand(map, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(not_zero, false_label); } } if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { // spec object -> true. __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); __ j(above_equal, true_label); } if (expected.Contains(ToBooleanStub::STRING)) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); __ j(not_zero, true_label); __ jmp(false_label); __ bind(¬_string); } if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ cmp(FieldOperand(reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(not_equal, ¬_heap_number, Label::kNear); __ fldz(); __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset)); __ FCmp(); __ j(zero, false_label); __ jmp(true_label); __ bind(¬_heap_number); } // We've seen something for the first time -> deopt. DeoptimizeIf(no_condition, instr->environment()); } } } void LCodeGen::EmitGoto(int block) { block = chunk_->LookupDestination(block); int next_block = GetNextEmittedBlock(current_block_); if (block != next_block) { __ jmp(chunk_->GetAssemblyLabel(block)); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = no_condition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = equal; break; case Token::LT: cond = is_unsigned ? below : less; break; case Token::GT: cond = is_unsigned ? above : greater; break; case Token::LTE: cond = is_unsigned ? below_equal : less_equal; break; case Token::GTE: cond = is_unsigned ? above_equal : greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); Condition cc = TokenToCondition(instr->op(), instr->is_double()); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = EvalComparison(instr->op(), left_val, right_val) ? true_block : false_block; EmitGoto(next_block); } else { if (instr->is_double()) { // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the false block. __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); __ j(parity_even, chunk_->GetAssemblyLabel(false_block)); } else { if (right->IsConstantOperand()) { __ cmp(ToRegister(left), ToImmediate(right)); } else if (left->IsConstantOperand()) { __ cmp(ToOperand(right), ToImmediate(left)); // We transposed the operands. Reverse the condition. cc = ReverseCondition(cc); } else { __ cmp(ToRegister(left), ToOperand(right)); } } EmitBranch(true_block, false_block, cc); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); Operand right = ToOperand(instr->InputAt(1)); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); __ cmp(left, Operand(right)); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ cmp(left, instr->hydrogen()->right()); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); int false_block = chunk_->LookupDestination(instr->false_block_id()); // If the expression is known to be untagged or a smi, then it's definitely // not null, and it can't be a an undetectable object. if (instr->hydrogen()->representation().IsSpecialization() || instr->hydrogen()->type().IsSmi()) { EmitGoto(false_block); return; } int true_block = chunk_->LookupDestination(instr->true_block_id()); Handle nil_value = instr->nil() == kNullValue ? factory()->null_value() : factory()->undefined_value(); __ cmp(reg, nil_value); if (instr->kind() == kStrictEquality) { EmitBranch(true_block, false_block, equal); } else { Handle other_nil_value = instr->nil() == kNullValue ? factory()->undefined_value() : factory()->null_value(); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ j(equal, true_label); __ cmp(reg, other_nil_value); __ j(equal, true_label); __ JumpIfSmi(reg, false_label); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. Register scratch = ToRegister(instr->TempAt(0)); __ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset)); __ test(scratch, Immediate(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, not_zero); } } Condition LCodeGen::EmitIsObject(Register input, Register temp1, Label* is_not_object, Label* is_object) { __ JumpIfSmi(input, is_not_object); __ cmp(input, isolate()->factory()->null_value()); __ j(equal, is_object); __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ test_b(FieldOperand(temp1, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(not_zero, is_not_object); __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset)); __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); __ j(below, is_not_object); __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); return below_equal; } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsObject(reg, temp, false_label, true_label); EmitBranch(true_block, false_block, true_cond); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string) { __ JumpIfSmi(input, is_not_string); Condition cond = masm_->IsObjectStringType(input, temp1, temp1); return cond; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsString(reg, temp, false_label); EmitBranch(true_block, false_block, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Operand input = ToOperand(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ test(input, Immediate(kSmiTagMask)); EmitBranch(true_block, false_block, zero); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); __ test_b(FieldOperand(temp, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); EmitBranch(true_block, false_block, not_zero); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return equal; case Token::LT: return less; case Token::GT: return greater; case Token::LTE: return less_equal; case Token::GTE: return greater_equal; default: UNREACHABLE(); return no_condition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { Token::Value op = instr->op(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = ComputeCompareCondition(op); __ test(eax, Operand(eax)); EmitBranch(true_block, false_block, condition); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return equal; if (to == LAST_TYPE) return above_equal; if (from == FIRST_TYPE) return below_equal; UNREACHABLE(); return equal; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ JumpIfSmi(input, false_label); __ CmpObjectType(input, TestType(instr->hydrogen()), temp); EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen())); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { __ AbortIfNotString(input); } __ mov(result, FieldOperand(input, String::kHashFieldOffset)); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ test(FieldOperand(input, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); EmitBranch(true_block, false_block, equal); } // Branches to a label or falls through with the answer in the z flag. Trashes // the temp registers, but not the input. Only input and temp2 may alias. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handleclass_name, Register input, Register temp, Register temp2) { ASSERT(!input.is(temp)); ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register. __ JumpIfSmi(input, is_false); if (class_name->IsEqualTo(CStrVector("Function"))) { // Assuming the following assertions, we can use the same compares to test // for both being a function type and being in the object type range. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp); __ j(below, is_false); __ j(equal, is_true); __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE); __ j(equal, is_true); } else { // Faster code path to avoid two compares: subtract lower bound from the // actual type and do a signed compare with the width of the type range. __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); __ mov(temp2, FieldOperand(temp, Map::kInstanceTypeOffset)); __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ cmpb(Operand(temp2), static_cast(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ j(above, is_false); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ mov(temp, FieldOperand(temp, Map::kConstructorOffset)); // Objects with a non-function constructor have class 'Object'. __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2); if (class_name->IsEqualTo(CStrVector("Object"))) { __ j(not_equal, is_true); } else { __ j(not_equal, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ mov(temp, FieldOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is a symbol because it's a literal. // The name in the constructor is a symbol because of the way the context is // booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are symbols it is sufficient to use an identity // comparison. __ cmp(temp, class_name); // End with the answer in the z flag. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); Register temp2 = ToRegister(instr->TempAt(1)); if (input.is(temp)) { // Swap. Register swapper = temp; temp = temp2; temp2 = swapper; } Handle class_name = instr->hydrogen()->class_name(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); int true_block = instr->true_block_id(); int false_block = instr->false_block_id(); __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { // Object and function are in fixed registers defined by the stub. ASSERT(ToRegister(instr->context()).is(esi)); InstanceofStub stub(InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); Label true_value, done; __ test(eax, Operand(eax)); __ j(zero, &true_value, Label::kNear); __ mov(ToRegister(instr->result()), factory()->false_value()); __ jmp(&done, Label::kNear); __ bind(&true_value); __ mov(ToRegister(instr->result()), factory()->true_value()); __ bind(&done); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); } virtual LInstruction* instr() { return instr_; } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->InputAt(1)); Register temp = ToRegister(instr->TempAt(0)); // A Smi is not an instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; Register map = ToRegister(instr->TempAt(0)); __ mov(map, FieldOperand(object, HeapObject::kMapOffset)); __ bind(deferred->map_check()); // Label for calculating code patching. __ cmp(map, factory()->the_hole_value()); // Patched to cached map. __ j(not_equal, &cache_miss, Label::kNear); __ mov(eax, factory()->the_hole_value()); // Patched to either true or false. __ jmp(&done); // The inlined call site cache did not match. Check for null and string // before calling the deferred code. __ bind(&cache_miss); // Null is not an instance of anything. __ cmp(object, factory()->null_value()); __ j(equal, &false_result); // String values are not instances of anything. Condition is_string = masm_->IsObjectStringType(object, temp, temp); __ j(is_string, &false_result); // Go to the deferred code. __ jmp(deferred->entry()); __ bind(&false_result); __ mov(ToRegister(instr->result()), factory()->false_value()); // Here result has either true or false. Deferred code also produces true or // false object. __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { PushSafepointRegistersScope scope(this); InstanceofStub::Flags flags = InstanceofStub::kNoFlags; flags = static_cast( flags | InstanceofStub::kArgsInRegisters); flags = static_cast( flags | InstanceofStub::kCallSiteInlineCheck); flags = static_cast( flags | InstanceofStub::kReturnTrueFalseObject); InstanceofStub stub(flags); // Get the temp register reserved by the instruction. This needs to be a // register which is pushed last by PushSafepointRegisters as top of the // stack is used to pass the offset to the location of the map check to // the stub. Register temp = ToRegister(instr->TempAt(0)); ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0); __ LoadHeapObject(InstanceofStub::right(), instr->function()); static const int kAdditionalDelta = 13; int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta; __ mov(temp, Immediate(delta)); __ StoreToSafepointRegisterSlot(temp, temp); CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); ASSERT(instr->HasDeoptimizationEnvironment()); LEnvironment* env = instr->deoptimization_environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); // Put the result value into the eax slot and restore all registers. __ StoreToSafepointRegisterSlot(eax, eax); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = ComputeCompareCondition(op); Label true_value, done; __ test(eax, Operand(eax)); __ j(condition, &true_value, Label::kNear); __ mov(ToRegister(instr->result()), factory()->false_value()); __ jmp(&done, Label::kNear); __ bind(&true_value); __ mov(ToRegister(instr->result()), factory()->true_value()); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace) { // Preserve the return value on the stack and rely on the runtime call // to return the value in the same register. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ push(eax); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit, 1); } __ mov(esp, ebp); __ pop(ebp); if (dynamic_frame_alignment_) { Label aligned; // Frame alignment marker (padding) is below arguments, // and receiver, so its return-address-relative offset is // (num_arguments + 2) words. __ cmp(Operand(esp, (GetParameterCount() + 2) * kPointerSize), Immediate(factory()->frame_alignment_marker())); __ j(not_equal, &aligned); __ Ret((GetParameterCount() + 2) * kPointerSize, ecx); __ bind(&aligned); } __ Ret((GetParameterCount() + 1) * kPointerSize, ecx); } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ mov(result, Operand::Cell(instr->hydrogen()->cell())); if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(result, factory()->the_hole_value()); DeoptimizeIf(equal, instr->environment()); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->global_object()).is(eax)); ASSERT(ToRegister(instr->result()).is(eax)); __ mov(ecx, instr->name()); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register object = ToRegister(instr->TempAt(0)); Register address = ToRegister(instr->TempAt(1)); Register value = ToRegister(instr->InputAt(0)); ASSERT(!value.is(object)); Handle cell_handle(instr->hydrogen()->cell()); int offset = JSGlobalPropertyCell::kValueOffset; __ mov(object, Immediate(cell_handle)); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. We deoptimize in that case. if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(FieldOperand(object, offset), factory()->the_hole_value()); DeoptimizeIf(equal, instr->environment()); } // Store the value. __ mov(FieldOperand(object, offset), value); // Cells are always rescanned, so no write barrier here. } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->global_object()).is(edx)); ASSERT(ToRegister(instr->value()).is(eax)); __ mov(ecx, instr->name()); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ mov(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(result, factory()->the_hole_value()); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr->environment()); } else { Label is_not_hole; __ j(not_equal, &is_not_hole, Label::kNear); __ mov(result, factory()->undefined_value()); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Label skip_assignment; Operand target = ContextOperand(context, instr->slot_index()); if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(target, factory()->the_hole_value()); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr->environment()); } else { __ j(not_equal, &skip_assignment, Label::kNear); } } __ mov(target, value); if (instr->hydrogen()->NeedsWriteBarrier()) { HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Register temp = ToRegister(instr->TempAt(0)); int offset = Context::SlotOffset(instr->slot_index()); __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); if (instr->hydrogen()->is_in_object()) { __ mov(result, FieldOperand(object, instr->hydrogen()->offset())); } else { __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ mov(result, FieldOperand(result, instr->hydrogen()->offset())); } } void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, Register object, Handle type, Handle name) { LookupResult lookup(isolate()); type->LookupInDescriptors(NULL, *name, &lookup); ASSERT(lookup.IsProperty() && (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); if (lookup.type() == FIELD) { int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ mov(result, FieldOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ mov(result, FieldOperand(result, offset + FixedArray::kHeaderSize)); } } else { Handle function(lookup.GetConstantFunctionFromMap(*type)); __ LoadHeapObject(result, function); } } void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { ASSERT(!operand->IsDoubleRegister()); if (operand->IsConstantOperand()) { Handle object = ToHandle(LConstantOperand::cast(operand)); if (object->IsSmi()) { __ Push(Handle::cast(object)); } else { __ PushHeapObject(Handle::cast(object)); } } else if (operand->IsRegister()) { __ push(ToRegister(operand)); } else { __ push(ToOperand(operand)); } } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); int map_count = instr->hydrogen()->types()->length(); Handle name = instr->hydrogen()->name(); if (map_count == 0) { ASSERT(instr->hydrogen()->need_generic()); __ mov(ecx, name); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { Label done; for (int i = 0; i < map_count - 1; ++i) { Handle map = instr->hydrogen()->types()->at(i); Label next; __ cmp(FieldOperand(object, HeapObject::kMapOffset), map); __ j(not_equal, &next, Label::kNear); EmitLoadFieldOrConstantFunction(result, object, map, name); __ jmp(&done, Label::kNear); __ bind(&next); } Handle map = instr->hydrogen()->types()->last(); __ cmp(FieldOperand(object, HeapObject::kMapOffset), map); if (instr->hydrogen()->need_generic()) { Label generic; __ j(not_equal, &generic, Label::kNear); EmitLoadFieldOrConstantFunction(result, object, map, name); __ jmp(&done, Label::kNear); __ bind(&generic); __ mov(ecx, name); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { DeoptimizeIf(not_equal, instr->environment()); EmitLoadFieldOrConstantFunction(result, object, map, name); } __ bind(&done); } } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->object()).is(eax)); ASSERT(ToRegister(instr->result()).is(eax)); __ mov(ecx, instr->name()); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register temp = ToRegister(instr->TempAt(0)); Register result = ToRegister(instr->result()); // Check that the function really is a function. __ CmpObjectType(function, JS_FUNCTION_TYPE, result); DeoptimizeIf(not_equal, instr->environment()); // Check whether the function has an instance prototype. Label non_instance; __ test_b(FieldOperand(result, Map::kBitFieldOffset), 1 << Map::kHasNonInstancePrototype); __ j(not_zero, &non_instance, Label::kNear); // Get the prototype or initial map from the function. __ mov(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ cmp(Operand(result), Immediate(factory()->the_hole_value())); DeoptimizeIf(equal, instr->environment()); // If the function does not have an initial map, we're done. Label done; __ CmpObjectType(result, MAP_TYPE, temp); __ j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. __ mov(result, FieldOperand(result, Map::kPrototypeOffset)); __ jmp(&done, Label::kNear); // Non-instance prototype: Fetch prototype from constructor field // in the function's map. __ bind(&non_instance); __ mov(result, FieldOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadElements(LLoadElements* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); __ mov(result, FieldOperand(input, JSObject::kElementsOffset)); if (FLAG_debug_code) { Label done, ok, fail; __ cmp(FieldOperand(result, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(equal, &done, Label::kNear); __ cmp(FieldOperand(result, HeapObject::kMapOffset), Immediate(factory()->fixed_cow_array_map())); __ j(equal, &done, Label::kNear); Register temp((result.is(eax)) ? ebx : eax); __ push(temp); __ mov(temp, FieldOperand(result, HeapObject::kMapOffset)); __ movzx_b(temp, FieldOperand(temp, Map::kBitField2Offset)); __ and_(temp, Map::kElementsKindMask); __ shr(temp, Map::kElementsKindShift); __ cmp(temp, FAST_ELEMENTS); __ j(equal, &ok, Label::kNear); __ cmp(temp, FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); __ j(less, &fail, Label::kNear); __ cmp(temp, LAST_EXTERNAL_ARRAY_ELEMENTS_KIND); __ j(less_equal, &ok, Label::kNear); __ bind(&fail); __ Abort("Check for fast or external elements failed."); __ bind(&ok); __ pop(temp); __ bind(&done); } } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); __ mov(result, FieldOperand(input, ExternalArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register length = ToRegister(instr->length()); Operand index = ToOperand(instr->index()); Register result = ToRegister(instr->result()); __ sub(length, index); DeoptimizeIf(below_equal, instr->environment()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. __ mov(result, Operand(arguments, length, times_4, kPointerSize)); } void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { Register result = ToRegister(instr->result()); // Load the result. __ mov(result, BuildFastArrayOperand(instr->elements(), instr->key(), FAST_ELEMENTS, FixedArray::kHeaderSize - kHeapObjectTag)); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(result, factory()->the_hole_value()); DeoptimizeIf(equal, instr->environment()); } } void LCodeGen::DoLoadKeyedFastDoubleElement( LLoadKeyedFastDoubleElement* instr) { XMMRegister result = ToDoubleRegister(instr->result()); int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag + sizeof(kHoleNanLower32); Operand hole_check_operand = BuildFastArrayOperand( instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS, offset); __ cmp(hole_check_operand, Immediate(kHoleNanUpper32)); DeoptimizeIf(equal, instr->environment()); Operand double_load_operand = BuildFastArrayOperand( instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS, FixedDoubleArray::kHeaderSize - kHeapObjectTag); __ movdbl(result, double_load_operand); } Operand LCodeGen::BuildFastArrayOperand( LOperand* elements_pointer, LOperand* key, ElementsKind elements_kind, uint32_t offset) { Register elements_pointer_reg = ToRegister(elements_pointer); int shift_size = ElementsKindToShiftSize(elements_kind); if (key->IsConstantOperand()) { int constant_value = ToInteger32(LConstantOperand::cast(key)); if (constant_value & 0xF0000000) { Abort("array index constant value too big"); } return Operand(elements_pointer_reg, constant_value * (1 << shift_size) + offset); } else { ScaleFactor scale_factor = static_cast(shift_size); return Operand(elements_pointer_reg, ToRegister(key), scale_factor, offset); } } void LCodeGen::DoLoadKeyedSpecializedArrayElement( LLoadKeyedSpecializedArrayElement* instr) { ElementsKind elements_kind = instr->elements_kind(); Operand operand(BuildFastArrayOperand(instr->external_pointer(), instr->key(), elements_kind, 0)); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { XMMRegister result(ToDoubleRegister(instr->result())); __ movss(result, operand); __ cvtss2sd(result, result); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ movdbl(ToDoubleRegister(instr->result()), operand); } else { Register result(ToRegister(instr->result())); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ movsx_b(result, operand); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ movzx_b(result, operand); break; case EXTERNAL_SHORT_ELEMENTS: __ movsx_w(result, operand); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ movzx_w(result, operand); break; case EXTERNAL_INT_ELEMENTS: __ mov(result, operand); break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ mov(result, operand); __ test(result, Operand(result)); // TODO(danno): we could be more clever here, perhaps having a special // version of the stub that detects if the overflow case actually // happens, and generate code that returns a double rather than int. DeoptimizeIf(negative, instr->environment()); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->object()).is(edx)); ASSERT(ToRegister(instr->key()).is(eax)); Handle ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); // Check for arguments adapter frame. Label done, adapted; __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(result, Operand(result, StandardFrameConstants::kContextOffset)); __ cmp(Operand(result), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adapted, Label::kNear); // No arguments adaptor frame. __ mov(result, Operand(ebp)); __ jmp(&done, Label::kNear); // Arguments adaptor frame present. __ bind(&adapted); __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ bind(&done); } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Operand elem = ToOperand(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ cmp(ebp, elem); __ mov(result, Immediate(scope()->num_parameters())); __ j(equal, &done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(result, Operand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = ToRegister(instr->TempAt(0)); ASSERT(receiver.is(eax)); // Used for parameter count. ASSERT(function.is(edi)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(eax)); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, receiver_ok; // Do not transform the receiver to object for strict mode // functions. __ mov(scratch, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, &receiver_ok, Label::kNear); // Do not transform the receiver to object for builtins. __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, &receiver_ok, Label::kNear); // Normal function. Replace undefined or null with global receiver. __ cmp(receiver, factory()->null_value()); __ j(equal, &global_object, Label::kNear); __ cmp(receiver, factory()->undefined_value()); __ j(equal, &global_object, Label::kNear); // The receiver should be a JS object. __ test(receiver, Immediate(kSmiTagMask)); DeoptimizeIf(equal, instr->environment()); __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch); DeoptimizeIf(below, instr->environment()); __ jmp(&receiver_ok, Label::kNear); __ bind(&global_object); // TODO(kmillikin): We have a hydrogen value for the global object. See // if it's better to use it than to explicitly fetch it from the context // here. __ mov(receiver, Operand(ebp, StandardFrameConstants::kContextOffset)); __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX)); __ mov(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); __ bind(&receiver_ok); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmp(length, kArgumentsLimit); DeoptimizeIf(above, instr->environment()); __ push(receiver); __ mov(receiver, length); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ test(length, Operand(length)); __ j(zero, &invoke, Label::kNear); __ bind(&loop); __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); __ dec(length); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(eax); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator, CALL_AS_METHOD); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->InputAt(0); EmitPushTaggedOperand(argument); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ LoadHeapObject(result, instr->hydrogen()->closure()); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ mov(result, Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ mov(result, Operand(context, Context::SlotOffset(Context::GLOBAL_INDEX))); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global()); Register result = ToRegister(instr->result()); __ mov(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle function, int arity, LInstruction* instr, CallKind call_kind) { // Change context if needed. bool change_context = (info()->closure()->context() != function->context()) || scope()->contains_with() || (scope()->num_heap_slots() > 0); if (change_context) { __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); } else { __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } // Set eax to arguments count if adaption is not needed. Assumes that eax // is available to write to at this point. if (!function->NeedsArgumentsAdaption()) { __ mov(eax, arity); } LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); // Invoke function. __ SetCallKind(ecx, call_kind); if (*function == *info()->closure()) { __ CallSelf(); } else { __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset)); } RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(eax)); __ LoadHeapObject(edi, instr->function()); CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->value()); __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); DeoptimizeIf(not_equal, instr->environment()); Label done; Register tmp = input_reg.is(eax) ? ecx : eax; Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx; // Preserve the value of all registers. PushSafepointRegistersScope scope(this); Label negative; __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| will be restored // unchanged by popping safepoint registers. __ test(tmp, Immediate(HeapNumber::kSignMask)); __ j(not_zero, &negative); __ jmp(&done); __ bind(&negative); Label allocated, slow; __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow); __ jmp(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp.is(eax)) __ mov(tmp, eax); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input_reg, input_reg); __ bind(&allocated); __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset)); __ and_(tmp2, ~HeapNumber::kSignMask); __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2); __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2); __ StoreToSafepointRegisterSlot(input_reg, tmp); __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->value()); __ test(input_reg, Operand(input_reg)); Label is_positive; __ j(not_sign, &is_positive); __ neg(input_reg); __ test(input_reg, Operand(input_reg)); DeoptimizeIf(negative, instr->environment()); __ bind(&is_positive); } void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LUnaryMathOperation* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } virtual LInstruction* instr() { return instr_; } private: LUnaryMathOperation* instr_; }; ASSERT(instr->value()->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { XMMRegister scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->value()); __ xorps(scratch, scratch); __ subsd(scratch, input_reg); __ pand(input_reg, scratch); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Tagged case. DeferredMathAbsTaggedHeapNumber* deferred = new DeferredMathAbsTaggedHeapNumber(this, instr); Register input_reg = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatures::Scope scope(SSE4_1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Deoptimize on negative zero. Label non_zero; __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); __ j(not_equal, &non_zero, Label::kNear); __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); __ bind(&non_zero); } __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown); __ cvttsd2si(output_reg, Operand(xmm_scratch)); // Overflow is signalled with minint. __ cmp(output_reg, 0x80000000u); DeoptimizeIf(equal, instr->environment()); } else { Label done; // Deoptimize on negative numbers. __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(below, instr->environment()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Check for negative zero. Label positive_sign; __ j(above, &positive_sign, Label::kNear); __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); __ Set(output_reg, Immediate(0)); __ jmp(&done, Label::kNear); __ bind(&positive_sign); } // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, Operand(input_reg)); // Overflow is signalled with minint. __ cmp(output_reg, 0x80000000u); DeoptimizeIf(equal, instr->environment()); __ bind(&done); } } void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); Label below_half, done; // xmm_scratch = 0.5 ExternalReference one_half = ExternalReference::address_of_one_half(); __ movdbl(xmm_scratch, Operand::StaticVariable(one_half)); __ ucomisd(xmm_scratch, input_reg); __ j(above, &below_half); // xmm_scratch = input + 0.5 __ addsd(xmm_scratch, input_reg); // Compute Math.floor(value + 0.5). // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, Operand(xmm_scratch)); // Overflow is signalled with minint. __ cmp(output_reg, 0x80000000u); DeoptimizeIf(equal, instr->environment()); __ jmp(&done); __ bind(&below_half); // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if // we can ignore the difference between a result of -0 and +0. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // If the sign is positive, we return +0. __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); } else { // If the input is >= -0.5, we return +0. __ mov(output_reg, Immediate(0xBF000000)); __ movd(xmm_scratch, Operand(output_reg)); __ cvtss2sd(xmm_scratch, xmm_scratch); __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(below, instr->environment()); } __ Set(output_reg, Immediate(0)); __ bind(&done); } void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { XMMRegister input_reg = ToDoubleRegister(instr->value()); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); __ sqrtsd(input_reg, input_reg); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { XMMRegister xmm_scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = ToRegister(instr->temp()); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done, sqrt; // Check base for -Infinity. According to IEEE-754, single-precision // -Infinity has the highest 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000); __ movd(xmm_scratch, scratch); __ cvtss2sd(xmm_scratch, xmm_scratch); __ ucomisd(input_reg, xmm_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &sqrt, Label::kNear); __ j(carry, &sqrt, Label::kNear); // If input is -Infinity, return Infinity. __ xorps(input_reg, input_reg); __ subsd(input_reg, xmm_scratch); __ jmp(&done, Label::kNear); // Square root. __ bind(&sqrt); __ xorps(xmm_scratch, xmm_scratch); __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. __ sqrtsd(input_reg, input_reg); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. ASSERT(!instr->InputAt(1)->IsDoubleRegister() || ToDoubleRegister(instr->InputAt(1)).is(xmm1)); ASSERT(!instr->InputAt(1)->IsRegister() || ToRegister(instr->InputAt(1)).is(eax)); ASSERT(ToDoubleRegister(instr->InputAt(0)).is(xmm2)); ASSERT(ToDoubleRegister(instr->result()).is(xmm3)); if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(eax, &no_deopt); __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx); DeoptimizeIf(not_equal, instr->environment()); __ bind(&no_deopt); MathPowStub stub(MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(MathPowStub::INTEGER); __ CallStub(&stub); } else { ASSERT(exponent_type.IsDouble()); MathPowStub stub(MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { ASSERT(instr->value()->Equals(instr->result())); XMMRegister input_reg = ToDoubleRegister(instr->value()); Label positive, done, zero; __ xorps(xmm0, xmm0); __ ucomisd(input_reg, xmm0); __ j(above, &positive, Label::kNear); __ j(equal, &zero, Label::kNear); ExternalReference nan = ExternalReference::address_of_canonical_non_hole_nan(); __ movdbl(input_reg, Operand::StaticVariable(nan)); __ jmp(&done, Label::kNear); __ bind(&zero); __ push(Immediate(0xFFF00000)); __ push(Immediate(0)); __ movdbl(input_reg, Operand(esp, 0)); __ add(Operand(esp), Immediate(kDoubleSize)); __ jmp(&done, Label::kNear); __ bind(&positive); __ fldln2(); __ sub(Operand(esp), Immediate(kDoubleSize)); __ movdbl(Operand(esp, 0), input_reg); __ fld_d(Operand(esp, 0)); __ fyl2x(); __ fstp_d(Operand(esp, 0)); __ movdbl(input_reg, Operand(esp, 0)); __ add(Operand(esp), Immediate(kDoubleSize)); __ bind(&done); } void LCodeGen::DoMathTan(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { switch (instr->op()) { case kMathAbs: DoMathAbs(instr); break; case kMathFloor: DoMathFloor(instr); break; case kMathRound: DoMathRound(instr); break; case kMathSqrt: DoMathSqrt(instr); break; case kMathCos: DoMathCos(instr); break; case kMathSin: DoMathSin(instr); break; case kMathTan: DoMathTan(instr); break; case kMathLog: DoMathLog(instr); break; default: UNREACHABLE(); } } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->function()).is(edi)); ASSERT(instr->HasPointerMap()); ASSERT(instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator generator( this, pointers, Safepoint::kLazyDeopt); ParameterCount count(instr->arity()); __ InvokeFunction(edi, count, CALL_FUNCTION, generator, CALL_AS_METHOD); } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->key()).is(ecx)); ASSERT(ToRegister(instr->result()).is(eax)); int arity = instr->arity(); Handle ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->result()).is(eax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ mov(ecx, instr->name()); CallCode(ic, mode, instr); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->function()).is(edi)); ASSERT(ToRegister(instr->result()).is(eax)); int arity = instr->arity(); CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->result()).is(eax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ mov(ecx, instr->name()); CallCode(ic, mode, instr); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(eax)); __ LoadHeapObject(edi, instr->target()); CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->constructor()).is(edi)); ASSERT(ToRegister(instr->result()).is(eax)); Handle builtin = isolate()->builtins()->JSConstructCall(); __ Set(eax, Immediate(instr->arity())); CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Register object = ToRegister(instr->object()); Register value = ToRegister(instr->value()); int offset = instr->offset(); if (!instr->transition().is_null()) { __ mov(FieldOperand(object, HeapObject::kMapOffset), instr->transition()); } // Do the store. HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; if (instr->is_in_object()) { __ mov(FieldOperand(object, offset), value); if (instr->hydrogen()->NeedsWriteBarrier()) { Register temp = ToRegister(instr->TempAt(0)); // Update the write barrier for the object for in-object properties. __ RecordWriteField(object, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } else { Register temp = ToRegister(instr->TempAt(0)); __ mov(temp, FieldOperand(object, JSObject::kPropertiesOffset)); __ mov(FieldOperand(temp, offset), value); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWriteField(temp, offset, value, object, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->object()).is(edx)); ASSERT(ToRegister(instr->value()).is(eax)); __ mov(ecx, instr->name()); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { if (instr->index()->IsConstantOperand()) { __ cmp(ToOperand(instr->length()), ToImmediate(LConstantOperand::cast(instr->index()))); DeoptimizeIf(below_equal, instr->environment()); } else { __ cmp(ToRegister(instr->index()), ToOperand(instr->length())); DeoptimizeIf(above_equal, instr->environment()); } } void LCodeGen::DoStoreKeyedSpecializedArrayElement( LStoreKeyedSpecializedArrayElement* instr) { ElementsKind elements_kind = instr->elements_kind(); Operand operand(BuildFastArrayOperand(instr->external_pointer(), instr->key(), elements_kind, 0)); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value())); __ movss(operand, xmm0); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ movdbl(operand, ToDoubleRegister(instr->value())); } else { Register value = ToRegister(instr->value()); switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: __ mov_b(operand, value); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ mov_w(operand, value); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ mov(operand, value); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->object()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; // This instruction cannot handle the FAST_SMI_ONLY_ELEMENTS -> FAST_ELEMENTS // conversion, so it deopts in that case. if (instr->hydrogen()->ValueNeedsSmiCheck()) { __ test(value, Immediate(kSmiTagMask)); DeoptimizeIf(not_zero, instr->environment()); } // Do the store. if (instr->key()->IsConstantOperand()) { ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; __ mov(FieldOperand(elements, offset), value); } else { __ mov(FieldOperand(elements, key, times_pointer_size, FixedArray::kHeaderSize), value); } if (instr->hydrogen()->NeedsWriteBarrier()) { HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ lea(key, FieldOperand(elements, key, times_pointer_size, FixedArray::kHeaderSize)); __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } void LCodeGen::DoStoreKeyedFastDoubleElement( LStoreKeyedFastDoubleElement* instr) { XMMRegister value = ToDoubleRegister(instr->value()); Label have_value; __ ucomisd(value, value); __ j(parity_odd, &have_value); // NaN. ExternalReference canonical_nan_reference = ExternalReference::address_of_canonical_non_hole_nan(); __ movdbl(value, Operand::StaticVariable(canonical_nan_reference)); __ bind(&have_value); Operand double_store_operand = BuildFastArrayOperand( instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS, FixedDoubleArray::kHeaderSize - kHeapObjectTag); __ movdbl(double_store_operand, value); } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); ASSERT(ToRegister(instr->object()).is(edx)); ASSERT(ToRegister(instr->key()).is(ecx)); ASSERT(ToRegister(instr->value()).is(eax)); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register new_map_reg = ToRegister(instr->new_map_reg()); Handle from_map = instr->original_map(); Handle to_map = instr->transitioned_map(); ElementsKind from_kind = from_map->elements_kind(); ElementsKind to_kind = to_map->elements_kind(); Label not_applicable; __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); __ j(not_equal, ¬_applicable); __ mov(new_map_reg, to_map); if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) { Register object_reg = ToRegister(instr->object()); __ mov(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg); // Write barrier. ASSERT_NE(instr->temp_reg(), NULL); __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, ToRegister(instr->temp_reg()), kDontSaveFPRegs); } else if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_DOUBLE_ELEMENTS) { Register fixed_object_reg = ToRegister(instr->temp_reg()); ASSERT(fixed_object_reg.is(edx)); ASSERT(new_map_reg.is(ebx)); __ mov(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), RelocInfo::CODE_TARGET, instr); } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { Register fixed_object_reg = ToRegister(instr->temp_reg()); ASSERT(fixed_object_reg.is(edx)); ASSERT(new_map_reg.is(ebx)); __ mov(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), RelocInfo::CODE_TARGET, instr); } else { UNREACHABLE(); } __ bind(¬_applicable); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), factory(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, Immediate(0)); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ push(Immediate(Smi::FromInt(const_index))); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr, instr->context()); if (FLAG_debug_code) { __ AbortIfNotSmi(eax); } __ SmiUntag(eax); __ StoreToSafepointRegisterSlot(result, eax); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); ASSERT(!char_code.is(result)); __ cmp(char_code, String::kMaxAsciiCharCode); __ j(above, deferred->entry()); __ Set(result, Immediate(factory()->single_character_string_cache())); __ mov(result, FieldOperand(result, char_code, times_pointer_size, FixedArray::kHeaderSize)); __ cmp(result, factory()->undefined_value()); __ j(equal, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, Immediate(0)); PushSafepointRegistersScope scope(this); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(result, eax); } void LCodeGen::DoStringLength(LStringLength* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); __ mov(result, FieldOperand(string, String::kLengthOffset)); } void LCodeGen::DoStringAdd(LStringAdd* instr) { EmitPushTaggedOperand(instr->left()); EmitPushTaggedOperand(instr->right()); StringAddStub stub(NO_STRING_CHECK_IN_STUB); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); __ cvtsi2sd(ToDoubleRegister(output), ToOperand(input)); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI: public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagI* instr_; }; LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); __ SmiTag(reg); __ j(overflow, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { Label slow; Register reg = ToRegister(instr->InputAt(0)); Register tmp = reg.is(eax) ? ecx : eax; // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. Label done; __ SmiUntag(reg); __ xor_(reg, 0x80000000); __ cvtsi2sd(xmm0, Operand(reg)); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, no_reg, &slow); __ jmp(&done, Label::kNear); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); // TODO(3095996): Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ StoreToSafepointRegisterSlot(reg, Immediate(0)); // NumberTagI and NumberTagD use the context from the frame, rather than // the environment's HContext or HInlinedContext value. // They only call Runtime::kAllocateHeapNumber. // The corresponding HChange instructions are added in a phase that does // not have easy access to the local context. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); if (!reg.is(eax)) __ mov(reg, eax); // Done. Put the value in xmm0 into the value of the allocated heap // number. __ bind(&done); __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), xmm0); __ StoreToSafepointRegisterSlot(reg, reg); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagD* instr_; }; XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); Register reg = ToRegister(instr->result()); Register tmp = ToRegister(instr->TempAt(0)); DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ Set(reg, Immediate(0)); PushSafepointRegistersScope scope(this); // NumberTagI and NumberTagD use the context from the frame, rather than // the environment's HContext or HInlinedContext value. // They only call Runtime::kAllocateHeapNumber. // The corresponding HChange instructions are added in a phase that does // not have easy access to the local context. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(reg, eax); } void LCodeGen::DoSmiTag(LSmiTag* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ SmiTag(ToRegister(input)); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); if (instr->needs_check()) { __ test(ToRegister(input), Immediate(kSmiTagMask)); DeoptimizeIf(not_zero, instr->environment()); } __ SmiUntag(ToRegister(input)); } void LCodeGen::EmitNumberUntagD(Register input_reg, XMMRegister result_reg, bool deoptimize_on_undefined, LEnvironment* env) { Label load_smi, done; // Smi check. __ JumpIfSmi(input_reg, &load_smi, Label::kNear); // Heap number map check. __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); if (deoptimize_on_undefined) { DeoptimizeIf(not_equal, env); } else { Label heap_number; __ j(equal, &heap_number, Label::kNear); __ cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, env); // Convert undefined to NaN. ExternalReference nan = ExternalReference::address_of_canonical_non_hole_nan(); __ movdbl(result_reg, Operand::StaticVariable(nan)); __ jmp(&done, Label::kNear); __ bind(&heap_number); } // Heap number to XMM conversion. __ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); // Smi to XMM conversion __ bind(&load_smi); __ SmiUntag(input_reg); // Untag smi before converting to float. __ cvtsi2sd(result_reg, Operand(input_reg)); __ SmiTag(input_reg); // Retag smi. __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Label done, heap_number; Register input_reg = ToRegister(instr->InputAt(0)); // Heap number map check. __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); if (instr->truncating()) { __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for truncating // conversions. __ cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr->environment()); __ mov(input_reg, 0); __ jmp(&done, Label::kNear); __ bind(&heap_number); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatures::Scope scope(SSE3); Label convert; // Use more powerful conversion when sse3 is available. // Load x87 register with heap number. __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); // Get exponent alone and check for too-big exponent. __ mov(input_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset)); __ and_(input_reg, HeapNumber::kExponentMask); const uint32_t kTooBigExponent = (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; __ cmp(Operand(input_reg), Immediate(kTooBigExponent)); __ j(less, &convert, Label::kNear); // Pop FPU stack before deoptimizing. __ fstp(0); DeoptimizeIf(no_condition, instr->environment()); // Reserve space for 64 bit answer. __ bind(&convert); __ sub(Operand(esp), Immediate(kDoubleSize)); // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result. __ add(Operand(esp), Immediate(kDoubleSize)); } else { XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0)); __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2si(input_reg, Operand(xmm0)); __ cmp(input_reg, 0x80000000u); __ j(not_equal, &done); // Check if the input was 0x8000000 (kMinInt). // If no, then we got an overflow and we deoptimize. ExternalReference min_int = ExternalReference::address_of_min_int(); __ movdbl(xmm_temp, Operand::StaticVariable(min_int)); __ ucomisd(xmm_temp, xmm0); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. } } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(not_equal, instr->environment()); XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0)); __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2si(input_reg, Operand(xmm0)); __ cvtsi2sd(xmm_temp, Operand(input_reg)); __ ucomisd(xmm0, xmm_temp); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ test(input_reg, Operand(input_reg)); __ j(not_zero, &done); __ movmskpd(input_reg, xmm0); __ and_(input_reg, 1); DeoptimizeIf(not_zero, instr->environment()); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } virtual LInstruction* instr() { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); // Smi to int32 conversion __ SmiUntag(input_reg); // Untag smi. __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); XMMRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(input_reg, result_reg, instr->hydrogen()->deoptimize_on_undefined(), instr->environment()); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsDoubleRegister()); LOperand* result = instr->result(); ASSERT(result->IsRegister()); XMMRegister input_reg = ToDoubleRegister(input); Register result_reg = ToRegister(result); if (instr->truncating()) { // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. __ cvttsd2si(result_reg, Operand(input_reg)); __ cmp(result_reg, 0x80000000u); if (CpuFeatures::IsSupported(SSE3)) { // This will deoptimize if the exponent of the input in out of range. CpuFeatures::Scope scope(SSE3); Label convert, done; __ j(not_equal, &done, Label::kNear); __ sub(Operand(esp), Immediate(kDoubleSize)); __ movdbl(Operand(esp, 0), input_reg); // Get exponent alone and check for too-big exponent. __ mov(result_reg, Operand(esp, sizeof(int32_t))); __ and_(result_reg, HeapNumber::kExponentMask); const uint32_t kTooBigExponent = (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; __ cmp(Operand(result_reg), Immediate(kTooBigExponent)); __ j(less, &convert, Label::kNear); __ add(Operand(esp), Immediate(kDoubleSize)); DeoptimizeIf(no_condition, instr->environment()); __ bind(&convert); // Do conversion, which cannot fail because we checked the exponent. __ fld_d(Operand(esp, 0)); __ fisttp_d(Operand(esp, 0)); __ mov(result_reg, Operand(esp, 0)); // Low word of answer is the result. __ add(Operand(esp), Immediate(kDoubleSize)); __ bind(&done); } else { Label done; Register temp_reg = ToRegister(instr->TempAt(0)); XMMRegister xmm_scratch = xmm0; // If cvttsd2si succeeded, we're done. Otherwise, we attempt // manual conversion. __ j(not_equal, &done, Label::kNear); // Get high 32 bits of the input in result_reg and temp_reg. __ pshufd(xmm_scratch, input_reg, 1); __ movd(Operand(temp_reg), xmm_scratch); __ mov(result_reg, temp_reg); // Prepare negation mask in temp_reg. __ sar(temp_reg, kBitsPerInt - 1); // Extract the exponent from result_reg and subtract adjusted // bias from it. The adjustment is selected in a way such that // when the difference is zero, the answer is in the low 32 bits // of the input, otherwise a shift has to be performed. __ shr(result_reg, HeapNumber::kExponentShift); __ and_(result_reg, HeapNumber::kExponentMask >> HeapNumber::kExponentShift); __ sub(Operand(result_reg), Immediate(HeapNumber::kExponentBias + HeapNumber::kExponentBits + HeapNumber::kMantissaBits)); // Don't handle big (> kMantissaBits + kExponentBits == 63) or // special exponents. DeoptimizeIf(greater, instr->environment()); // Zero out the sign and the exponent in the input (by shifting // it to the left) and restore the implicit mantissa bit, // i.e. convert the input to unsigned int64 shifted left by // kExponentBits. ExternalReference minus_zero = ExternalReference::address_of_minus_zero(); // Minus zero has the most significant bit set and the other // bits cleared. __ movdbl(xmm_scratch, Operand::StaticVariable(minus_zero)); __ psllq(input_reg, HeapNumber::kExponentBits); __ por(input_reg, xmm_scratch); // Get the amount to shift the input right in xmm_scratch. __ neg(result_reg); __ movd(xmm_scratch, Operand(result_reg)); // Shift the input right and extract low 32 bits. __ psrlq(input_reg, xmm_scratch); __ movd(Operand(result_reg), input_reg); // Use the prepared mask in temp_reg to negate the result if necessary. __ xor_(result_reg, Operand(temp_reg)); __ sub(result_reg, Operand(temp_reg)); __ bind(&done); } } else { Label done; __ cvttsd2si(result_reg, Operand(input_reg)); __ cvtsi2sd(xmm0, Operand(result_reg)); __ ucomisd(xmm0, input_reg); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // The integer converted back is equal to the original. We // only have to test if we got -0 as an input. __ test(result_reg, Operand(result_reg)); __ j(not_zero, &done, Label::kNear); __ movmskpd(result_reg, input_reg); // Bit 0 contains the sign of the double in input_reg. // If input was positive, we are ok and return 0, otherwise // deoptimize. __ and_(result_reg, 1); DeoptimizeIf(not_zero, instr->environment()); } __ bind(&done); } } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->InputAt(0); __ test(ToOperand(input), Immediate(kSmiTagMask)); DeoptimizeIf(not_zero, instr->environment()); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { LOperand* input = instr->InputAt(0); __ test(ToOperand(input), Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr->environment()); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), static_cast(first)); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(not_equal, instr->environment()); } else { DeoptimizeIf(below, instr->environment()); // Omit check for the last type. if (last != LAST_TYPE) { __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), static_cast(last)); DeoptimizeIf(above, instr->environment()); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (IsPowerOf2(mask)) { ASSERT(tag == 0 || IsPowerOf2(tag)); __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask); DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment()); } else { __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ and_(temp, mask); __ cmpb(Operand(temp), tag); DeoptimizeIf(not_equal, instr->environment()); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { Handle target = instr->hydrogen()->target(); if (isolate()->heap()->InNewSpace(*target)) { Register reg = ToRegister(instr->value()); Handle cell = isolate()->factory()->NewJSGlobalPropertyCell(target); __ cmp(reg, Operand::Cell(cell)); } else { Operand operand = ToOperand(instr->value()); __ cmp(operand, target); } DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoCheckMap(LCheckMap* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); Register reg = ToRegister(input); __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->hydrogen()->map()); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(value_reg, xmm0, result_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register value_reg = ToRegister(instr->result()); __ ClampUint8(value_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register input_reg = ToRegister(instr->unclamped()); Label is_smi, done, heap_number; __ JumpIfSmi(input_reg, &is_smi); // Check for heap number __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr->environment()); __ mov(input_reg, 0); __ jmp(&done, Label::kNear); // Heap number __ bind(&heap_number); __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(xmm0, xmm1, input_reg); __ jmp(&done, Label::kNear); // smi __ bind(&is_smi); __ SmiUntag(input_reg); __ ClampUint8(input_reg); __ bind(&done); } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { Register reg = ToRegister(instr->TempAt(0)); Handle holder = instr->holder(); Handle current_prototype = instr->prototype(); // Load prototype object. __ LoadHeapObject(reg, current_prototype); // Check prototype maps up to the holder. while (!current_prototype.is_identical_to(holder)) { __ cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(current_prototype->map())); DeoptimizeIf(not_equal, instr->environment()); current_prototype = Handle(JSObject::cast(current_prototype->GetPrototype())); // Load next prototype object. __ LoadHeapObject(reg, current_prototype); } // Check the holder map. __ cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(current_prototype->map())); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { ASSERT(ToRegister(instr->context()).is(esi)); Heap* heap = isolate()->heap(); ElementsKind boilerplate_elements_kind = instr->hydrogen()->boilerplate_elements_kind(); // Deopt if the array literal boilerplate ElementsKind is of a type different // than the expected one. The check isn't necessary if the boilerplate has // already been converted to FAST_ELEMENTS. if (boilerplate_elements_kind != FAST_ELEMENTS) { __ LoadHeapObject(eax, instr->hydrogen()->boilerplate_object()); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); // Load the map's "bit field 2". We only need the first byte, // but the following masking takes care of that anyway. __ mov(ebx, FieldOperand(ebx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(ebx, Map::kElementsKindMask); __ cmp(ebx, boilerplate_elements_kind << Map::kElementsKindShift); DeoptimizeIf(not_equal, instr->environment()); } // Setup the parameters to the stub/runtime call. __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(eax, JSFunction::kLiteralsOffset)); __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); // Boilerplate already exists, constant elements are never accessed. // Pass an empty fixed array. __ push(Immediate(Handle(heap->empty_fixed_array()))); // Pick the right runtime function or stub to call. int length = instr->hydrogen()->length(); if (instr->hydrogen()->IsCopyOnWrite()) { ASSERT(instr->hydrogen()->depth() == 1); FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); } else { FastCloneShallowArrayStub::Mode mode = boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS : FastCloneShallowArrayStub::CLONE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::EmitDeepCopy(Handle object, Register result, Register source, int* offset) { ASSERT(!source.is(ecx)); ASSERT(!result.is(ecx)); if (FLAG_debug_code) { __ LoadHeapObject(ecx, object); __ cmp(source, ecx); __ Assert(equal, "Unexpected object literal boilerplate"); } // Increase the offset so that subsequent objects end up right after // this one. int current_offset = *offset; int size = object->map()->instance_size(); *offset += size; // Copy object header. ASSERT(object->properties()->length() == 0); ASSERT(object->elements()->length() == 0 || object->elements()->map() == isolate()->heap()->fixed_cow_array_map()); int inobject_properties = object->map()->inobject_properties(); int header_size = size - inobject_properties * kPointerSize; for (int i = 0; i < header_size; i += kPointerSize) { __ mov(ecx, FieldOperand(source, i)); __ mov(FieldOperand(result, current_offset + i), ecx); } // Copy in-object properties. for (int i = 0; i < inobject_properties; i++) { int total_offset = current_offset + object->GetInObjectPropertyOffset(i); Handle value = Handle(object->InObjectPropertyAt(i)); if (value->IsJSObject()) { Handle value_object = Handle::cast(value); __ lea(ecx, Operand(result, *offset)); __ mov(FieldOperand(result, total_offset), ecx); __ LoadHeapObject(source, value_object); EmitDeepCopy(value_object, result, source, offset); } else if (value->IsHeapObject()) { __ LoadHeapObject(ecx, Handle::cast(value)); __ mov(FieldOperand(result, total_offset), ecx); } else { __ mov(FieldOperand(result, total_offset), Immediate(value)); } } } void LCodeGen::DoObjectLiteralFast(LObjectLiteralFast* instr) { ASSERT(ToRegister(instr->context()).is(esi)); int size = instr->hydrogen()->total_size(); // Allocate all objects that are part of the literal in one big // allocation. This avoids multiple limit checks. Label allocated, runtime_allocate; __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(Immediate(Smi::FromInt(size))); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ bind(&allocated); int offset = 0; __ LoadHeapObject(ebx, instr->hydrogen()->boilerplate()); EmitDeepCopy(instr->hydrogen()->boilerplate(), eax, ebx, &offset); ASSERT_EQ(size, offset); } void LCodeGen::DoObjectLiteralGeneric(LObjectLiteralGeneric* instr) { ASSERT(ToRegister(instr->context()).is(esi)); Handle constant_properties = instr->hydrogen()->constant_properties(); // Setup the parameters to the stub/runtime call. __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(eax, JSFunction::kLiteralsOffset)); __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); __ push(Immediate(constant_properties)); int flags = instr->hydrogen()->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; flags |= instr->hydrogen()->has_function() ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags; __ push(Immediate(Smi::FromInt(flags))); // Pick the right runtime function or stub to call. int properties_count = constant_properties->length() / 2; if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); } else if (flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); } else { FastCloneShallowObjectStub stub(properties_count); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(eax)); __ push(eax); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { ASSERT(ToRegister(instr->context()).is(esi)); Label materialized; // Registers will be used as follows: // edi = JS function. // ecx = literals array. // ebx = regexp literal. // eax = regexp literal clone. // esi = context. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + instr->hydrogen()->literal_index() * kPointerSize; __ mov(ebx, FieldOperand(ecx, literal_offset)); __ cmp(ebx, factory()->undefined_value()); __ j(not_equal, &materialized, Label::kNear); // Create regexp literal using runtime function // Result will be in eax. __ push(ecx); __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); __ push(Immediate(instr->hydrogen()->pattern())); __ push(Immediate(instr->hydrogen()->flags())); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ mov(ebx, eax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(ebx); __ push(Immediate(Smi::FromInt(size))); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(ebx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ mov(edx, FieldOperand(ebx, i)); __ mov(ecx, FieldOperand(ebx, i + kPointerSize)); __ mov(FieldOperand(eax, i), edx); __ mov(FieldOperand(eax, i + kPointerSize), ecx); } if ((size % (2 * kPointerSize)) != 0) { __ mov(edx, FieldOperand(ebx, size - kPointerSize)); __ mov(FieldOperand(eax, size - kPointerSize), edx); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { ASSERT(ToRegister(instr->context()).is(esi)); // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. Handle shared_info = instr->shared_info(); bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && shared_info->num_literals() == 0) { FastNewClosureStub stub(shared_info->language_mode()); __ push(Immediate(shared_info)); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ push(Operand(ebp, StandardFrameConstants::kContextOffset)); __ push(Immediate(shared_info)); __ push(Immediate(pretenure ? factory()->true_value() : factory()->false_value())); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { LOperand* input = instr->InputAt(1); EmitPushTaggedOperand(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition final_branch_condition = EmitTypeofIs(true_label, false_label, input, instr->type_literal()); if (final_branch_condition != no_condition) { EmitBranch(true_block, false_block, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle type_name) { Condition final_branch_condition = no_condition; if (type_name->Equals(heap()->number_symbol())) { __ JumpIfSmi(input, true_label); __ cmp(FieldOperand(input, HeapObject::kMapOffset), factory()->heap_number_map()); final_branch_condition = equal; } else if (type_name->Equals(heap()->string_symbol())) { __ JumpIfSmi(input, false_label); __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); __ j(above_equal, false_label); __ test_b(FieldOperand(input, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); final_branch_condition = zero; } else if (type_name->Equals(heap()->boolean_symbol())) { __ cmp(input, factory()->true_value()); __ j(equal, true_label); __ cmp(input, factory()->false_value()); final_branch_condition = equal; } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { __ cmp(input, factory()->null_value()); final_branch_condition = equal; } else if (type_name->Equals(heap()->undefined_symbol())) { __ cmp(input, factory()->undefined_value()); __ j(equal, true_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); __ test_b(FieldOperand(input, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); final_branch_condition = not_zero; } else if (type_name->Equals(heap()->function_symbol())) { STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfSmi(input, false_label); __ CmpObjectType(input, JS_FUNCTION_TYPE, input); __ j(equal, true_label); __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE); final_branch_condition = equal; } else if (type_name->Equals(heap()->object_symbol())) { __ JumpIfSmi(input, false_label); if (!FLAG_harmony_typeof) { __ cmp(input, factory()->null_value()); __ j(equal, true_label); } __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input); __ j(below, false_label); __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ j(above, false_label); // Check for undetectable objects => false. __ test_b(FieldOperand(input, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); final_branch_condition = zero; } else { __ jmp(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitIsConstructCall(temp); EmitBranch(true_block, false_block, equal); } void LCodeGen::EmitIsConstructCall(Register temp) { // Get the frame pointer for the calling frame. __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ cmp(Operand(temp, StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &check_frame_marker, Label::kNear); __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); } void LCodeGen::EnsureSpaceForLazyDeopt() { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); int patch_size = Deoptimizer::patch_size(); if (current_pc < last_lazy_deopt_pc_ + patch_size) { int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; __ Nop(padding_size); } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { EnsureSpaceForLazyDeopt(); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { DeoptimizeIf(no_condition, instr->environment()); } void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); __ push(ToOperand(obj)); EmitPushTaggedOperand(key); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); // Create safepoint generator that will also ensure enough space in the // reloc info for patching in deoptimization (since this is invoking a // builtin) SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); __ push(Immediate(Smi::FromInt(strict_mode_flag()))); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() { return instr_; } private: LStackCheck* instr_; }; ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &done, Label::kNear); ASSERT(instr->context()->IsRegister()); ASSERT(ToRegister(instr->context()).is(esi)); StackCheckStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); EnsureSpaceForLazyDeopt(); __ bind(&done); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } else { ASSERT(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new DeferredStackCheck(this, instr); ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(below, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); environment->SetSpilledRegisters(instr->SpilledRegisterArray(), instr->SpilledDoubleRegisterArray()); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(osr_pc_offset_ == -1); osr_pc_offset_ = masm()->pc_offset(); } void LCodeGen::DoIn(LIn* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); EmitPushTaggedOperand(key); EmitPushTaggedOperand(obj); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32