// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_SCOPES_H_ #define V8_SCOPES_H_ #include "ast.h" #include "zone.h" namespace v8 { namespace internal { class CompilationInfo; // A hash map to support fast variable declaration and lookup. class VariableMap: public ZoneHashMap { public: explicit VariableMap(Zone* zone); virtual ~VariableMap(); Variable* Declare(Scope* scope, Handle name, VariableMode mode, bool is_valid_lhs, Variable::Kind kind, InitializationFlag initialization_flag, Interface* interface = Interface::NewValue()); Variable* Lookup(Handle name); Zone* zone() const { return zone_; } private: Zone* zone_; }; // The dynamic scope part holds hash maps for the variables that will // be looked up dynamically from within eval and with scopes. The objects // are allocated on-demand from Scope::NonLocal to avoid wasting memory // and setup time for scopes that don't need them. class DynamicScopePart : public ZoneObject { public: explicit DynamicScopePart(Zone* zone) { for (int i = 0; i < 3; i++) maps_[i] = new(zone->New(sizeof(VariableMap))) VariableMap(zone); } VariableMap* GetMap(VariableMode mode) { int index = mode - DYNAMIC; ASSERT(index >= 0 && index < 3); return maps_[index]; } private: VariableMap *maps_[3]; }; // Global invariants after AST construction: Each reference (i.e. identifier) // to a JavaScript variable (including global properties) is represented by a // VariableProxy node. Immediately after AST construction and before variable // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a // corresponding variable (though some are bound during parse time). Variable // allocation binds each unresolved VariableProxy to one Variable and assigns // a location. Note that many VariableProxy nodes may refer to the same Java- // Script variable. class Scope: public ZoneObject { public: // --------------------------------------------------------------------------- // Construction Scope(Scope* outer_scope, ScopeType scope_type, Zone* zone); // Compute top scope and allocate variables. For lazy compilation the top // scope only contains the single lazily compiled function, so this // doesn't re-allocate variables repeatedly. static bool Analyze(CompilationInfo* info); static Scope* DeserializeScopeChain(Context* context, Scope* global_scope, Zone* zone); // The scope name is only used for printing/debugging. void SetScopeName(Handle scope_name) { scope_name_ = scope_name; } void Initialize(); // Checks if the block scope is redundant, i.e. it does not contain any // block scoped declarations. In that case it is removed from the scope // tree and its children are reparented. Scope* FinalizeBlockScope(); Zone* zone() const { return zone_; } // --------------------------------------------------------------------------- // Declarations // Lookup a variable in this scope. Returns the variable or NULL if not found. Variable* LocalLookup(Handle name); // This lookup corresponds to a lookup in the "intermediate" scope sitting // between this scope and the outer scope. (ECMA-262, 3rd., requires that // the name of named function literal is kept in an intermediate scope // in between this scope and the next outer scope.) Variable* LookupFunctionVar(Handle name, AstNodeFactory* factory); // Lookup a variable in this scope or outer scopes. // Returns the variable or NULL if not found. Variable* Lookup(Handle name); // Declare the function variable for a function literal. This variable // is in an intermediate scope between this function scope and the the // outer scope. Only possible for function scopes; at most one variable. void DeclareFunctionVar(VariableDeclaration* declaration) { ASSERT(is_function_scope()); function_ = declaration; } // Declare a parameter in this scope. When there are duplicated // parameters the rightmost one 'wins'. However, the implementation // expects all parameters to be declared and from left to right. void DeclareParameter(Handle name, VariableMode mode); // Declare a local variable in this scope. If the variable has been // declared before, the previously declared variable is returned. Variable* DeclareLocal(Handle name, VariableMode mode, InitializationFlag init_flag, Interface* interface = Interface::NewValue()); // Declare an implicit global variable in this scope which must be a // global scope. The variable was introduced (possibly from an inner // scope) by a reference to an unresolved variable with no intervening // with statements or eval calls. Variable* DeclareDynamicGlobal(Handle name); // Create a new unresolved variable. template VariableProxy* NewUnresolved(AstNodeFactory* factory, Handle name, Interface* interface = Interface::NewValue(), int position = RelocInfo::kNoPosition) { // Note that we must not share the unresolved variables with // the same name because they may be removed selectively via // RemoveUnresolved(). ASSERT(!already_resolved()); VariableProxy* proxy = factory->NewVariableProxy(name, false, interface, position); unresolved_.Add(proxy, zone_); return proxy; } // Remove a unresolved variable. During parsing, an unresolved variable // may have been added optimistically, but then only the variable name // was used (typically for labels). If the variable was not declared, the // addition introduced a new unresolved variable which may end up being // allocated globally as a "ghost" variable. RemoveUnresolved removes // such a variable again if it was added; otherwise this is a no-op. void RemoveUnresolved(VariableProxy* var); // Creates a new internal variable in this scope. The name is only used // for printing and cannot be used to find the variable. In particular, // the only way to get hold of the temporary is by keeping the Variable* // around. Variable* NewInternal(Handle name); // Creates a new temporary variable in this scope. The name is only used // for printing and cannot be used to find the variable. In particular, // the only way to get hold of the temporary is by keeping the Variable* // around. The name should not clash with a legitimate variable names. Variable* NewTemporary(Handle name); // Adds the specific declaration node to the list of declarations in // this scope. The declarations are processed as part of entering // the scope; see codegen.cc:ProcessDeclarations. void AddDeclaration(Declaration* declaration); // --------------------------------------------------------------------------- // Illegal redeclaration support. // Set an expression node that will be executed when the scope is // entered. We only keep track of one illegal redeclaration node per // scope - the first one - so if you try to set it multiple times // the additional requests will be silently ignored. void SetIllegalRedeclaration(Expression* expression); // Visit the illegal redeclaration expression. Do not call if the // scope doesn't have an illegal redeclaration node. void VisitIllegalRedeclaration(AstVisitor* visitor); // Check if the scope has (at least) one illegal redeclaration. bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; } // For harmony block scoping mode: Check if the scope has conflicting var // declarations, i.e. a var declaration that has been hoisted from a nested // scope over a let binding of the same name. Declaration* CheckConflictingVarDeclarations(); // --------------------------------------------------------------------------- // Scope-specific info. // Inform the scope that the corresponding code contains a with statement. void RecordWithStatement() { scope_contains_with_ = true; } // Inform the scope that the corresponding code contains an eval call. void RecordEvalCall() { if (!is_global_scope()) scope_calls_eval_ = true; } // Set the strict mode flag (unless disabled by a global flag). void SetStrictMode(StrictMode strict_mode) { strict_mode_ = strict_mode; } // Position in the source where this scope begins and ends. // // * For the scope of a with statement // with (obj) stmt // start position: start position of first token of 'stmt' // end position: end position of last token of 'stmt' // * For the scope of a block // { stmts } // start position: start position of '{' // end position: end position of '}' // * For the scope of a function literal or decalaration // function fun(a,b) { stmts } // start position: start position of '(' // end position: end position of '}' // * For the scope of a catch block // try { stms } catch(e) { stmts } // start position: start position of '(' // end position: end position of ')' // * For the scope of a for-statement // for (let x ...) stmt // start position: start position of '(' // end position: end position of last token of 'stmt' int start_position() const { return start_position_; } void set_start_position(int statement_pos) { start_position_ = statement_pos; } int end_position() const { return end_position_; } void set_end_position(int statement_pos) { end_position_ = statement_pos; } // In some cases we want to force context allocation for a whole scope. void ForceContextAllocation() { ASSERT(!already_resolved()); force_context_allocation_ = true; } bool has_forced_context_allocation() const { return force_context_allocation_; } // --------------------------------------------------------------------------- // Predicates. // Specific scope types. bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; } bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; } bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; } bool is_global_scope() const { return scope_type_ == GLOBAL_SCOPE; } bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; } bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; } bool is_with_scope() const { return scope_type_ == WITH_SCOPE; } bool is_declaration_scope() const { return is_eval_scope() || is_function_scope() || is_module_scope() || is_global_scope(); } bool is_strict_eval_scope() const { return is_eval_scope() && strict_mode_ == STRICT; } // Information about which scopes calls eval. bool calls_eval() const { return scope_calls_eval_; } bool calls_sloppy_eval() { return scope_calls_eval_ && strict_mode_ == SLOPPY; } bool outer_scope_calls_sloppy_eval() const { return outer_scope_calls_sloppy_eval_; } // Is this scope inside a with statement. bool inside_with() const { return scope_inside_with_; } // Does this scope contain a with statement. bool contains_with() const { return scope_contains_with_; } // --------------------------------------------------------------------------- // Accessors. // The type of this scope. ScopeType scope_type() const { return scope_type_; } // The language mode of this scope. StrictMode strict_mode() const { return strict_mode_; } // The variable corresponding the 'this' value. Variable* receiver() { return receiver_; } // The variable holding the function literal for named function // literals, or NULL. Only valid for function scopes. VariableDeclaration* function() const { ASSERT(is_function_scope()); return function_; } // Parameters. The left-most parameter has index 0. // Only valid for function scopes. Variable* parameter(int index) const { ASSERT(is_function_scope()); return params_[index]; } int num_parameters() const { return params_.length(); } // The local variable 'arguments' if we need to allocate it; NULL otherwise. Variable* arguments() const { return arguments_; } // Declarations list. ZoneList* declarations() { return &decls_; } // Inner scope list. ZoneList* inner_scopes() { return &inner_scopes_; } // The scope immediately surrounding this scope, or NULL. Scope* outer_scope() const { return outer_scope_; } // The interface as inferred so far; only for module scopes. Interface* interface() const { return interface_; } // --------------------------------------------------------------------------- // Variable allocation. // Collect stack and context allocated local variables in this scope. Note // that the function variable - if present - is not collected and should be // handled separately. void CollectStackAndContextLocals(ZoneList* stack_locals, ZoneList* context_locals); // Current number of var or const locals. int num_var_or_const() { return num_var_or_const_; } // Result of variable allocation. int num_stack_slots() const { return num_stack_slots_; } int num_heap_slots() const { return num_heap_slots_; } int StackLocalCount() const; int ContextLocalCount() const; // For global scopes, the number of module literals (including nested ones). int num_modules() const { return num_modules_; } // For module scopes, the host scope's internal variable binding this module. Variable* module_var() const { return module_var_; } // Make sure this scope and all outer scopes are eagerly compiled. void ForceEagerCompilation() { force_eager_compilation_ = true; } // Determine if we can use lazy compilation for this scope. bool AllowsLazyCompilation() const; // Determine if we can use lazy compilation for this scope without a context. bool AllowsLazyCompilationWithoutContext() const; // True if the outer context of this scope is always the native context. bool HasTrivialOuterContext() const; // True if the outer context allows lazy compilation of this scope. bool HasLazyCompilableOuterContext() const; // The number of contexts between this and scope; zero if this == scope. int ContextChainLength(Scope* scope); // Find the innermost global scope. Scope* GlobalScope(); // Find the first function, global, or eval scope. This is the scope // where var declarations will be hoisted to in the implementation. Scope* DeclarationScope(); Handle GetScopeInfo(); // Get the chain of nested scopes within this scope for the source statement // position. The scopes will be added to the list from the outermost scope to // the innermost scope. Only nested block, catch or with scopes are tracked // and will be returned, but no inner function scopes. void GetNestedScopeChain(List >* chain, int statement_position); // --------------------------------------------------------------------------- // Strict mode support. bool IsDeclared(Handle name) { // During formal parameter list parsing the scope only contains // two variables inserted at initialization: "this" and "arguments". // "this" is an invalid parameter name and "arguments" is invalid parameter // name in strict mode. Therefore looking up with the map which includes // "this" and "arguments" in addition to all formal parameters is safe. return variables_.Lookup(name) != NULL; } // --------------------------------------------------------------------------- // Debugging. #ifdef DEBUG void Print(int n = 0); // n = indentation; n < 0 => don't print recursively #endif // --------------------------------------------------------------------------- // Implementation. protected: friend class ParserFactory; Isolate* const isolate_; // Scope tree. Scope* outer_scope_; // the immediately enclosing outer scope, or NULL ZoneList inner_scopes_; // the immediately enclosed inner scopes // The scope type. ScopeType scope_type_; // Debugging support. Handle scope_name_; // The variables declared in this scope: // // All user-declared variables (incl. parameters). For global scopes // variables may be implicitly 'declared' by being used (possibly in // an inner scope) with no intervening with statements or eval calls. VariableMap variables_; // Compiler-allocated (user-invisible) internals. ZoneList internals_; // Compiler-allocated (user-invisible) temporaries. ZoneList temps_; // Parameter list in source order. ZoneList params_; // Variables that must be looked up dynamically. DynamicScopePart* dynamics_; // Unresolved variables referred to from this scope. ZoneList unresolved_; // Declarations. ZoneList decls_; // Convenience variable. Variable* receiver_; // Function variable, if any; function scopes only. VariableDeclaration* function_; // Convenience variable; function scopes only. Variable* arguments_; // Interface; module scopes only. Interface* interface_; // Illegal redeclaration. Expression* illegal_redecl_; // Scope-specific information computed during parsing. // // This scope is inside a 'with' of some outer scope. bool scope_inside_with_; // This scope contains a 'with' statement. bool scope_contains_with_; // This scope or a nested catch scope or with scope contain an 'eval' call. At // the 'eval' call site this scope is the declaration scope. bool scope_calls_eval_; // The strict mode of this scope. StrictMode strict_mode_; // Source positions. int start_position_; int end_position_; // Computed via PropagateScopeInfo. bool outer_scope_calls_sloppy_eval_; bool inner_scope_calls_eval_; bool force_eager_compilation_; bool force_context_allocation_; // True if it doesn't need scope resolution (e.g., if the scope was // constructed based on a serialized scope info or a catch context). bool already_resolved_; // Computed as variables are declared. int num_var_or_const_; // Computed via AllocateVariables; function, block and catch scopes only. int num_stack_slots_; int num_heap_slots_; // The number of modules (including nested ones). int num_modules_; // For module scopes, the host scope's internal variable binding this module. Variable* module_var_; // Serialized scope info support. Handle scope_info_; bool already_resolved() { return already_resolved_; } // Create a non-local variable with a given name. // These variables are looked up dynamically at runtime. Variable* NonLocal(Handle name, VariableMode mode); // Variable resolution. // Possible results of a recursive variable lookup telling if and how a // variable is bound. These are returned in the output parameter *binding_kind // of the LookupRecursive function. enum BindingKind { // The variable reference could be statically resolved to a variable binding // which is returned. There is no 'with' statement between the reference and // the binding and no scope between the reference scope (inclusive) and // binding scope (exclusive) makes a sloppy 'eval' call. BOUND, // The variable reference could be statically resolved to a variable binding // which is returned. There is no 'with' statement between the reference and // the binding, but some scope between the reference scope (inclusive) and // binding scope (exclusive) makes a sloppy 'eval' call, that might // possibly introduce variable bindings shadowing the found one. Thus the // found variable binding is just a guess. BOUND_EVAL_SHADOWED, // The variable reference could not be statically resolved to any binding // and thus should be considered referencing a global variable. NULL is // returned. The variable reference is not inside any 'with' statement and // no scope between the reference scope (inclusive) and global scope // (exclusive) makes a sloppy 'eval' call. UNBOUND, // The variable reference could not be statically resolved to any binding // NULL is returned. The variable reference is not inside any 'with' // statement, but some scope between the reference scope (inclusive) and // global scope (exclusive) makes a sloppy 'eval' call, that might // possibly introduce a variable binding. Thus the reference should be // considered referencing a global variable unless it is shadowed by an // 'eval' introduced binding. UNBOUND_EVAL_SHADOWED, // The variable could not be statically resolved and needs to be looked up // dynamically. NULL is returned. There are two possible reasons: // * A 'with' statement has been encountered and there is no variable // binding for the name between the variable reference and the 'with'. // The variable potentially references a property of the 'with' object. // * The code is being executed as part of a call to 'eval' and the calling // context chain contains either a variable binding for the name or it // contains a 'with' context. DYNAMIC_LOOKUP }; // Lookup a variable reference given by name recursively starting with this // scope. If the code is executed because of a call to 'eval', the context // parameter should be set to the calling context of 'eval'. Variable* LookupRecursive(Handle name, BindingKind* binding_kind, AstNodeFactory* factory); MUST_USE_RESULT bool ResolveVariable(CompilationInfo* info, VariableProxy* proxy, AstNodeFactory* factory); MUST_USE_RESULT bool ResolveVariablesRecursively(CompilationInfo* info, AstNodeFactory* factory); // Scope analysis. bool PropagateScopeInfo(bool outer_scope_calls_sloppy_eval); bool HasTrivialContext() const; // Predicates. bool MustAllocate(Variable* var); bool MustAllocateInContext(Variable* var); bool HasArgumentsParameter(); // Variable allocation. void AllocateStackSlot(Variable* var); void AllocateHeapSlot(Variable* var); void AllocateParameterLocals(); void AllocateNonParameterLocal(Variable* var); void AllocateNonParameterLocals(); void AllocateVariablesRecursively(); void AllocateModulesRecursively(Scope* host_scope); // Resolve and fill in the allocation information for all variables // in this scopes. Must be called *after* all scopes have been // processed (parsed) to ensure that unresolved variables can be // resolved properly. // // In the case of code compiled and run using 'eval', the context // parameter is the context in which eval was called. In all other // cases the context parameter is an empty handle. MUST_USE_RESULT bool AllocateVariables(CompilationInfo* info, AstNodeFactory* factory); private: // Construct a scope based on the scope info. Scope(Scope* inner_scope, ScopeType type, Handle scope_info, Zone* zone); // Construct a catch scope with a binding for the name. Scope(Scope* inner_scope, Handle catch_variable_name, Zone* zone); void AddInnerScope(Scope* inner_scope) { if (inner_scope != NULL) { inner_scopes_.Add(inner_scope, zone_); inner_scope->outer_scope_ = this; } } void SetDefaults(ScopeType type, Scope* outer_scope, Handle scope_info); Zone* zone_; }; } } // namespace v8::internal #endif // V8_SCOPES_H_