// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "codegen.h" #include "deoptimizer.h" #include "disasm.h" #include "full-codegen.h" #include "global-handles.h" #include "macro-assembler.h" #include "prettyprinter.h" namespace v8 { namespace internal { static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) { return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(), OS::CommitPageSize(), #if defined(__native_client__) // The Native Client port of V8 uses an interpreter, // so code pages don't need PROT_EXEC. NOT_EXECUTABLE, #else EXECUTABLE, #endif NULL); } DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator) : allocator_(allocator), deoptimized_frame_info_(NULL), current_(NULL) { for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) { deopt_entry_code_entries_[i] = -1; deopt_entry_code_[i] = AllocateCodeChunk(allocator); } } DeoptimizerData::~DeoptimizerData() { for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) { allocator_->Free(deopt_entry_code_[i]); deopt_entry_code_[i] = NULL; } } void DeoptimizerData::Iterate(ObjectVisitor* v) { if (deoptimized_frame_info_ != NULL) { deoptimized_frame_info_->Iterate(v); } } Code* Deoptimizer::FindDeoptimizingCode(Address addr) { if (function_->IsHeapObject()) { // Search all deoptimizing code in the native context of the function. Context* native_context = function_->context()->native_context(); Object* element = native_context->DeoptimizedCodeListHead(); while (!element->IsUndefined()) { Code* code = Code::cast(element); CHECK(code->kind() == Code::OPTIMIZED_FUNCTION); if (code->contains(addr)) return code; element = code->next_code_link(); } } return NULL; } // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. Deoptimizer* Deoptimizer::New(JSFunction* function, BailoutType type, unsigned bailout_id, Address from, int fp_to_sp_delta, Isolate* isolate) { Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, type, bailout_id, from, fp_to_sp_delta, NULL); CHECK(isolate->deoptimizer_data()->current_ == NULL); isolate->deoptimizer_data()->current_ = deoptimizer; return deoptimizer; } // No larger than 2K on all platforms static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB; size_t Deoptimizer::GetMaxDeoptTableSize() { int entries_size = Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_; int commit_page_size = static_cast(OS::CommitPageSize()); int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) / commit_page_size) + 1; return static_cast(commit_page_size * page_count); } Deoptimizer* Deoptimizer::Grab(Isolate* isolate) { Deoptimizer* result = isolate->deoptimizer_data()->current_; CHECK_NE(result, NULL); result->DeleteFrameDescriptions(); isolate->deoptimizer_data()->current_ = NULL; return result; } int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) { if (jsframe_index == 0) return 0; int frame_index = 0; while (jsframe_index >= 0) { FrameDescription* frame = output_[frame_index]; if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) { jsframe_index--; } frame_index++; } return frame_index - 1; } DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame( JavaScriptFrame* frame, int jsframe_index, Isolate* isolate) { CHECK(frame->is_optimized()); CHECK(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL); // Get the function and code from the frame. JSFunction* function = frame->function(); Code* code = frame->LookupCode(); // Locate the deoptimization point in the code. As we are at a call the // return address must be at a place in the code with deoptimization support. SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc()); int deoptimization_index = safepoint_entry.deoptimization_index(); CHECK_NE(deoptimization_index, Safepoint::kNoDeoptimizationIndex); // Always use the actual stack slots when calculating the fp to sp // delta adding two for the function and context. unsigned stack_slots = code->stack_slots(); unsigned fp_to_sp_delta = (stack_slots * kPointerSize) + StandardFrameConstants::kFixedFrameSizeFromFp; Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, Deoptimizer::DEBUGGER, deoptimization_index, frame->pc(), fp_to_sp_delta, code); Address tos = frame->fp() - fp_to_sp_delta; deoptimizer->FillInputFrame(tos, frame); // Calculate the output frames. Deoptimizer::ComputeOutputFrames(deoptimizer); // Create the GC safe output frame information and register it for GC // handling. CHECK_LT(jsframe_index, deoptimizer->jsframe_count()); // Convert JS frame index into frame index. int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index); bool has_arguments_adaptor = frame_index > 0 && deoptimizer->output_[frame_index - 1]->GetFrameType() == StackFrame::ARGUMENTS_ADAPTOR; int construct_offset = has_arguments_adaptor ? 2 : 1; bool has_construct_stub = frame_index >= construct_offset && deoptimizer->output_[frame_index - construct_offset]->GetFrameType() == StackFrame::CONSTRUCT; DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer, frame_index, has_arguments_adaptor, has_construct_stub); isolate->deoptimizer_data()->deoptimized_frame_info_ = info; // Get the "simulated" top and size for the requested frame. FrameDescription* parameters_frame = deoptimizer->output_[ has_arguments_adaptor ? (frame_index - 1) : frame_index]; uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize; Address parameters_top = reinterpret_cast
( parameters_frame->GetTop() + (parameters_frame->GetFrameSize() - parameters_size)); uint32_t expressions_size = info->expression_count() * kPointerSize; Address expressions_top = reinterpret_cast
( deoptimizer->output_[frame_index]->GetTop()); // Done with the GC-unsafe frame descriptions. This re-enables allocation. deoptimizer->DeleteFrameDescriptions(); // Allocate a heap number for the doubles belonging to this frame. deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame( parameters_top, parameters_size, expressions_top, expressions_size, info); // Finished using the deoptimizer instance. delete deoptimizer; return info; } void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info, Isolate* isolate) { CHECK_EQ(isolate->deoptimizer_data()->deoptimized_frame_info_, info); delete info; isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL; } void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm, int count, BailoutType type) { TableEntryGenerator generator(masm, type, count); generator.Generate(); } void Deoptimizer::VisitAllOptimizedFunctionsForContext( Context* context, OptimizedFunctionVisitor* visitor) { DisallowHeapAllocation no_allocation; CHECK(context->IsNativeContext()); visitor->EnterContext(context); // Visit the list of optimized functions, removing elements that // no longer refer to optimized code. JSFunction* prev = NULL; Object* element = context->OptimizedFunctionsListHead(); while (!element->IsUndefined()) { JSFunction* function = JSFunction::cast(element); Object* next = function->next_function_link(); if (function->code()->kind() != Code::OPTIMIZED_FUNCTION || (visitor->VisitFunction(function), function->code()->kind() != Code::OPTIMIZED_FUNCTION)) { // The function no longer refers to optimized code, or the visitor // changed the code to which it refers to no longer be optimized code. // Remove the function from this list. if (prev != NULL) { prev->set_next_function_link(next); } else { context->SetOptimizedFunctionsListHead(next); } // The visitor should not alter the link directly. CHECK_EQ(function->next_function_link(), next); // Set the next function link to undefined to indicate it is no longer // in the optimized functions list. function->set_next_function_link(context->GetHeap()->undefined_value()); } else { // The visitor should not alter the link directly. CHECK_EQ(function->next_function_link(), next); // preserve this element. prev = function; } element = next; } visitor->LeaveContext(context); } void Deoptimizer::VisitAllOptimizedFunctions( Isolate* isolate, OptimizedFunctionVisitor* visitor) { DisallowHeapAllocation no_allocation; // Run through the list of all native contexts. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined()) { VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor); context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } // Unlink functions referring to code marked for deoptimization, then move // marked code from the optimized code list to the deoptimized code list, // and patch code for lazy deopt. void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) { DisallowHeapAllocation no_allocation; // A "closure" that unlinks optimized code that is going to be // deoptimized from the functions that refer to it. class SelectedCodeUnlinker: public OptimizedFunctionVisitor { public: virtual void EnterContext(Context* context) { } // Don't care. virtual void LeaveContext(Context* context) { } // Don't care. virtual void VisitFunction(JSFunction* function) { Code* code = function->code(); if (!code->marked_for_deoptimization()) return; // Unlink this function and evict from optimized code map. SharedFunctionInfo* shared = function->shared(); function->set_code(shared->code()); if (FLAG_trace_deopt) { CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer()); PrintF(scope.file(), "[deoptimizer unlinked: "); function->PrintName(scope.file()); PrintF(scope.file(), " / %" V8PRIxPTR "]\n", reinterpret_cast(function)); } } }; // Unlink all functions that refer to marked code. SelectedCodeUnlinker unlinker; VisitAllOptimizedFunctionsForContext(context, &unlinker); Isolate* isolate = context->GetHeap()->isolate(); #ifdef DEBUG Code* topmost_optimized_code = NULL; bool safe_to_deopt_topmost_optimized_code = false; // Make sure all activations of optimized code can deopt at their current PC. // The topmost optimized code has special handling because it cannot be // deoptimized due to weak object dependency. for (StackFrameIterator it(isolate, isolate->thread_local_top()); !it.done(); it.Advance()) { StackFrame::Type type = it.frame()->type(); if (type == StackFrame::OPTIMIZED) { Code* code = it.frame()->LookupCode(); if (FLAG_trace_deopt) { JSFunction* function = static_cast(it.frame())->function(); CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimizer found activation of function: "); function->PrintName(scope.file()); PrintF(scope.file(), " / %" V8PRIxPTR "]\n", reinterpret_cast(function)); } SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc()); int deopt_index = safepoint.deoptimization_index(); bool safe_to_deopt = deopt_index != Safepoint::kNoDeoptimizationIndex; CHECK(topmost_optimized_code == NULL || safe_to_deopt); if (topmost_optimized_code == NULL) { topmost_optimized_code = code; safe_to_deopt_topmost_optimized_code = safe_to_deopt; } } } #endif // Move marked code from the optimized code list to the deoptimized // code list, collecting them into a ZoneList. Zone zone(isolate); ZoneList codes(10, &zone); // Walk over all optimized code objects in this native context. Code* prev = NULL; Object* element = context->OptimizedCodeListHead(); while (!element->IsUndefined()) { Code* code = Code::cast(element); CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION); Object* next = code->next_code_link(); if (code->marked_for_deoptimization()) { // Put the code into the list for later patching. codes.Add(code, &zone); if (prev != NULL) { // Skip this code in the optimized code list. prev->set_next_code_link(next); } else { // There was no previous node, the next node is the new head. context->SetOptimizedCodeListHead(next); } // Move the code to the _deoptimized_ code list. code->set_next_code_link(context->DeoptimizedCodeListHead()); context->SetDeoptimizedCodeListHead(code); } else { // Not marked; preserve this element. prev = code; } element = next; } // TODO(titzer): we need a handle scope only because of the macro assembler, // which is only used in EnsureCodeForDeoptimizationEntry. HandleScope scope(isolate); // Now patch all the codes for deoptimization. for (int i = 0; i < codes.length(); i++) { #ifdef DEBUG if (codes[i] == topmost_optimized_code) { ASSERT(safe_to_deopt_topmost_optimized_code); } #endif // It is finally time to die, code object. // Do platform-specific patching to force any activations to lazy deopt. PatchCodeForDeoptimization(isolate, codes[i]); // We might be in the middle of incremental marking with compaction. // Tell collector to treat this code object in a special way and // ignore all slots that might have been recorded on it. isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]); } } void Deoptimizer::DeoptimizeAll(Isolate* isolate) { if (FLAG_trace_deopt) { CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimize all code in all contexts]\n"); } DisallowHeapAllocation no_allocation; // For all contexts, mark all code, then deoptimize. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined()) { Context* native_context = Context::cast(context); MarkAllCodeForContext(native_context); DeoptimizeMarkedCodeForContext(native_context); context = native_context->get(Context::NEXT_CONTEXT_LINK); } } void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) { if (FLAG_trace_deopt) { CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimize marked code in all contexts]\n"); } DisallowHeapAllocation no_allocation; // For all contexts, deoptimize code already marked. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined()) { Context* native_context = Context::cast(context); DeoptimizeMarkedCodeForContext(native_context); context = native_context->get(Context::NEXT_CONTEXT_LINK); } } void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) { if (FLAG_trace_deopt) { CodeTracer::Scope scope(object->GetHeap()->isolate()->GetCodeTracer()); PrintF(scope.file(), "[deoptimize global object @ 0x%08" V8PRIxPTR "]\n", reinterpret_cast(object)); } if (object->IsJSGlobalProxy()) { Object* proto = object->GetPrototype(); CHECK(proto->IsJSGlobalObject()); Context* native_context = GlobalObject::cast(proto)->native_context(); MarkAllCodeForContext(native_context); DeoptimizeMarkedCodeForContext(native_context); } else if (object->IsGlobalObject()) { Context* native_context = GlobalObject::cast(object)->native_context(); MarkAllCodeForContext(native_context); DeoptimizeMarkedCodeForContext(native_context); } } void Deoptimizer::MarkAllCodeForContext(Context* context) { Object* element = context->OptimizedCodeListHead(); while (!element->IsUndefined()) { Code* code = Code::cast(element); CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION); code->set_marked_for_deoptimization(true); element = code->next_code_link(); } } void Deoptimizer::DeoptimizeFunction(JSFunction* function) { Code* code = function->code(); if (code->kind() == Code::OPTIMIZED_FUNCTION) { // Mark the code for deoptimization and unlink any functions that also // refer to that code. The code cannot be shared across native contexts, // so we only need to search one. code->set_marked_for_deoptimization(true); DeoptimizeMarkedCodeForContext(function->context()->native_context()); } } void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) { deoptimizer->DoComputeOutputFrames(); } bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type, StackFrame::Type frame_type) { switch (deopt_type) { case EAGER: case SOFT: case LAZY: case DEBUGGER: return (frame_type == StackFrame::STUB) ? FLAG_trace_stub_failures : FLAG_trace_deopt; } FATAL("Unsupported deopt type"); return false; } const char* Deoptimizer::MessageFor(BailoutType type) { switch (type) { case EAGER: return "eager"; case SOFT: return "soft"; case LAZY: return "lazy"; case DEBUGGER: return "debugger"; } FATAL("Unsupported deopt type"); return NULL; } Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function, BailoutType type, unsigned bailout_id, Address from, int fp_to_sp_delta, Code* optimized_code) : isolate_(isolate), function_(function), bailout_id_(bailout_id), bailout_type_(type), from_(from), fp_to_sp_delta_(fp_to_sp_delta), has_alignment_padding_(0), input_(NULL), output_count_(0), jsframe_count_(0), output_(NULL), deferred_objects_tagged_values_(0), deferred_objects_double_values_(0), deferred_objects_(0), deferred_heap_numbers_(0), jsframe_functions_(0), jsframe_has_adapted_arguments_(0), materialized_values_(NULL), materialized_objects_(NULL), materialization_value_index_(0), materialization_object_index_(0), trace_scope_(NULL) { // For COMPILED_STUBs called from builtins, the function pointer is a SMI // indicating an internal frame. if (function->IsSmi()) { function = NULL; } ASSERT(from != NULL); if (function != NULL && function->IsOptimized()) { function->shared()->increment_deopt_count(); if (bailout_type_ == Deoptimizer::SOFT) { isolate->counters()->soft_deopts_executed()->Increment(); // Soft deopts shouldn't count against the overall re-optimization count // that can eventually lead to disabling optimization for a function. int opt_count = function->shared()->opt_count(); if (opt_count > 0) opt_count--; function->shared()->set_opt_count(opt_count); } } compiled_code_ = FindOptimizedCode(function, optimized_code); #if DEBUG ASSERT(compiled_code_ != NULL); if (type == EAGER || type == SOFT || type == LAZY) { ASSERT(compiled_code_->kind() != Code::FUNCTION); } #endif StackFrame::Type frame_type = function == NULL ? StackFrame::STUB : StackFrame::JAVA_SCRIPT; trace_scope_ = TraceEnabledFor(type, frame_type) ? new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL; #ifdef DEBUG CHECK(AllowHeapAllocation::IsAllowed()); disallow_heap_allocation_ = new DisallowHeapAllocation(); #endif // DEBUG unsigned size = ComputeInputFrameSize(); input_ = new(size) FrameDescription(size, function); input_->SetFrameType(frame_type); } Code* Deoptimizer::FindOptimizedCode(JSFunction* function, Code* optimized_code) { switch (bailout_type_) { case Deoptimizer::SOFT: case Deoptimizer::EAGER: case Deoptimizer::LAZY: { Code* compiled_code = FindDeoptimizingCode(from_); return (compiled_code == NULL) ? static_cast(isolate_->FindCodeObject(from_)) : compiled_code; } case Deoptimizer::DEBUGGER: ASSERT(optimized_code->contains(from_)); return optimized_code; } FATAL("Could not find code for optimized function"); return NULL; } void Deoptimizer::PrintFunctionName() { if (function_->IsJSFunction()) { function_->PrintName(trace_scope_->file()); } else { PrintF(trace_scope_->file(), "%s", Code::Kind2String(compiled_code_->kind())); } } Deoptimizer::~Deoptimizer() { ASSERT(input_ == NULL && output_ == NULL); ASSERT(disallow_heap_allocation_ == NULL); delete trace_scope_; } void Deoptimizer::DeleteFrameDescriptions() { delete input_; for (int i = 0; i < output_count_; ++i) { if (output_[i] != input_) delete output_[i]; } delete[] output_; input_ = NULL; output_ = NULL; #ifdef DEBUG CHECK(!AllowHeapAllocation::IsAllowed()); CHECK(disallow_heap_allocation_ != NULL); delete disallow_heap_allocation_; disallow_heap_allocation_ = NULL; #endif // DEBUG } Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate, int id, BailoutType type, GetEntryMode mode) { CHECK_GE(id, 0); if (id >= kMaxNumberOfEntries) return NULL; if (mode == ENSURE_ENTRY_CODE) { EnsureCodeForDeoptimizationEntry(isolate, type, id); } else { CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS); } DeoptimizerData* data = isolate->deoptimizer_data(); CHECK_LT(type, kBailoutTypesWithCodeEntry); MemoryChunk* base = data->deopt_entry_code_[type]; return base->area_start() + (id * table_entry_size_); } int Deoptimizer::GetDeoptimizationId(Isolate* isolate, Address addr, BailoutType type) { DeoptimizerData* data = isolate->deoptimizer_data(); MemoryChunk* base = data->deopt_entry_code_[type]; Address start = base->area_start(); if (base == NULL || addr < start || addr >= start + (kMaxNumberOfEntries * table_entry_size_)) { return kNotDeoptimizationEntry; } ASSERT_EQ(0, static_cast(addr - start) % table_entry_size_); return static_cast(addr - start) / table_entry_size_; } int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data, BailoutId id, SharedFunctionInfo* shared) { // TODO(kasperl): For now, we do a simple linear search for the PC // offset associated with the given node id. This should probably be // changed to a binary search. int length = data->DeoptPoints(); for (int i = 0; i < length; i++) { if (data->AstId(i) == id) { return data->PcAndState(i)->value(); } } PrintF(stderr, "[couldn't find pc offset for node=%d]\n", id.ToInt()); PrintF(stderr, "[method: %s]\n", shared->DebugName()->ToCString().get()); // Print the source code if available. HeapStringAllocator string_allocator; StringStream stream(&string_allocator); shared->SourceCodePrint(&stream, -1); PrintF(stderr, "[source:\n%s\n]", stream.ToCString().get()); FATAL("unable to find pc offset during deoptimization"); return -1; } int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) { int length = 0; // Count all entries in the deoptimizing code list of every context. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined()) { Context* native_context = Context::cast(context); Object* element = native_context->DeoptimizedCodeListHead(); while (!element->IsUndefined()) { Code* code = Code::cast(element); ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION); length++; element = code->next_code_link(); } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } return length; } // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. void Deoptimizer::DoComputeOutputFrames() { // Print some helpful diagnostic information. if (FLAG_log_timer_events && compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) { LOG(isolate(), CodeDeoptEvent(compiled_code_)); } ElapsedTimer timer; // Determine basic deoptimization information. The optimized frame is // described by the input data. DeoptimizationInputData* input_data = DeoptimizationInputData::cast(compiled_code_->deoptimization_data()); if (trace_scope_ != NULL) { timer.Start(); PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ", MessageFor(bailout_type_), reinterpret_cast(function_)); PrintFunctionName(); PrintF(trace_scope_->file(), " (opt #%d) @%d, FP to SP delta: %d]\n", input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_); if (bailout_type_ == EAGER || bailout_type_ == SOFT) { compiled_code_->PrintDeoptLocation(trace_scope_->file(), bailout_id_); } } BailoutId node_id = input_data->AstId(bailout_id_); ByteArray* translations = input_data->TranslationByteArray(); unsigned translation_index = input_data->TranslationIndex(bailout_id_)->value(); // Do the input frame to output frame(s) translation. TranslationIterator iterator(translations, translation_index); Translation::Opcode opcode = static_cast(iterator.Next()); ASSERT(Translation::BEGIN == opcode); USE(opcode); // Read the number of output frames and allocate an array for their // descriptions. int count = iterator.Next(); iterator.Next(); // Drop JS frames count. ASSERT(output_ == NULL); output_ = new FrameDescription*[count]; for (int i = 0; i < count; ++i) { output_[i] = NULL; } output_count_ = count; Register fp_reg = JavaScriptFrame::fp_register(); stack_fp_ = reinterpret_cast
( input_->GetRegister(fp_reg.code()) + has_alignment_padding_ * kPointerSize); // Translate each output frame. for (int i = 0; i < count; ++i) { // Read the ast node id, function, and frame height for this output frame. Translation::Opcode opcode = static_cast(iterator.Next()); switch (opcode) { case Translation::JS_FRAME: DoComputeJSFrame(&iterator, i); jsframe_count_++; break; case Translation::ARGUMENTS_ADAPTOR_FRAME: DoComputeArgumentsAdaptorFrame(&iterator, i); break; case Translation::CONSTRUCT_STUB_FRAME: DoComputeConstructStubFrame(&iterator, i); break; case Translation::GETTER_STUB_FRAME: DoComputeAccessorStubFrame(&iterator, i, false); break; case Translation::SETTER_STUB_FRAME: DoComputeAccessorStubFrame(&iterator, i, true); break; case Translation::COMPILED_STUB_FRAME: DoComputeCompiledStubFrame(&iterator, i); break; case Translation::BEGIN: case Translation::REGISTER: case Translation::INT32_REGISTER: case Translation::UINT32_REGISTER: case Translation::DOUBLE_REGISTER: case Translation::STACK_SLOT: case Translation::INT32_STACK_SLOT: case Translation::UINT32_STACK_SLOT: case Translation::DOUBLE_STACK_SLOT: case Translation::LITERAL: case Translation::ARGUMENTS_OBJECT: default: FATAL("Unsupported translation"); break; } } // Print some helpful diagnostic information. if (trace_scope_ != NULL) { double ms = timer.Elapsed().InMillisecondsF(); int index = output_count_ - 1; // Index of the topmost frame. JSFunction* function = output_[index]->GetFunction(); PrintF(trace_scope_->file(), "[deoptimizing (%s): end 0x%08" V8PRIxPTR " ", MessageFor(bailout_type_), reinterpret_cast(function)); PrintFunctionName(); PrintF(trace_scope_->file(), " @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s," " took %0.3f ms]\n", bailout_id_, node_id.ToInt(), output_[index]->GetPc(), FullCodeGenerator::State2String( static_cast( output_[index]->GetState()->value())), has_alignment_padding_ ? "with padding" : "no padding", ms); } } void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator, int frame_index) { BailoutId node_id = BailoutId(iterator->Next()); JSFunction* function; if (frame_index != 0) { function = JSFunction::cast(ComputeLiteral(iterator->Next())); } else { int closure_id = iterator->Next(); USE(closure_id); CHECK_EQ(Translation::kSelfLiteralId, closure_id); function = function_; } unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating "); function->PrintName(trace_scope_->file()); PrintF(trace_scope_->file(), " => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes); } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by JavaScriptFrameConstants. unsigned fixed_frame_size = ComputeFixedSize(function); unsigned input_frame_size = input_->GetFrameSize(); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::JAVA_SCRIPT); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); CHECK(frame_index >= 0 && frame_index < output_count_); CHECK_EQ(output_[frame_index], NULL); output_[frame_index] = output_frame; // The top address for the bottommost output frame can be computed from // the input frame pointer and the output frame's height. For all // subsequent output frames, it can be computed from the previous one's // top address and the current frame's size. Register fp_reg = JavaScriptFrame::fp_register(); intptr_t top_address; if (is_bottommost) { // Determine whether the input frame contains alignment padding. has_alignment_padding_ = HasAlignmentPadding(function) ? 1 : 0; // 2 = context and function in the frame. // If the optimized frame had alignment padding, adjust the frame pointer // to point to the new position of the old frame pointer after padding // is removed. Subtract 2 * kPointerSize for the context and function slots. top_address = input_->GetRegister(fp_reg.code()) - StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes + has_alignment_padding_ * kPointerSize; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = function->shared()->formal_parameter_count() + 1; unsigned output_offset = output_frame_size; unsigned input_offset = input_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } input_offset -= (parameter_count * kPointerSize); // There are no translation commands for the caller's pc and fp, the // context, and the function. Synthesize their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPCOnStackSize; input_offset -= kPCOnStackSize; intptr_t value; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetCallerPc(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, value); } // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kFPOnStackSize; input_offset -= kFPOnStackSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; ASSERT(!is_bottommost || (input_->GetRegister(fp_reg.code()) + has_alignment_padding_ * kPointerSize) == fp_value); output_frame->SetFp(fp_value); if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } ASSERT(!is_bottommost || !has_alignment_padding_ || (fp_value & kPointerSize) != 0); if (FLAG_enable_ool_constant_pool) { // For the bottommost output frame the constant pool pointer can be gotten // from the input frame. For subsequent output frames, it can be read from // the previous frame. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetConstantPool(); } output_frame->SetCallerConstantPool(output_offset, value); if (trace_scope_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; caller's constant_pool\n", top_address + output_offset, output_offset, value); } } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. Register context_reg = JavaScriptFrame::context_register(); output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = reinterpret_cast(function->context()); } output_frame->SetFrameSlot(output_offset, value); output_frame->SetContext(value); if (is_topmost) output_frame->SetRegister(context_reg.code(), value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; context\n", top_address + output_offset, output_offset, value); } // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; input_offset -= kPointerSize; value = reinterpret_cast(function); // The function for the bottommost output frame should also agree with the // input frame. ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; function\n", top_address + output_offset, output_offset, value); } // Translate the rest of the frame. for (unsigned i = 0; i < height; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } CHECK_EQ(0, output_offset); // Compute this frame's PC, state, and continuation. Code* non_optimized_code = function->shared()->code(); FixedArray* raw_data = non_optimized_code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); Address start = non_optimized_code->instruction_start(); unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); intptr_t pc_value = reinterpret_cast(start + pc_offset); output_frame->SetPc(pc_value); // Update constant pool. if (FLAG_enable_ool_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(non_optimized_code->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } FullCodeGenerator::State state = FullCodeGenerator::StateField::decode(pc_and_state); output_frame->SetState(Smi::FromInt(state)); // Set the continuation for the topmost frame. if (is_topmost && bailout_type_ != DEBUGGER) { Builtins* builtins = isolate_->builtins(); Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized); if (bailout_type_ == LAZY) { continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized); } else if (bailout_type_ == SOFT) { continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized); } else { CHECK_EQ(bailout_type_, EAGER); } output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator, int frame_index) { JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating arguments adaptor => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR); // Arguments adaptor can not be topmost or bottommost. CHECK(frame_index > 0 && frame_index < output_count_ - 1); CHECK(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. intptr_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetCallerPc(output_offset, callers_pc); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } if (FLAG_enable_ool_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetConstantPool(); output_frame->SetCallerConstantPool(output_offset, value); if (trace_scope_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; caller's constant_pool\n", top_address + output_offset, output_offset, value); } } // A marker value is used in place of the context. output_offset -= kPointerSize; intptr_t context = reinterpret_cast( Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); output_frame->SetFrameSlot(output_offset, context); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; context (adaptor sentinel)\n", top_address + output_offset, output_offset, context); } // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; function\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } ASSERT(0 == output_offset); Builtins* builtins = isolate_->builtins(); Code* adaptor_trampoline = builtins->builtin(Builtins::kArgumentsAdaptorTrampoline); intptr_t pc_value = reinterpret_cast( adaptor_trampoline->instruction_start() + isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value()); output_frame->SetPc(pc_value); if (FLAG_enable_ool_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(adaptor_trampoline->constant_pool()); output_frame->SetConstantPool(constant_pool_value); } } void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator, int frame_index) { Builtins* builtins = isolate_->builtins(); Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating construct stub => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::CONSTRUCT); // Construct stub can not be topmost or bottommost. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. intptr_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; int deferred_object_index = deferred_objects_.length(); DoTranslateCommand(iterator, frame_index, output_offset); // The allocated receiver of a construct stub frame is passed as the // receiver parameter through the translation. It might be encoding // a captured object, patch the slot address for a captured object. if (i == 0 && deferred_objects_.length() > deferred_object_index) { CHECK(!deferred_objects_[deferred_object_index].is_arguments()); deferred_objects_[deferred_object_index].patch_slot_address(top_address); } } // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetCallerPc(output_offset, callers_pc); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } if (FLAG_enable_ool_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetConstantPool(); output_frame->SetCallerConstantPool(output_offset, value); if (trace_scope_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's constant pool\n", top_address + output_offset, output_offset, value); } } // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; context\n", top_address + output_offset, output_offset, value); } // A marker value is used in place of the function. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::CONSTRUCT)); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; function (construct sentinel)\n", top_address + output_offset, output_offset, value); } // The output frame reflects a JSConstructStubGeneric frame. output_offset -= kPointerSize; value = reinterpret_cast(construct_stub); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; code object\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } // Constructor function being invoked by the stub (only present on some // architectures, indicated by kConstructorOffset). if (ConstructFrameConstants::kConstructorOffset != kMinInt) { output_offset -= kPointerSize; value = reinterpret_cast(function); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; constructor function\n", top_address + output_offset, output_offset, value); } } // The newly allocated object was passed as receiver in the artificial // constructor stub environment created by HEnvironment::CopyForInlining(). output_offset -= kPointerSize; value = output_frame->GetFrameSlot(output_frame_size - kPointerSize); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; allocated receiver\n", top_address + output_offset, output_offset, value); } CHECK_EQ(0, output_offset); intptr_t pc = reinterpret_cast( construct_stub->instruction_start() + isolate_->heap()->construct_stub_deopt_pc_offset()->value()); output_frame->SetPc(pc); if (FLAG_enable_ool_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(construct_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); } } void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator, int frame_index, bool is_setter_stub_frame) { JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next())); // The receiver (and the implicit return value, if any) are expected in // registers by the LoadIC/StoreIC, so they don't belong to the output stack // frame. This means that we have to use a height of 0. unsigned height = 0; unsigned height_in_bytes = height * kPointerSize; const char* kind = is_setter_stub_frame ? "setter" : "getter"; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating %s stub => height=%u\n", kind, height_in_bytes); } // We need 1 stack entry for the return address and enough entries for the // StackFrame::INTERNAL (FP, context, frame type, code object and constant // pool (if FLAG_enable_ool_constant_pool)- see MacroAssembler::EnterFrame). // For a setter stub frame we need one additional entry for the implicit // return value, see StoreStubCompiler::CompileStoreViaSetter. unsigned fixed_frame_entries = (StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 + (is_setter_stub_frame ? 1 : 0); unsigned fixed_frame_size = fixed_frame_entries * kPointerSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, accessor); output_frame->SetFrameType(StackFrame::INTERNAL); // A frame for an accessor stub can not be the topmost or bottommost one. CHECK(frame_index > 0 && frame_index < output_count_ - 1); CHECK_EQ(output_[frame_index], NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); unsigned output_offset = output_frame_size; // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetCallerPc(output_offset, callers_pc); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } if (FLAG_enable_ool_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetConstantPool(); output_frame->SetCallerConstantPool(output_offset, value); if (trace_scope_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's constant pool\n", top_address + output_offset, output_offset, value); } } // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; context\n", top_address + output_offset, output_offset, value); } // A marker value is used in place of the function. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::INTERNAL)); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; function (%s sentinel)\n", top_address + output_offset, output_offset, value, kind); } // Get Code object from accessor stub. output_offset -= kPointerSize; Builtins::Name name = is_setter_stub_frame ? Builtins::kStoreIC_Setter_ForDeopt : Builtins::kLoadIC_Getter_ForDeopt; Code* accessor_stub = isolate_->builtins()->builtin(name); value = reinterpret_cast(accessor_stub); output_frame->SetFrameSlot(output_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; code object\n", top_address + output_offset, output_offset, value); } // Skip receiver. DoTranslateObjectAndSkip(iterator); if (is_setter_stub_frame) { // The implicit return value was part of the artificial setter stub // environment. output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } CHECK_EQ(output_offset, 0); Smi* offset = is_setter_stub_frame ? isolate_->heap()->setter_stub_deopt_pc_offset() : isolate_->heap()->getter_stub_deopt_pc_offset(); intptr_t pc = reinterpret_cast( accessor_stub->instruction_start() + offset->value()); output_frame->SetPc(pc); if (FLAG_enable_ool_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(accessor_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); } } void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator, int frame_index) { // // FROM TO // | .... | | .... | // +-------------------------+ +-------------------------+ // | JSFunction continuation | | JSFunction continuation | // +-------------------------+ +-------------------------+ // | | saved frame (FP) | | saved frame (FP) | // | +=========================+<-fpreg +=========================+<-fpreg // | |constant pool (if ool_cp)| |constant pool (if ool_cp)| // | +-------------------------+ +-------------------------| // | | JSFunction context | | JSFunction context | // v +-------------------------+ +-------------------------| // | COMPILED_STUB marker | | STUB_FAILURE marker | // +-------------------------+ +-------------------------+ // | | | caller args.arguments_ | // | ... | +-------------------------+ // | | | caller args.length_ | // |-------------------------|<-spreg +-------------------------+ // | caller args pointer | // +-------------------------+ // | caller stack param 1 | // parameters in registers +-------------------------+ // and spilled to stack | .... | // +-------------------------+ // | caller stack param n | // +-------------------------+<-spreg // reg = number of parameters // reg = failure handler address // reg = saved frame // reg = JSFunction context // CHECK(compiled_code_->is_crankshafted() && compiled_code_->kind() != Code::OPTIMIZED_FUNCTION); int major_key = compiled_code_->major_key(); CodeStubInterfaceDescriptor* descriptor = isolate_->code_stub_interface_descriptor(major_key); // The output frame must have room for all pushed register parameters // and the standard stack frame slots. Include space for an argument // object to the callee and optionally the space to pass the argument // object to the stub failure handler. CHECK_GE(descriptor->register_param_count_, 0); int height_in_bytes = kPointerSize * descriptor->register_param_count_ + sizeof(Arguments) + kPointerSize; int fixed_frame_size = StandardFrameConstants::kFixedFrameSize; int input_frame_size = input_->GetFrameSize(); int output_frame_size = height_in_bytes + fixed_frame_size; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating %s => StubFailureTrampolineStub, height=%d\n", CodeStub::MajorName(static_cast(major_key), false), height_in_bytes); } // The stub failure trampoline is a single frame. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, NULL); output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE); CHECK_EQ(frame_index, 0); output_[frame_index] = output_frame; // The top address for the output frame can be computed from the input // frame pointer and the output frame's height. Subtract space for the // context and function slots. Register fp_reg = StubFailureTrampolineFrame::fp_register(); intptr_t top_address = input_->GetRegister(fp_reg.code()) - StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes; output_frame->SetTop(top_address); // Read caller's PC (JSFunction continuation) from the input frame. unsigned input_frame_offset = input_frame_size - kPCOnStackSize; unsigned output_frame_offset = output_frame_size - kFPOnStackSize; intptr_t value = input_->GetFrameSlot(input_frame_offset); output_frame->SetCallerPc(output_frame_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_frame_offset, output_frame_offset, value); } // Read caller's FP from the input frame, and set this frame's FP. input_frame_offset -= kFPOnStackSize; value = input_->GetFrameSlot(input_frame_offset); output_frame_offset -= kFPOnStackSize; output_frame->SetCallerFp(output_frame_offset, value); intptr_t frame_ptr = input_->GetRegister(fp_reg.code()); output_frame->SetRegister(fp_reg.code(), frame_ptr); output_frame->SetFp(frame_ptr); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's fp\n", top_address + output_frame_offset, output_frame_offset, value); } if (FLAG_enable_ool_constant_pool) { // Read the caller's constant pool from the input frame. input_frame_offset -= kPointerSize; value = input_->GetFrameSlot(input_frame_offset); output_frame_offset -= kPointerSize; output_frame->SetCallerConstantPool(output_frame_offset, value); if (trace_scope_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's constant_pool\n", top_address + output_frame_offset, output_frame_offset, value); } } // The context can be gotten from the input frame. Register context_reg = StubFailureTrampolineFrame::context_register(); input_frame_offset -= kPointerSize; value = input_->GetFrameSlot(input_frame_offset); output_frame->SetRegister(context_reg.code(), value); output_frame_offset -= kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); CHECK(reinterpret_cast(value)->IsContext()); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; context\n", top_address + output_frame_offset, output_frame_offset, value); } // A marker value is used in place of the function. output_frame_offset -= kPointerSize; value = reinterpret_cast( Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE)); output_frame->SetFrameSlot(output_frame_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; function (stub failure sentinel)\n", top_address + output_frame_offset, output_frame_offset, value); } intptr_t caller_arg_count = 0; bool arg_count_known = !descriptor->stack_parameter_count_.is_valid(); // Build the Arguments object for the caller's parameters and a pointer to it. output_frame_offset -= kPointerSize; int args_arguments_offset = output_frame_offset; intptr_t the_hole = reinterpret_cast( isolate_->heap()->the_hole_value()); if (arg_count_known) { value = frame_ptr + StandardFrameConstants::kCallerSPOffset + (caller_arg_count - 1) * kPointerSize; } else { value = the_hole; } output_frame->SetFrameSlot(args_arguments_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; args.arguments %s\n", top_address + args_arguments_offset, args_arguments_offset, value, arg_count_known ? "" : "(the hole)"); } output_frame_offset -= kPointerSize; int length_frame_offset = output_frame_offset; value = arg_count_known ? caller_arg_count : the_hole; output_frame->SetFrameSlot(length_frame_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; args.length %s\n", top_address + length_frame_offset, length_frame_offset, value, arg_count_known ? "" : "(the hole)"); } output_frame_offset -= kPointerSize; value = frame_ptr + StandardFrameConstants::kCallerSPOffset - (output_frame_size - output_frame_offset) + kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; args*\n", top_address + output_frame_offset, output_frame_offset, value); } // Copy the register parameters to the failure frame. int arguments_length_offset = -1; for (int i = 0; i < descriptor->register_param_count_; ++i) { output_frame_offset -= kPointerSize; DoTranslateCommand(iterator, 0, output_frame_offset); if (!arg_count_known && descriptor->IsParameterCountRegister(i)) { arguments_length_offset = output_frame_offset; } } CHECK_EQ(output_frame_offset, 0); if (!arg_count_known) { CHECK_GE(arguments_length_offset, 0); // We know it's a smi because 1) the code stub guarantees the stack // parameter count is in smi range, and 2) the DoTranslateCommand in the // parameter loop above translated that to a tagged value. Smi* smi_caller_arg_count = reinterpret_cast( output_frame->GetFrameSlot(arguments_length_offset)); caller_arg_count = smi_caller_arg_count->value(); output_frame->SetFrameSlot(length_frame_offset, caller_arg_count); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; args.length\n", top_address + length_frame_offset, length_frame_offset, caller_arg_count); } value = frame_ptr + StandardFrameConstants::kCallerSPOffset + (caller_arg_count - 1) * kPointerSize; output_frame->SetFrameSlot(args_arguments_offset, value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; args.arguments\n", top_address + args_arguments_offset, args_arguments_offset, value); } } // Copy the double registers from the input into the output frame. CopyDoubleRegisters(output_frame); // Fill registers containing handler and number of parameters. SetPlatformCompiledStubRegisters(output_frame, descriptor); // Compute this frame's PC, state, and continuation. Code* trampoline = NULL; StubFunctionMode function_mode = descriptor->function_mode_; StubFailureTrampolineStub(isolate_, function_mode).FindCodeInCache(&trampoline); ASSERT(trampoline != NULL); output_frame->SetPc(reinterpret_cast( trampoline->instruction_start())); if (FLAG_enable_ool_constant_pool) { Register constant_pool_reg = StubFailureTrampolineFrame::constant_pool_pointer_register(); intptr_t constant_pool_value = reinterpret_cast(trampoline->constant_pool()); output_frame->SetConstantPool(constant_pool_value); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS)); Code* notify_failure = NotifyStubFailureBuiltin(); output_frame->SetContinuation( reinterpret_cast(notify_failure->entry())); } Handle Deoptimizer::MaterializeNextHeapObject() { int object_index = materialization_object_index_++; ObjectMaterializationDescriptor desc = deferred_objects_[object_index]; const int length = desc.object_length(); if (desc.duplicate_object() >= 0) { // Found a previously materialized object by de-duplication. object_index = desc.duplicate_object(); materialized_objects_->Add(Handle()); } else if (desc.is_arguments() && ArgumentsObjectIsAdapted(object_index)) { // Use the arguments adapter frame we just built to materialize the // arguments object. FunctionGetArguments can't throw an exception. Handle function = ArgumentsObjectFunction(object_index); Handle arguments = Handle::cast( Accessors::FunctionGetArguments(function)); materialized_objects_->Add(arguments); // To keep consistent object counters, we still materialize the // nested values (but we throw them away). for (int i = 0; i < length; ++i) { MaterializeNextValue(); } } else if (desc.is_arguments()) { // Construct an arguments object and copy the parameters to a newly // allocated arguments object backing store. Handle function = ArgumentsObjectFunction(object_index); Handle arguments = isolate_->factory()->NewArgumentsObject(function, length); Handle array = isolate_->factory()->NewFixedArray(length); ASSERT_EQ(array->length(), length); arguments->set_elements(*array); materialized_objects_->Add(arguments); for (int i = 0; i < length; ++i) { Handle value = MaterializeNextValue(); array->set(i, *value); } } else { // Dispatch on the instance type of the object to be materialized. // We also need to make sure that the representation of all fields // in the given object are general enough to hold a tagged value. Handle map = Map::GeneralizeAllFieldRepresentations( Handle::cast(MaterializeNextValue())); switch (map->instance_type()) { case HEAP_NUMBER_TYPE: { // Reuse the HeapNumber value directly as it is already properly // tagged and skip materializing the HeapNumber explicitly. Handle object = MaterializeNextValue(); if (object_index < prev_materialized_count_) { materialized_objects_->Add(Handle( previously_materialized_objects_->get(object_index), isolate_)); } else { materialized_objects_->Add(object); } materialization_value_index_ += kDoubleSize / kPointerSize - 1; break; } case JS_OBJECT_TYPE: { Handle object = isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false); if (object_index < prev_materialized_count_) { materialized_objects_->Add(Handle( previously_materialized_objects_->get(object_index), isolate_)); } else { materialized_objects_->Add(object); } Handle properties = MaterializeNextValue(); Handle elements = MaterializeNextValue(); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); for (int i = 0; i < length - 3; ++i) { Handle value = MaterializeNextValue(); object->FastPropertyAtPut(i, *value); } break; } case JS_ARRAY_TYPE: { Handle object = isolate_->factory()->NewJSArray(0, map->elements_kind()); if (object_index < prev_materialized_count_) { materialized_objects_->Add(Handle( previously_materialized_objects_->get(object_index), isolate_)); } else { materialized_objects_->Add(object); } Handle properties = MaterializeNextValue(); Handle elements = MaterializeNextValue(); Handle length = MaterializeNextValue(); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); object->set_length(*length); break; } default: PrintF(stderr, "[couldn't handle instance type %d]\n", map->instance_type()); FATAL("Unsupported instance type"); } } return materialized_objects_->at(object_index); } Handle Deoptimizer::MaterializeNextValue() { int value_index = materialization_value_index_++; Handle value = materialized_values_->at(value_index); if (*value == isolate_->heap()->arguments_marker()) { value = MaterializeNextHeapObject(); } return value; } void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) { ASSERT_NE(DEBUGGER, bailout_type_); MaterializedObjectStore* materialized_store = isolate_->materialized_object_store(); previously_materialized_objects_ = materialized_store->Get(stack_fp_); prev_materialized_count_ = previously_materialized_objects_.is_null() ? 0 : previously_materialized_objects_->length(); // Walk all JavaScript output frames with the given frame iterator. for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) { if (frame_index != 0) it->Advance(); JavaScriptFrame* frame = it->frame(); jsframe_functions_.Add(handle(frame->function(), isolate_)); jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments()); } // Handlify all tagged object values before triggering any allocation. List > values(deferred_objects_tagged_values_.length()); for (int i = 0; i < deferred_objects_tagged_values_.length(); ++i) { values.Add(Handle(deferred_objects_tagged_values_[i], isolate_)); } // Play it safe and clear all unhandlified values before we continue. deferred_objects_tagged_values_.Clear(); // Materialize all heap numbers before looking at arguments because when the // output frames are used to materialize arguments objects later on they need // to already contain valid heap numbers. for (int i = 0; i < deferred_heap_numbers_.length(); i++) { HeapNumberMaterializationDescriptor
d = deferred_heap_numbers_[i]; Handle num = isolate_->factory()->NewNumber(d.value()); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), "Materialized a new heap number %p [%e] in slot %p\n", reinterpret_cast(*num), d.value(), d.destination()); } Memory::Object_at(d.destination()) = *num; } // Materialize all heap numbers required for arguments/captured objects. for (int i = 0; i < deferred_objects_double_values_.length(); i++) { HeapNumberMaterializationDescriptor d = deferred_objects_double_values_[i]; Handle num = isolate_->factory()->NewNumber(d.value()); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), "Materialized a new heap number %p [%e] for object at %d\n", reinterpret_cast(*num), d.value(), d.destination()); } ASSERT(values.at(d.destination())->IsTheHole()); values.Set(d.destination(), num); } // Play it safe and clear all object double values before we continue. deferred_objects_double_values_.Clear(); // Materialize arguments/captured objects. if (!deferred_objects_.is_empty()) { List > materialized_objects(deferred_objects_.length()); materialized_objects_ = &materialized_objects; materialized_values_ = &values; while (materialization_object_index_ < deferred_objects_.length()) { int object_index = materialization_object_index_; ObjectMaterializationDescriptor descriptor = deferred_objects_.at(object_index); // Find a previously materialized object by de-duplication or // materialize a new instance of the object if necessary. Store // the materialized object into the frame slot. Handle object = MaterializeNextHeapObject(); if (descriptor.slot_address() != NULL) { Memory::Object_at(descriptor.slot_address()) = *object; } if (trace_scope_ != NULL) { if (descriptor.is_arguments()) { PrintF(trace_scope_->file(), "Materialized %sarguments object of length %d for %p: ", ArgumentsObjectIsAdapted(object_index) ? "(adapted) " : "", Handle::cast(object)->elements()->length(), reinterpret_cast(descriptor.slot_address())); } else { PrintF(trace_scope_->file(), "Materialized captured object of size %d for %p: ", Handle::cast(object)->Size(), reinterpret_cast(descriptor.slot_address())); } object->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } } CHECK_EQ(materialization_object_index_, materialized_objects_->length()); CHECK_EQ(materialization_value_index_, materialized_values_->length()); } if (prev_materialized_count_ > 0) { materialized_store->Remove(stack_fp_); } } void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame( Address parameters_top, uint32_t parameters_size, Address expressions_top, uint32_t expressions_size, DeoptimizedFrameInfo* info) { CHECK_EQ(DEBUGGER, bailout_type_); Address parameters_bottom = parameters_top + parameters_size; Address expressions_bottom = expressions_top + expressions_size; for (int i = 0; i < deferred_heap_numbers_.length(); i++) { HeapNumberMaterializationDescriptor
d = deferred_heap_numbers_[i]; // Check of the heap number to materialize actually belong to the frame // being extracted. Address slot = d.destination(); if (parameters_top <= slot && slot < parameters_bottom) { Handle num = isolate_->factory()->NewNumber(d.value()); int index = (info->parameters_count() - 1) - static_cast(slot - parameters_top) / kPointerSize; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), "Materializing a new heap number %p [%e] in slot %p" "for parameter slot #%d\n", reinterpret_cast(*num), d.value(), d.destination(), index); } info->SetParameter(index, *num); } else if (expressions_top <= slot && slot < expressions_bottom) { Handle num = isolate_->factory()->NewNumber(d.value()); int index = info->expression_count() - 1 - static_cast(slot - expressions_top) / kPointerSize; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), "Materializing a new heap number %p [%e] in slot %p" "for expression slot #%d\n", reinterpret_cast(*num), d.value(), d.destination(), index); } info->SetExpression(index, *num); } } } static const char* TraceValueType(bool is_smi) { if (is_smi) { return "smi"; } return "heap number"; } void Deoptimizer::DoTranslateObjectAndSkip(TranslationIterator* iterator) { Translation::Opcode opcode = static_cast(iterator->Next()); switch (opcode) { case Translation::BEGIN: case Translation::JS_FRAME: case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: case Translation::COMPILED_STUB_FRAME: { FATAL("Unexpected frame start translation opcode"); return; } case Translation::REGISTER: case Translation::INT32_REGISTER: case Translation::UINT32_REGISTER: case Translation::DOUBLE_REGISTER: case Translation::STACK_SLOT: case Translation::INT32_STACK_SLOT: case Translation::UINT32_STACK_SLOT: case Translation::DOUBLE_STACK_SLOT: case Translation::LITERAL: { // The value is not part of any materialized object, so we can ignore it. iterator->Skip(Translation::NumberOfOperandsFor(opcode)); return; } case Translation::DUPLICATED_OBJECT: { int object_index = iterator->Next(); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " skipping object "); PrintF(trace_scope_->file(), " ; duplicate of object #%d\n", object_index); } AddObjectDuplication(0, object_index); return; } case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: { int length = iterator->Next(); bool is_args = opcode == Translation::ARGUMENTS_OBJECT; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " skipping object "); PrintF(trace_scope_->file(), " ; object (length = %d, is_args = %d)\n", length, is_args); } AddObjectStart(0, length, is_args); // We save the object values on the side and materialize the actual // object after the deoptimized frame is built. int object_index = deferred_objects_.length() - 1; for (int i = 0; i < length; i++) { DoTranslateObject(iterator, object_index, i); } return; } } FATAL("Unexpected translation opcode"); } void Deoptimizer::DoTranslateObject(TranslationIterator* iterator, int object_index, int field_index) { disasm::NameConverter converter; Address object_slot = deferred_objects_[object_index].slot_address(); Translation::Opcode opcode = static_cast(iterator->Next()); switch (opcode) { case Translation::BEGIN: case Translation::JS_FRAME: case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: case Translation::COMPILED_STUB_FRAME: FATAL("Unexpected frame start translation opcode"); return; case Translation::REGISTER: { int input_reg = iterator->Next(); intptr_t input_value = input_->GetRegister(input_reg); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "0x%08" V8PRIxPTR " ; %s ", input_value, converter.NameOfCPURegister(input_reg)); reinterpret_cast(input_value)->ShortPrint( trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } AddObjectTaggedValue(input_value); return; } case Translation::INT32_REGISTER: { int input_reg = iterator->Next(); intptr_t value = input_->GetRegister(input_reg); bool is_smi = Smi::IsValid(value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%" V8PRIdPTR " ; %s (%s)\n", value, converter.NameOfCPURegister(input_reg), TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); AddObjectTaggedValue(tagged_value); } else { double double_value = static_cast(static_cast(value)); AddObjectDoubleValue(double_value); } return; } case Translation::UINT32_REGISTER: { int input_reg = iterator->Next(); uintptr_t value = static_cast(input_->GetRegister(input_reg)); bool is_smi = (value <= static_cast(Smi::kMaxValue)); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%" V8PRIdPTR " ; uint %s (%s)\n", value, converter.NameOfCPURegister(input_reg), TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); AddObjectTaggedValue(tagged_value); } else { double double_value = static_cast(static_cast(value)); AddObjectDoubleValue(double_value); } return; } case Translation::DOUBLE_REGISTER: { int input_reg = iterator->Next(); double value = input_->GetDoubleRegister(input_reg); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%e ; %s\n", value, DoubleRegister::AllocationIndexToString(input_reg)); } AddObjectDoubleValue(value); return; } case Translation::STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); intptr_t input_value = input_->GetFrameSlot(input_offset); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "0x%08" V8PRIxPTR " ; [sp + %d] ", input_value, input_offset); reinterpret_cast(input_value)->ShortPrint( trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } AddObjectTaggedValue(input_value); return; } case Translation::INT32_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); intptr_t value = input_->GetFrameSlot(input_offset); bool is_smi = Smi::IsValid(value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%" V8PRIdPTR " ; [sp + %d] (%s)\n", value, input_offset, TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); AddObjectTaggedValue(tagged_value); } else { double double_value = static_cast(static_cast(value)); AddObjectDoubleValue(double_value); } return; } case Translation::UINT32_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); uintptr_t value = static_cast(input_->GetFrameSlot(input_offset)); bool is_smi = (value <= static_cast(Smi::kMaxValue)); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%" V8PRIdPTR " ; [sp + %d] (uint %s)\n", value, input_offset, TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); AddObjectTaggedValue(tagged_value); } else { double double_value = static_cast(static_cast(value)); AddObjectDoubleValue(double_value); } return; } case Translation::DOUBLE_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); double value = input_->GetDoubleFrameSlot(input_offset); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); PrintF(trace_scope_->file(), "%e ; [sp + %d]\n", value, input_offset); } AddObjectDoubleValue(value); return; } case Translation::LITERAL: { Object* literal = ComputeLiteral(iterator->Next()); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " object @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); literal->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; literal\n"); } intptr_t value = reinterpret_cast(literal); AddObjectTaggedValue(value); return; } case Translation::DUPLICATED_OBJECT: { int object_index = iterator->Next(); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " nested @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; duplicate of object #%d\n", object_index); } // Use the materialization marker value as a sentinel and fill in // the object after the deoptimized frame is built. intptr_t value = reinterpret_cast( isolate_->heap()->arguments_marker()); AddObjectDuplication(0, object_index); AddObjectTaggedValue(value); return; } case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: { int length = iterator->Next(); bool is_args = opcode == Translation::ARGUMENTS_OBJECT; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " nested @0x%08" V8PRIxPTR ": [field #%d] <- ", reinterpret_cast(object_slot), field_index); isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; object (length = %d, is_args = %d)\n", length, is_args); } // Use the materialization marker value as a sentinel and fill in // the object after the deoptimized frame is built. intptr_t value = reinterpret_cast( isolate_->heap()->arguments_marker()); AddObjectStart(0, length, is_args); AddObjectTaggedValue(value); // We save the object values on the side and materialize the actual // object after the deoptimized frame is built. int object_index = deferred_objects_.length() - 1; for (int i = 0; i < length; i++) { DoTranslateObject(iterator, object_index, i); } return; } } FATAL("Unexpected translation opcode"); } void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator, int frame_index, unsigned output_offset) { disasm::NameConverter converter; // A GC-safe temporary placeholder that we can put in the output frame. const intptr_t kPlaceholder = reinterpret_cast(Smi::FromInt(0)); Translation::Opcode opcode = static_cast(iterator->Next()); switch (opcode) { case Translation::BEGIN: case Translation::JS_FRAME: case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: case Translation::COMPILED_STUB_FRAME: FATAL("Unexpected translation opcode"); return; case Translation::REGISTER: { int input_reg = iterator->Next(); intptr_t input_value = input_->GetRegister(input_reg); if (trace_scope_ != NULL) { PrintF( trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ", output_[frame_index]->GetTop() + output_offset, output_offset, input_value, converter.NameOfCPURegister(input_reg)); reinterpret_cast(input_value)->ShortPrint( trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } output_[frame_index]->SetFrameSlot(output_offset, input_value); return; } case Translation::INT32_REGISTER: { int input_reg = iterator->Next(); intptr_t value = input_->GetRegister(input_reg); bool is_smi = Smi::IsValid(value); if (trace_scope_ != NULL) { PrintF( trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n", output_[frame_index]->GetTop() + output_offset, output_offset, value, converter.NameOfCPURegister(input_reg), TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, tagged_value); } else { // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, static_cast(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); } return; } case Translation::UINT32_REGISTER: { int input_reg = iterator->Next(); uintptr_t value = static_cast(input_->GetRegister(input_reg)); bool is_smi = value <= static_cast(Smi::kMaxValue); if (trace_scope_ != NULL) { PrintF( trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR " ; uint %s (%s)\n", output_[frame_index]->GetTop() + output_offset, output_offset, value, converter.NameOfCPURegister(input_reg), TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, tagged_value); } else { // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, static_cast(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); } return; } case Translation::DOUBLE_REGISTER: { int input_reg = iterator->Next(); double value = input_->GetDoubleRegister(input_reg); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n", output_[frame_index]->GetTop() + output_offset, output_offset, value, DoubleRegister::AllocationIndexToString(input_reg)); } // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); return; } case Translation::STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); intptr_t input_value = input_->GetFrameSlot(input_offset); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": ", output_[frame_index]->GetTop() + output_offset); PrintF(trace_scope_->file(), "[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ", output_offset, input_value, input_offset); reinterpret_cast(input_value)->ShortPrint( trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } output_[frame_index]->SetFrameSlot(output_offset, input_value); return; } case Translation::INT32_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); intptr_t value = input_->GetFrameSlot(input_offset); bool is_smi = Smi::IsValid(value); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": ", output_[frame_index]->GetTop() + output_offset); PrintF(trace_scope_->file(), "[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n", output_offset, value, input_offset, TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, tagged_value); } else { // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, static_cast(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); } return; } case Translation::UINT32_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); uintptr_t value = static_cast(input_->GetFrameSlot(input_offset)); bool is_smi = value <= static_cast(Smi::kMaxValue); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": ", output_[frame_index]->GetTop() + output_offset); PrintF(trace_scope_->file(), "[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n", output_offset, value, input_offset, TraceValueType(is_smi)); } if (is_smi) { intptr_t tagged_value = reinterpret_cast(Smi::FromInt(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, tagged_value); } else { // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, static_cast(static_cast(value))); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); } return; } case Translation::DOUBLE_STACK_SLOT: { int input_slot_index = iterator->Next(); unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index); double value = input_->GetDoubleFrameSlot(input_offset); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n", output_[frame_index]->GetTop() + output_offset, output_offset, value, input_offset); } // We save the untagged value on the side and store a GC-safe // temporary placeholder in the frame. AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value); output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder); return; } case Translation::LITERAL: { Object* literal = ComputeLiteral(iterator->Next()); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- ", output_[frame_index]->GetTop() + output_offset, output_offset); literal->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; literal\n"); } intptr_t value = reinterpret_cast(literal); output_[frame_index]->SetFrameSlot(output_offset, value); return; } case Translation::DUPLICATED_OBJECT: { int object_index = iterator->Next(); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- ", output_[frame_index]->GetTop() + output_offset, output_offset); isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; duplicate of object #%d\n", object_index); } // Use the materialization marker value as a sentinel and fill in // the object after the deoptimized frame is built. intptr_t value = reinterpret_cast( isolate_->heap()->arguments_marker()); AddObjectDuplication(output_[frame_index]->GetTop() + output_offset, object_index); output_[frame_index]->SetFrameSlot(output_offset, value); return; } case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: { int length = iterator->Next(); bool is_args = opcode == Translation::ARGUMENTS_OBJECT; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- ", output_[frame_index]->GetTop() + output_offset, output_offset); isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " ; object (length = %d, is_args = %d)\n", length, is_args); } // Use the materialization marker value as a sentinel and fill in // the object after the deoptimized frame is built. intptr_t value = reinterpret_cast( isolate_->heap()->arguments_marker()); AddObjectStart(output_[frame_index]->GetTop() + output_offset, length, is_args); output_[frame_index]->SetFrameSlot(output_offset, value); // We save the object values on the side and materialize the actual // object after the deoptimized frame is built. int object_index = deferred_objects_.length() - 1; for (int i = 0; i < length; i++) { DoTranslateObject(iterator, object_index, i); } return; } } } unsigned Deoptimizer::ComputeInputFrameSize() const { unsigned fixed_size = ComputeFixedSize(function_); // The fp-to-sp delta already takes the context, constant pool pointer and the // function into account so we have to avoid double counting them. unsigned result = fixed_size + fp_to_sp_delta_ - StandardFrameConstants::kFixedFrameSizeFromFp; if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) { unsigned stack_slots = compiled_code_->stack_slots(); unsigned outgoing_size = ComputeOutgoingArgumentSize(); CHECK(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size); } return result; } unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const { // The fixed part of the frame consists of the return address, frame // pointer, function, context, and all the incoming arguments. return ComputeIncomingArgumentSize(function) + StandardFrameConstants::kFixedFrameSize; } unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const { // The incoming arguments is the values for formal parameters and // the receiver. Every slot contains a pointer. if (function->IsSmi()) { CHECK_EQ(Smi::cast(function), Smi::FromInt(StackFrame::STUB)); return 0; } unsigned arguments = function->shared()->formal_parameter_count() + 1; return arguments * kPointerSize; } unsigned Deoptimizer::ComputeOutgoingArgumentSize() const { DeoptimizationInputData* data = DeoptimizationInputData::cast( compiled_code_->deoptimization_data()); unsigned height = data->ArgumentsStackHeight(bailout_id_)->value(); return height * kPointerSize; } Object* Deoptimizer::ComputeLiteral(int index) const { DeoptimizationInputData* data = DeoptimizationInputData::cast( compiled_code_->deoptimization_data()); FixedArray* literals = data->LiteralArray(); return literals->get(index); } void Deoptimizer::AddObjectStart(intptr_t slot, int length, bool is_args) { ObjectMaterializationDescriptor object_desc( reinterpret_cast
(slot), jsframe_count_, length, -1, is_args); deferred_objects_.Add(object_desc); } void Deoptimizer::AddObjectDuplication(intptr_t slot, int object_index) { ObjectMaterializationDescriptor object_desc( reinterpret_cast
(slot), jsframe_count_, -1, object_index, false); deferred_objects_.Add(object_desc); } void Deoptimizer::AddObjectTaggedValue(intptr_t value) { deferred_objects_tagged_values_.Add(reinterpret_cast(value)); } void Deoptimizer::AddObjectDoubleValue(double value) { deferred_objects_tagged_values_.Add(isolate()->heap()->the_hole_value()); HeapNumberMaterializationDescriptor value_desc( deferred_objects_tagged_values_.length() - 1, value); deferred_objects_double_values_.Add(value_desc); } void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) { HeapNumberMaterializationDescriptor
value_desc( reinterpret_cast
(slot_address), value); deferred_heap_numbers_.Add(value_desc); } void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate, BailoutType type, int max_entry_id) { // We cannot run this if the serializer is enabled because this will // cause us to emit relocation information for the external // references. This is fine because the deoptimizer's code section // isn't meant to be serialized at all. CHECK(type == EAGER || type == SOFT || type == LAZY); DeoptimizerData* data = isolate->deoptimizer_data(); int entry_count = data->deopt_entry_code_entries_[type]; if (max_entry_id < entry_count) return; entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries); while (max_entry_id >= entry_count) entry_count *= 2; CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries); MacroAssembler masm(isolate, NULL, 16 * KB); masm.set_emit_debug_code(false); GenerateDeoptimizationEntries(&masm, entry_count, type); CodeDesc desc; masm.GetCode(&desc); ASSERT(!RelocInfo::RequiresRelocation(desc)); MemoryChunk* chunk = data->deopt_entry_code_[type]; CHECK(static_cast(Deoptimizer::GetMaxDeoptTableSize()) >= desc.instr_size); chunk->CommitArea(desc.instr_size); CopyBytes(chunk->area_start(), desc.buffer, static_cast(desc.instr_size)); CPU::FlushICache(chunk->area_start(), desc.instr_size); data->deopt_entry_code_entries_[type] = entry_count; } FrameDescription::FrameDescription(uint32_t frame_size, JSFunction* function) : frame_size_(frame_size), function_(function), top_(kZapUint32), pc_(kZapUint32), fp_(kZapUint32), context_(kZapUint32), constant_pool_(kZapUint32) { // Zap all the registers. for (int r = 0; r < Register::kNumRegisters; r++) { // TODO(jbramley): It isn't safe to use kZapUint32 here. If the register // isn't used before the next safepoint, the GC will try to scan it as a // tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't. SetRegister(r, kZapUint32); } // Zap all the slots. for (unsigned o = 0; o < frame_size; o += kPointerSize) { SetFrameSlot(o, kZapUint32); } } int FrameDescription::ComputeFixedSize() { return StandardFrameConstants::kFixedFrameSize + (ComputeParametersCount() + 1) * kPointerSize; } unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) { if (slot_index >= 0) { // Local or spill slots. Skip the fixed part of the frame // including all arguments. unsigned base = GetFrameSize() - ComputeFixedSize(); return base - ((slot_index + 1) * kPointerSize); } else { // Incoming parameter. int arg_size = (ComputeParametersCount() + 1) * kPointerSize; unsigned base = GetFrameSize() - arg_size; return base - ((slot_index + 1) * kPointerSize); } } int FrameDescription::ComputeParametersCount() { switch (type_) { case StackFrame::JAVA_SCRIPT: return function_->shared()->formal_parameter_count(); case StackFrame::ARGUMENTS_ADAPTOR: { // Last slot contains number of incomming arguments as a smi. // Can't use GetExpression(0) because it would cause infinite recursion. return reinterpret_cast(*GetFrameSlotPointer(0))->value(); } case StackFrame::STUB: return -1; // Minus receiver. default: FATAL("Unexpected stack frame type"); return 0; } } Object* FrameDescription::GetParameter(int index) { CHECK_GE(index, 0); CHECK_LT(index, ComputeParametersCount()); // The slot indexes for incoming arguments are negative. unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount()); return reinterpret_cast(*GetFrameSlotPointer(offset)); } unsigned FrameDescription::GetExpressionCount() { CHECK_EQ(StackFrame::JAVA_SCRIPT, type_); unsigned size = GetFrameSize() - ComputeFixedSize(); return size / kPointerSize; } Object* FrameDescription::GetExpression(int index) { ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_); unsigned offset = GetOffsetFromSlotIndex(index); return reinterpret_cast(*GetFrameSlotPointer(offset)); } void TranslationBuffer::Add(int32_t value, Zone* zone) { // Encode the sign bit in the least significant bit. bool is_negative = (value < 0); uint32_t bits = ((is_negative ? -value : value) << 1) | static_cast(is_negative); // Encode the individual bytes using the least significant bit of // each byte to indicate whether or not more bytes follow. do { uint32_t next = bits >> 7; contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone); bits = next; } while (bits != 0); } int32_t TranslationIterator::Next() { // Run through the bytes until we reach one with a least significant // bit of zero (marks the end). uint32_t bits = 0; for (int i = 0; true; i += 7) { ASSERT(HasNext()); uint8_t next = buffer_->get(index_++); bits |= (next >> 1) << i; if ((next & 1) == 0) break; } // The bits encode the sign in the least significant bit. bool is_negative = (bits & 1) == 1; int32_t result = bits >> 1; return is_negative ? -result : result; } Handle TranslationBuffer::CreateByteArray(Factory* factory) { int length = contents_.length(); Handle result = factory->NewByteArray(length, TENURED); OS::MemCopy( result->GetDataStartAddress(), contents_.ToVector().start(), length); return result; } void Translation::BeginConstructStubFrame(int literal_id, unsigned height) { buffer_->Add(CONSTRUCT_STUB_FRAME, zone()); buffer_->Add(literal_id, zone()); buffer_->Add(height, zone()); } void Translation::BeginGetterStubFrame(int literal_id) { buffer_->Add(GETTER_STUB_FRAME, zone()); buffer_->Add(literal_id, zone()); } void Translation::BeginSetterStubFrame(int literal_id) { buffer_->Add(SETTER_STUB_FRAME, zone()); buffer_->Add(literal_id, zone()); } void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) { buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone()); buffer_->Add(literal_id, zone()); buffer_->Add(height, zone()); } void Translation::BeginJSFrame(BailoutId node_id, int literal_id, unsigned height) { buffer_->Add(JS_FRAME, zone()); buffer_->Add(node_id.ToInt(), zone()); buffer_->Add(literal_id, zone()); buffer_->Add(height, zone()); } void Translation::BeginCompiledStubFrame() { buffer_->Add(COMPILED_STUB_FRAME, zone()); } void Translation::BeginArgumentsObject(int args_length) { buffer_->Add(ARGUMENTS_OBJECT, zone()); buffer_->Add(args_length, zone()); } void Translation::BeginCapturedObject(int length) { buffer_->Add(CAPTURED_OBJECT, zone()); buffer_->Add(length, zone()); } void Translation::DuplicateObject(int object_index) { buffer_->Add(DUPLICATED_OBJECT, zone()); buffer_->Add(object_index, zone()); } void Translation::StoreRegister(Register reg) { buffer_->Add(REGISTER, zone()); buffer_->Add(reg.code(), zone()); } void Translation::StoreInt32Register(Register reg) { buffer_->Add(INT32_REGISTER, zone()); buffer_->Add(reg.code(), zone()); } void Translation::StoreUint32Register(Register reg) { buffer_->Add(UINT32_REGISTER, zone()); buffer_->Add(reg.code(), zone()); } void Translation::StoreDoubleRegister(DoubleRegister reg) { buffer_->Add(DOUBLE_REGISTER, zone()); buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone()); } void Translation::StoreStackSlot(int index) { buffer_->Add(STACK_SLOT, zone()); buffer_->Add(index, zone()); } void Translation::StoreInt32StackSlot(int index) { buffer_->Add(INT32_STACK_SLOT, zone()); buffer_->Add(index, zone()); } void Translation::StoreUint32StackSlot(int index) { buffer_->Add(UINT32_STACK_SLOT, zone()); buffer_->Add(index, zone()); } void Translation::StoreDoubleStackSlot(int index) { buffer_->Add(DOUBLE_STACK_SLOT, zone()); buffer_->Add(index, zone()); } void Translation::StoreLiteral(int literal_id) { buffer_->Add(LITERAL, zone()); buffer_->Add(literal_id, zone()); } void Translation::StoreArgumentsObject(bool args_known, int args_index, int args_length) { buffer_->Add(ARGUMENTS_OBJECT, zone()); buffer_->Add(args_known, zone()); buffer_->Add(args_index, zone()); buffer_->Add(args_length, zone()); } int Translation::NumberOfOperandsFor(Opcode opcode) { switch (opcode) { case GETTER_STUB_FRAME: case SETTER_STUB_FRAME: case DUPLICATED_OBJECT: case ARGUMENTS_OBJECT: case CAPTURED_OBJECT: case REGISTER: case INT32_REGISTER: case UINT32_REGISTER: case DOUBLE_REGISTER: case STACK_SLOT: case INT32_STACK_SLOT: case UINT32_STACK_SLOT: case DOUBLE_STACK_SLOT: case LITERAL: case COMPILED_STUB_FRAME: return 1; case BEGIN: case ARGUMENTS_ADAPTOR_FRAME: case CONSTRUCT_STUB_FRAME: return 2; case JS_FRAME: return 3; } FATAL("Unexpected translation type"); return -1; } #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER) const char* Translation::StringFor(Opcode opcode) { #define TRANSLATION_OPCODE_CASE(item) case item: return #item; switch (opcode) { TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE) } #undef TRANSLATION_OPCODE_CASE UNREACHABLE(); return ""; } #endif // We can't intermix stack decoding and allocations because // deoptimization infrastracture is not GC safe. // Thus we build a temporary structure in malloced space. SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument( Translation::Opcode opcode, TranslationIterator* iterator, DeoptimizationInputData* data, JavaScriptFrame* frame) { switch (opcode) { case Translation::BEGIN: case Translation::JS_FRAME: case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: // Peeled off before getting here. break; case Translation::DUPLICATED_OBJECT: { return SlotRef::NewDuplicateObject(iterator->Next()); } case Translation::ARGUMENTS_OBJECT: return SlotRef::NewArgumentsObject(iterator->Next()); case Translation::CAPTURED_OBJECT: { return SlotRef::NewDeferredObject(iterator->Next()); } case Translation::REGISTER: case Translation::INT32_REGISTER: case Translation::UINT32_REGISTER: case Translation::DOUBLE_REGISTER: // We are at safepoint which corresponds to call. All registers are // saved by caller so there would be no live registers at this // point. Thus these translation commands should not be used. break; case Translation::STACK_SLOT: { int slot_index = iterator->Next(); Address slot_addr = SlotAddress(frame, slot_index); return SlotRef(slot_addr, SlotRef::TAGGED); } case Translation::INT32_STACK_SLOT: { int slot_index = iterator->Next(); Address slot_addr = SlotAddress(frame, slot_index); return SlotRef(slot_addr, SlotRef::INT32); } case Translation::UINT32_STACK_SLOT: { int slot_index = iterator->Next(); Address slot_addr = SlotAddress(frame, slot_index); return SlotRef(slot_addr, SlotRef::UINT32); } case Translation::DOUBLE_STACK_SLOT: { int slot_index = iterator->Next(); Address slot_addr = SlotAddress(frame, slot_index); return SlotRef(slot_addr, SlotRef::DOUBLE); } case Translation::LITERAL: { int literal_index = iterator->Next(); return SlotRef(data->GetIsolate(), data->LiteralArray()->get(literal_index)); } case Translation::COMPILED_STUB_FRAME: UNREACHABLE(); break; } FATAL("We should never get here - unexpected deopt info."); return SlotRef(); } SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame, int inlined_jsframe_index, int formal_parameter_count) : current_slot_(0), args_length_(-1), first_slot_index_(-1) { DisallowHeapAllocation no_gc; int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = static_cast(frame)->GetDeoptimizationData(&deopt_index); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); CHECK_EQ(opcode, Translation::BEGIN); it.Next(); // Drop frame count. stack_frame_id_ = frame->fp(); int jsframe_count = it.Next(); CHECK_GT(jsframe_count, inlined_jsframe_index); int jsframes_to_skip = inlined_jsframe_index; int number_of_slots = -1; // Number of slots inside our frame (yet unknown) bool should_deopt = false; while (number_of_slots != 0) { opcode = static_cast(it.Next()); bool processed = false; if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) { if (jsframes_to_skip == 0) { CHECK_EQ(Translation::NumberOfOperandsFor(opcode), 2); it.Skip(1); // literal id int height = it.Next(); // Skip the translation command for the receiver. it.Skip(Translation::NumberOfOperandsFor( static_cast(it.Next()))); // We reached the arguments adaptor frame corresponding to the // inlined function in question. Number of arguments is height - 1. first_slot_index_ = slot_refs_.length(); args_length_ = height - 1; number_of_slots = height - 1; processed = true; } } else if (opcode == Translation::JS_FRAME) { if (jsframes_to_skip == 0) { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); // Skip the translation command for the receiver. it.Skip(Translation::NumberOfOperandsFor( static_cast(it.Next()))); // We reached the frame corresponding to the inlined function // in question. Process the translation commands for the // arguments. Number of arguments is equal to the number of // format parameter count. first_slot_index_ = slot_refs_.length(); args_length_ = formal_parameter_count; number_of_slots = formal_parameter_count; processed = true; } jsframes_to_skip--; } else if (opcode != Translation::BEGIN && opcode != Translation::CONSTRUCT_STUB_FRAME && opcode != Translation::GETTER_STUB_FRAME && opcode != Translation::SETTER_STUB_FRAME && opcode != Translation::COMPILED_STUB_FRAME) { slot_refs_.Add(ComputeSlotForNextArgument(opcode, &it, data, frame)); if (first_slot_index_ >= 0) { // We have found the beginning of our frame -> make sure we count // the nested slots of captured objects number_of_slots--; SlotRef& slot = slot_refs_.last(); CHECK_NE(slot.Representation(), SlotRef::ARGUMENTS_OBJECT); number_of_slots += slot.GetChildrenCount(); if (slot.Representation() == SlotRef::DEFERRED_OBJECT || slot.Representation() == SlotRef::DUPLICATE_OBJECT) { should_deopt = true; } } processed = true; } if (!processed) { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } if (should_deopt) { List functions(2); frame->GetFunctions(&functions); Deoptimizer::DeoptimizeFunction(functions[0]); } } Handle SlotRef::GetValue(Isolate* isolate) { switch (representation_) { case TAGGED: return Handle(Memory::Object_at(addr_), isolate); case INT32: { int value = Memory::int32_at(addr_); if (Smi::IsValid(value)) { return Handle(Smi::FromInt(value), isolate); } else { return isolate->factory()->NewNumberFromInt(value); } } case UINT32: { uint32_t value = Memory::uint32_at(addr_); if (value <= static_cast(Smi::kMaxValue)) { return Handle(Smi::FromInt(static_cast(value)), isolate); } else { return isolate->factory()->NewNumber(static_cast(value)); } } case DOUBLE: { double value = read_double_value(addr_); return isolate->factory()->NewNumber(value); } case LITERAL: return literal_; default: FATAL("We should never get here - unexpected deopt info."); return Handle::null(); } } void SlotRefValueBuilder::Prepare(Isolate* isolate) { MaterializedObjectStore* materialized_store = isolate->materialized_object_store(); previously_materialized_objects_ = materialized_store->Get(stack_frame_id_); prev_materialized_count_ = previously_materialized_objects_.is_null() ? 0 : previously_materialized_objects_->length(); // Skip any materialized objects of the inlined "parent" frames. // (Note that we still need to materialize them because they might be // referred to as duplicated objects.) while (current_slot_ < first_slot_index_) { GetNext(isolate, 0); } CHECK_EQ(current_slot_, first_slot_index_); } Handle SlotRefValueBuilder::GetPreviouslyMaterialized( Isolate* isolate, int length) { int object_index = materialized_objects_.length(); Handle return_value = Handle( previously_materialized_objects_->get(object_index), isolate); materialized_objects_.Add(return_value); // Now need to skip all the nested objects (and possibly read them from // the materialization store, too). for (int i = 0; i < length; i++) { SlotRef& slot = slot_refs_[current_slot_]; current_slot_++; // We need to read all the nested objects - add them to the // number of objects we need to process. length += slot.GetChildrenCount(); // Put the nested deferred/duplicate objects into our materialization // array. if (slot.Representation() == SlotRef::DEFERRED_OBJECT || slot.Representation() == SlotRef::DUPLICATE_OBJECT) { int nested_object_index = materialized_objects_.length(); Handle nested_object = Handle( previously_materialized_objects_->get(nested_object_index), isolate); materialized_objects_.Add(nested_object); } } return return_value; } Handle SlotRefValueBuilder::GetNext(Isolate* isolate, int lvl) { SlotRef& slot = slot_refs_[current_slot_]; current_slot_++; switch (slot.Representation()) { case SlotRef::TAGGED: case SlotRef::INT32: case SlotRef::UINT32: case SlotRef::DOUBLE: case SlotRef::LITERAL: { return slot.GetValue(isolate); } case SlotRef::ARGUMENTS_OBJECT: { // We should never need to materialize an arguments object, // but we still need to put something into the array // so that the indexing is consistent. materialized_objects_.Add(isolate->factory()->undefined_value()); int length = slot.GetChildrenCount(); for (int i = 0; i < length; ++i) { // We don't need the argument, just ignore it GetNext(isolate, lvl + 1); } return isolate->factory()->undefined_value(); } case SlotRef::DEFERRED_OBJECT: { int length = slot.GetChildrenCount(); CHECK(slot_refs_[current_slot_].Representation() == SlotRef::LITERAL || slot_refs_[current_slot_].Representation() == SlotRef::TAGGED); int object_index = materialized_objects_.length(); if (object_index < prev_materialized_count_) { return GetPreviouslyMaterialized(isolate, length); } Handle map_object = slot_refs_[current_slot_].GetValue(isolate); Handle map = Map::GeneralizeAllFieldRepresentations( Handle::cast(map_object)); current_slot_++; // TODO(jarin) this should be unified with the code in // Deoptimizer::MaterializeNextHeapObject() switch (map->instance_type()) { case HEAP_NUMBER_TYPE: { // Reuse the HeapNumber value directly as it is already properly // tagged and skip materializing the HeapNumber explicitly. Handle object = GetNext(isolate, lvl + 1); materialized_objects_.Add(object); // On 32-bit architectures, there is an extra slot there because // the escape analysis calculates the number of slots as // object-size/pointer-size. To account for this, we read out // any extra slots. for (int i = 0; i < length - 2; i++) { GetNext(isolate, lvl + 1); } return object; } case JS_OBJECT_TYPE: { Handle object = isolate->factory()->NewJSObjectFromMap(map, NOT_TENURED, false); materialized_objects_.Add(object); Handle properties = GetNext(isolate, lvl + 1); Handle elements = GetNext(isolate, lvl + 1); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); for (int i = 0; i < length - 3; ++i) { Handle value = GetNext(isolate, lvl + 1); object->FastPropertyAtPut(i, *value); } return object; } case JS_ARRAY_TYPE: { Handle object = isolate->factory()->NewJSArray(0, map->elements_kind()); materialized_objects_.Add(object); Handle properties = GetNext(isolate, lvl + 1); Handle elements = GetNext(isolate, lvl + 1); Handle length = GetNext(isolate, lvl + 1); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); object->set_length(*length); return object; } default: PrintF(stderr, "[couldn't handle instance type %d]\n", map->instance_type()); UNREACHABLE(); break; } UNREACHABLE(); break; } case SlotRef::DUPLICATE_OBJECT: { int object_index = slot.DuplicateObjectId(); Handle object = materialized_objects_[object_index]; materialized_objects_.Add(object); return object; } default: UNREACHABLE(); break; } FATAL("We should never get here - unexpected deopt slot kind."); return Handle::null(); } void SlotRefValueBuilder::Finish(Isolate* isolate) { // We should have processed all the slots CHECK_EQ(slot_refs_.length(), current_slot_); if (materialized_objects_.length() > prev_materialized_count_) { // We have materialized some new objects, so we have to store them // to prevent duplicate materialization Handle array = isolate->factory()->NewFixedArray( materialized_objects_.length()); for (int i = 0; i < materialized_objects_.length(); i++) { array->set(i, *(materialized_objects_.at(i))); } isolate->materialized_object_store()->Set(stack_frame_id_, array); } } Handle MaterializedObjectStore::Get(Address fp) { int index = StackIdToIndex(fp); if (index == -1) { return Handle::null(); } Handle array = GetStackEntries(); CHECK_GT(array->length(), index); return Handle::cast(Handle(array->get(index), isolate())); } void MaterializedObjectStore::Set(Address fp, Handle materialized_objects) { int index = StackIdToIndex(fp); if (index == -1) { index = frame_fps_.length(); frame_fps_.Add(fp); } Handle array = EnsureStackEntries(index + 1); array->set(index, *materialized_objects); } void MaterializedObjectStore::Remove(Address fp) { int index = StackIdToIndex(fp); CHECK_GE(index, 0); frame_fps_.Remove(index); Handle array = GetStackEntries(); CHECK_LT(index, array->length()); for (int i = index; i < frame_fps_.length(); i++) { array->set(i, array->get(i + 1)); } array->set(frame_fps_.length(), isolate()->heap()->undefined_value()); } int MaterializedObjectStore::StackIdToIndex(Address fp) { for (int i = 0; i < frame_fps_.length(); i++) { if (frame_fps_[i] == fp) { return i; } } return -1; } Handle MaterializedObjectStore::GetStackEntries() { return Handle(isolate()->heap()->materialized_objects()); } Handle MaterializedObjectStore::EnsureStackEntries(int length) { Handle array = GetStackEntries(); if (array->length() >= length) { return array; } int new_length = length > 10 ? length : 10; if (new_length < 2 * array->length()) { new_length = 2 * array->length(); } Handle new_array = isolate()->factory()->NewFixedArray(new_length, TENURED); for (int i = 0; i < array->length(); i++) { new_array->set(i, array->get(i)); } for (int i = array->length(); i < length; i++) { new_array->set(i, isolate()->heap()->undefined_value()); } isolate()->heap()->public_set_materialized_objects(*new_array); return new_array; } DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer, int frame_index, bool has_arguments_adaptor, bool has_construct_stub) { FrameDescription* output_frame = deoptimizer->output_[frame_index]; function_ = output_frame->GetFunction(); has_construct_stub_ = has_construct_stub; expression_count_ = output_frame->GetExpressionCount(); expression_stack_ = new Object*[expression_count_]; // Get the source position using the unoptimized code. Address pc = reinterpret_cast
(output_frame->GetPc()); Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc)); source_position_ = code->SourcePosition(pc); for (int i = 0; i < expression_count_; i++) { SetExpression(i, output_frame->GetExpression(i)); } if (has_arguments_adaptor) { output_frame = deoptimizer->output_[frame_index - 1]; CHECK_EQ(output_frame->GetFrameType(), StackFrame::ARGUMENTS_ADAPTOR); } parameters_count_ = output_frame->ComputeParametersCount(); parameters_ = new Object*[parameters_count_]; for (int i = 0; i < parameters_count_; i++) { SetParameter(i, output_frame->GetParameter(i)); } } DeoptimizedFrameInfo::~DeoptimizedFrameInfo() { delete[] expression_stack_; delete[] parameters_; } void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) { v->VisitPointer(BitCast(&function_)); v->VisitPointers(parameters_, parameters_ + parameters_count_); v->VisitPointers(expression_stack_, expression_stack_ + expression_count_); } } } // namespace v8::internal