// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "src/base/utils/random-number-generator.h" #include "src/compiler/graph-visualizer.h" #include "src/compiler/js-graph.h" #include "src/compiler/wasm-compiler.h" #include "src/wasm/ast-decoder.h" #include "src/wasm/wasm-macro-gen.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-opcodes.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/codegen-tester.h" #include "test/cctest/compiler/graph-builder-tester.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/test-signatures.h" // TODO(titzer): pull WASM_64 up to a common header. #if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64 #define WASM_64 1 #else #define WASM_64 0 #endif // TODO(titzer): check traps more robustly in tests. // Currently, in tests, we just return 0xdeadbeef from the function in which // the trap occurs if the runtime context is not available to throw a JavaScript // exception. #define CHECK_TRAP32(x) \ CHECK_EQ(0xdeadbeef, (bit_cast(x)) & 0xFFFFFFFF) #define CHECK_TRAP64(x) \ CHECK_EQ(0xdeadbeefdeadbeef, (bit_cast(x)) & 0xFFFFFFFFFFFFFFFF) #define CHECK_TRAP(x) CHECK_TRAP32(x) using namespace v8::base; using namespace v8::internal; using namespace v8::internal::compiler; using namespace v8::internal::wasm; static void init_env(FunctionEnv* env, FunctionSig* sig) { env->module = nullptr; env->sig = sig; env->local_int32_count = 0; env->local_int64_count = 0; env->local_float32_count = 0; env->local_float64_count = 0; env->SumLocals(); } const uint32_t kMaxGlobalsSize = 128; // A helper for module environments that adds the ability to allocate memory // and global variables. class TestingModule : public ModuleEnv { public: TestingModule() : mem_size(0), global_offset(0) { globals_area = 0; mem_start = 0; mem_end = 0; module = nullptr; linker = nullptr; function_code = nullptr; asm_js = false; } ~TestingModule() { if (mem_start) { free(raw_mem_start()); } if (function_code) delete function_code; if (module) delete module; } byte* AddMemory(size_t size) { CHECK_EQ(0, mem_start); CHECK_EQ(0, mem_size); mem_start = reinterpret_cast(malloc(size)); CHECK(mem_start); byte* raw = raw_mem_start(); memset(raw, 0, size); mem_end = mem_start + size; mem_size = size; return raw_mem_start(); } template T* AddMemoryElems(size_t count) { AddMemory(count * sizeof(T)); return raw_mem_start(); } template T* AddGlobal(MachineType mem_type) { WasmGlobal* global = AddGlobal(mem_type); return reinterpret_cast(globals_area + global->offset); } byte AddSignature(FunctionSig* sig) { AllocModule(); if (!module->signatures) { module->signatures = new std::vector(); } module->signatures->push_back(sig); size_t size = module->signatures->size(); CHECK(size < 127); return static_cast(size - 1); } template T* raw_mem_start() { DCHECK(mem_start); return reinterpret_cast(mem_start); } template T* raw_mem_end() { DCHECK(mem_end); return reinterpret_cast(mem_end); } template T raw_mem_at(int i) { DCHECK(mem_start); return reinterpret_cast(mem_start)[i]; } template T raw_val_at(int i) { T val; memcpy(&val, reinterpret_cast(mem_start + i), sizeof(T)); return val; } // Zero-initialize the memory. void BlankMemory() { byte* raw = raw_mem_start(); memset(raw, 0, mem_size); } // Pseudo-randomly intialize the memory. void RandomizeMemory(unsigned int seed = 88) { byte* raw = raw_mem_start(); byte* end = raw_mem_end(); v8::base::RandomNumberGenerator rng; rng.SetSeed(seed); rng.NextBytes(raw, end - raw); } WasmFunction* AddFunction(FunctionSig* sig, Handle code) { AllocModule(); if (module->functions == nullptr) { module->functions = new std::vector(); function_code = new std::vector>(); } module->functions->push_back({sig, 0, 0, 0, 0, 0, 0, 0, false, false}); function_code->push_back(code); return &module->functions->back(); } private: size_t mem_size; uint32_t global_offset; byte global_data[kMaxGlobalsSize]; WasmGlobal* AddGlobal(MachineType mem_type) { AllocModule(); if (globals_area == 0) { globals_area = reinterpret_cast(global_data); module->globals = new std::vector(); } byte size = WasmOpcodes::MemSize(mem_type); global_offset = (global_offset + size - 1) & ~(size - 1); // align module->globals->push_back({0, mem_type, global_offset, false}); global_offset += size; // limit number of globals. CHECK_LT(global_offset, kMaxGlobalsSize); return &module->globals->back(); } void AllocModule() { if (module == nullptr) { module = new WasmModule(); module->globals = nullptr; module->functions = nullptr; module->data_segments = nullptr; } } }; // A helper for compiling functions that are only internally callable WASM code. class WasmFunctionCompiler : public HandleAndZoneScope, private GraphAndBuilders { public: explicit WasmFunctionCompiler(FunctionSig* sig) : GraphAndBuilders(main_zone()), jsgraph(this->isolate(), this->graph(), this->common(), nullptr, nullptr, this->machine()), descriptor_(nullptr) { init_env(&env, sig); } JSGraph jsgraph; FunctionEnv env; // The call descriptor is initialized when the function is compiled. CallDescriptor* descriptor_; Isolate* isolate() { return main_isolate(); } Graph* graph() const { return main_graph_; } Zone* zone() const { return graph()->zone(); } CommonOperatorBuilder* common() { return &main_common_; } MachineOperatorBuilder* machine() { return &main_machine_; } CallDescriptor* descriptor() { return descriptor_; } void Build(const byte* start, const byte* end) { compiler::WasmGraphBuilder builder(main_zone(), &jsgraph, env.sig); TreeResult result = BuildTFGraph(&builder, &env, start, end); if (result.failed()) { ptrdiff_t pc = result.error_pc - result.start; ptrdiff_t pt = result.error_pt - result.start; std::ostringstream str; str << "Verification failed: " << result.error_code << " pc = +" << pc; if (result.error_pt) str << ", pt = +" << pt; str << ", msg = " << result.error_msg.get(); FATAL(str.str().c_str()); } if (FLAG_trace_turbo_graph) { OFStream os(stdout); os << AsRPO(*jsgraph.graph()); } } byte AllocateLocal(LocalType type) { int result = static_cast(env.total_locals); env.AddLocals(type, 1); byte b = static_cast(result); CHECK_EQ(result, b); return b; } Handle Compile(ModuleEnv* module) { descriptor_ = module->GetWasmCallDescriptor(this->zone(), env.sig); CompilationInfo info("wasm compile", this->isolate(), this->zone()); Handle result = Pipeline::GenerateCodeForTesting(&info, descriptor_, this->graph()); #ifdef ENABLE_DISASSEMBLER if (!result.is_null() && FLAG_print_opt_code) { OFStream os(stdout); result->Disassemble("wasm code", os); } #endif return result; } uint32_t CompileAndAdd(TestingModule* module) { uint32_t index = 0; if (module->module && module->module->functions) { index = static_cast(module->module->functions->size()); } module->AddFunction(env.sig, Compile(module)); return index; } }; // A helper class to build graphs from Wasm bytecode, generate machine // code, and run that code. template class WasmRunner { public: WasmRunner(MachineType p0 = MachineType::None(), MachineType p1 = MachineType::None(), MachineType p2 = MachineType::None(), MachineType p3 = MachineType::None()) : signature_(MachineTypeForC() == MachineType::None() ? 0 : 1, GetParameterCount(p0, p1, p2, p3), storage_), compiler_(&signature_), call_wrapper_(p0, p1, p2, p3), compilation_done_(false) { int index = 0; MachineType ret = MachineTypeForC(); if (ret != MachineType::None()) { storage_[index++] = WasmOpcodes::LocalTypeFor(ret); } if (p0 != MachineType::None()) storage_[index++] = WasmOpcodes::LocalTypeFor(p0); if (p1 != MachineType::None()) storage_[index++] = WasmOpcodes::LocalTypeFor(p1); if (p2 != MachineType::None()) storage_[index++] = WasmOpcodes::LocalTypeFor(p2); if (p3 != MachineType::None()) storage_[index++] = WasmOpcodes::LocalTypeFor(p3); } FunctionEnv* env() { return &compiler_.env; } // Builds a graph from the given Wasm code, and generates the machine // code and call wrapper for that graph. This method must not be called // more than once. void Build(const byte* start, const byte* end) { DCHECK(!compilation_done_); compilation_done_ = true; // Build the TF graph. compiler_.Build(start, end); // Generate code. Handle code = compiler_.Compile(env()->module); // Construct the call wrapper. Node* inputs[5]; int input_count = 0; inputs[input_count++] = call_wrapper_.HeapConstant(code); for (size_t i = 0; i < signature_.parameter_count(); i++) { inputs[input_count++] = call_wrapper_.Parameter(i); } call_wrapper_.Return(call_wrapper_.AddNode( call_wrapper_.common()->Call(compiler_.descriptor()), input_count, inputs)); } ReturnType Call() { return call_wrapper_.Call(); } template ReturnType Call(P0 p0) { return call_wrapper_.Call(p0); } template ReturnType Call(P0 p0, P1 p1) { return call_wrapper_.Call(p0, p1); } template ReturnType Call(P0 p0, P1 p1, P2 p2) { return call_wrapper_.Call(p0, p1, p2); } template ReturnType Call(P0 p0, P1 p1, P2 p2, P3 p3) { return call_wrapper_.Call(p0, p1, p2, p3); } byte AllocateLocal(LocalType type) { int result = static_cast(env()->total_locals); env()->AddLocals(type, 1); byte b = static_cast(result); CHECK_EQ(result, b); return b; } private: LocalType storage_[5]; FunctionSig signature_; WasmFunctionCompiler compiler_; BufferedRawMachineAssemblerTester call_wrapper_; bool compilation_done_; static size_t GetParameterCount(MachineType p0, MachineType p1, MachineType p2, MachineType p3) { if (p0 == MachineType::None()) return 0; if (p1 == MachineType::None()) return 1; if (p2 == MachineType::None()) return 2; if (p3 == MachineType::None()) return 3; return 4; } }; #define BUILD(r, ...) \ do { \ byte code[] = {__VA_ARGS__}; \ r.Build(code, code + arraysize(code)); \ } while (false) TEST(Run_WasmInt8Const) { WasmRunner r; const byte kExpectedValue = 121; // return(kExpectedValue) BUILD(r, WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_fallthru1) { WasmRunner r; const byte kExpectedValue = 122; // kExpectedValue BUILD(r, WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_fallthru2) { WasmRunner r; const byte kExpectedValue = 123; // -99 kExpectedValue BUILD(r, WASM_I8(-99), WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_all) { for (int value = -128; value <= 127; value++) { WasmRunner r; // return(value) BUILD(r, WASM_I8(value)); int8_t result = r.Call(); CHECK_EQ(value, result); } } TEST(Run_WasmInt32Const) { WasmRunner r; const int32_t kExpectedValue = 0x11223344; // return(kExpectedValue) BUILD(r, WASM_I32(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt32Const_many) { FOR_INT32_INPUTS(i) { WasmRunner r; const int32_t kExpectedValue = *i; // return(kExpectedValue) BUILD(r, WASM_I32(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } } TEST(Run_WasmMemorySize) { WasmRunner r; TestingModule module; module.AddMemory(1024); r.env()->module = &module; BUILD(r, kExprMemorySize); CHECK_EQ(1024, r.Call()); } #if WASM_64 TEST(Run_WasmInt64Const) { WasmRunner r; const int64_t kExpectedValue = 0x1122334455667788LL; // return(kExpectedValue) BUILD(r, WASM_I64(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt64Const_many) { int cntr = 0; FOR_INT32_INPUTS(i) { WasmRunner r; const int64_t kExpectedValue = (static_cast(*i) << 32) | cntr; // return(kExpectedValue) BUILD(r, WASM_I64(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); cntr++; } } #endif TEST(Run_WasmInt32Param0) { WasmRunner r(MachineType::Int32()); // return(local[0]) BUILD(r, WASM_GET_LOCAL(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } TEST(Run_WasmInt32Param0_fallthru) { WasmRunner r(MachineType::Int32()); // local[0] BUILD(r, WASM_GET_LOCAL(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } TEST(Run_WasmInt32Param1) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // local[1] BUILD(r, WASM_GET_LOCAL(1)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(-111, *i)); } } TEST(Run_WasmInt32Add) { WasmRunner r; // 11 + 44 BUILD(r, WASM_I32_ADD(WASM_I8(11), WASM_I8(44))); CHECK_EQ(55, r.Call()); } TEST(Run_WasmInt32Add_P) { WasmRunner r(MachineType::Int32()); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); } } TEST(Run_WasmInt32Add_P_fallthru) { WasmRunner r(MachineType::Int32()); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); } } TEST(Run_WasmInt32Add_P2) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // p0 + p1 BUILD(r, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast(static_cast(*i) + static_cast(*j)); CHECK_EQ(expected, r.Call(*i, *j)); } } } // TODO(titzer): Fix for nosee4 and re-enable. #if 0 TEST(Run_WasmFloat32Add) { WasmRunner r; // int(11.5f + 44.5f) BUILD(r, WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f)))); CHECK_EQ(56, r.Call()); } TEST(Run_WasmFloat64Add) { WasmRunner r; // return int(13.5d + 43.5d) BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5)))); CHECK_EQ(57, r.Call()); } #endif void TestInt32Binop(WasmOpcode opcode, int32_t expected, int32_t a, int32_t b) { { WasmRunner r; // K op K BUILD(r, WASM_BINOP(opcode, WASM_I32(a), WASM_I32(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } TEST(Run_WasmInt32Binops) { TestInt32Binop(kExprI32Add, 88888888, 33333333, 55555555); TestInt32Binop(kExprI32Sub, -1111111, 7777777, 8888888); TestInt32Binop(kExprI32Mul, 65130756, 88734, 734); TestInt32Binop(kExprI32DivS, -66, -4777344, 72384); TestInt32Binop(kExprI32DivU, 805306368, 0xF0000000, 5); TestInt32Binop(kExprI32RemS, -3, -3003, 1000); TestInt32Binop(kExprI32RemU, 4, 4004, 1000); TestInt32Binop(kExprI32And, 0xEE, 0xFFEE, 0xFF0000FF); TestInt32Binop(kExprI32Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011); TestInt32Binop(kExprI32Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE); TestInt32Binop(kExprI32Shl, 0xA0000000, 0xA, 28); TestInt32Binop(kExprI32ShrU, 0x07000010, 0x70000100, 4); TestInt32Binop(kExprI32ShrS, 0xFF000000, 0x80000000, 7); TestInt32Binop(kExprI32Eq, 1, -99, -99); TestInt32Binop(kExprI32Ne, 0, -97, -97); TestInt32Binop(kExprI32LtS, 1, -4, 4); TestInt32Binop(kExprI32LeS, 0, -2, -3); TestInt32Binop(kExprI32LtU, 1, 0, -6); TestInt32Binop(kExprI32LeU, 1, 98978, 0xF0000000); TestInt32Binop(kExprI32GtS, 1, 4, -4); TestInt32Binop(kExprI32GeS, 0, -3, -2); TestInt32Binop(kExprI32GtU, 1, -6, 0); TestInt32Binop(kExprI32GeU, 1, 0xF0000000, 98978); } void TestInt32Unop(WasmOpcode opcode, int32_t expected, int32_t a) { { WasmRunner r; // return op K BUILD(r, WASM_UNOP(opcode, WASM_I32(a))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int32()); // return op a BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0))); CHECK_EQ(expected, r.Call(a)); } } TEST(Run_WasmInt32Clz) { TestInt32Unop(kExprI32Clz, 0, 0x80001000); TestInt32Unop(kExprI32Clz, 1, 0x40000500); TestInt32Unop(kExprI32Clz, 2, 0x20000300); TestInt32Unop(kExprI32Clz, 3, 0x10000003); TestInt32Unop(kExprI32Clz, 4, 0x08050000); TestInt32Unop(kExprI32Clz, 5, 0x04006000); TestInt32Unop(kExprI32Clz, 6, 0x02000000); TestInt32Unop(kExprI32Clz, 7, 0x010000a0); TestInt32Unop(kExprI32Clz, 8, 0x00800c00); TestInt32Unop(kExprI32Clz, 9, 0x00400000); TestInt32Unop(kExprI32Clz, 10, 0x0020000d); TestInt32Unop(kExprI32Clz, 11, 0x00100f00); TestInt32Unop(kExprI32Clz, 12, 0x00080000); TestInt32Unop(kExprI32Clz, 13, 0x00041000); TestInt32Unop(kExprI32Clz, 14, 0x00020020); TestInt32Unop(kExprI32Clz, 15, 0x00010300); TestInt32Unop(kExprI32Clz, 16, 0x00008040); TestInt32Unop(kExprI32Clz, 17, 0x00004005); TestInt32Unop(kExprI32Clz, 18, 0x00002050); TestInt32Unop(kExprI32Clz, 19, 0x00001700); TestInt32Unop(kExprI32Clz, 20, 0x00000870); TestInt32Unop(kExprI32Clz, 21, 0x00000405); TestInt32Unop(kExprI32Clz, 22, 0x00000203); TestInt32Unop(kExprI32Clz, 23, 0x00000101); TestInt32Unop(kExprI32Clz, 24, 0x00000089); TestInt32Unop(kExprI32Clz, 25, 0x00000041); TestInt32Unop(kExprI32Clz, 26, 0x00000022); TestInt32Unop(kExprI32Clz, 27, 0x00000013); TestInt32Unop(kExprI32Clz, 28, 0x00000008); TestInt32Unop(kExprI32Clz, 29, 0x00000004); TestInt32Unop(kExprI32Clz, 30, 0x00000002); TestInt32Unop(kExprI32Clz, 31, 0x00000001); TestInt32Unop(kExprI32Clz, 32, 0x00000000); } TEST(Run_WasmInt32Ctz) { TestInt32Unop(kExprI32Ctz, 32, 0x00000000); TestInt32Unop(kExprI32Ctz, 31, 0x80000000); TestInt32Unop(kExprI32Ctz, 30, 0x40000000); TestInt32Unop(kExprI32Ctz, 29, 0x20000000); TestInt32Unop(kExprI32Ctz, 28, 0x10000000); TestInt32Unop(kExprI32Ctz, 27, 0xa8000000); TestInt32Unop(kExprI32Ctz, 26, 0xf4000000); TestInt32Unop(kExprI32Ctz, 25, 0x62000000); TestInt32Unop(kExprI32Ctz, 24, 0x91000000); TestInt32Unop(kExprI32Ctz, 23, 0xcd800000); TestInt32Unop(kExprI32Ctz, 22, 0x09400000); TestInt32Unop(kExprI32Ctz, 21, 0xaf200000); TestInt32Unop(kExprI32Ctz, 20, 0xac100000); TestInt32Unop(kExprI32Ctz, 19, 0xe0b80000); TestInt32Unop(kExprI32Ctz, 18, 0x9ce40000); TestInt32Unop(kExprI32Ctz, 17, 0xc7920000); TestInt32Unop(kExprI32Ctz, 16, 0xb8f10000); TestInt32Unop(kExprI32Ctz, 15, 0x3b9f8000); TestInt32Unop(kExprI32Ctz, 14, 0xdb4c4000); TestInt32Unop(kExprI32Ctz, 13, 0xe9a32000); TestInt32Unop(kExprI32Ctz, 12, 0xfca61000); TestInt32Unop(kExprI32Ctz, 11, 0x6c8a7800); TestInt32Unop(kExprI32Ctz, 10, 0x8ce5a400); TestInt32Unop(kExprI32Ctz, 9, 0xcb7d0200); TestInt32Unop(kExprI32Ctz, 8, 0xcb4dc100); TestInt32Unop(kExprI32Ctz, 7, 0xdfbec580); TestInt32Unop(kExprI32Ctz, 6, 0x27a9db40); TestInt32Unop(kExprI32Ctz, 5, 0xde3bcb20); TestInt32Unop(kExprI32Ctz, 4, 0xd7e8a610); TestInt32Unop(kExprI32Ctz, 3, 0x9afdbc88); TestInt32Unop(kExprI32Ctz, 2, 0x9afdbc84); TestInt32Unop(kExprI32Ctz, 1, 0x9afdbc82); TestInt32Unop(kExprI32Ctz, 0, 0x9afdbc81); } TEST(Run_WasmInt32Popcnt) { TestInt32Unop(kExprI32Popcnt, 32, 0xffffffff); TestInt32Unop(kExprI32Popcnt, 0, 0x00000000); TestInt32Unop(kExprI32Popcnt, 1, 0x00008000); TestInt32Unop(kExprI32Popcnt, 13, 0x12345678); TestInt32Unop(kExprI32Popcnt, 19, 0xfedcba09); } #if WASM_64 void TestInt64Binop(WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) { if (!WasmOpcodes::IsSupported(opcode)) return; { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_I64(a), WASM_I64(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int64(), MachineType::Int64()); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestInt64Cmp(WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) { if (!WasmOpcodes::IsSupported(opcode)) return; { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_I64(a), WASM_I64(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int64(), MachineType::Int64()); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } TEST(Run_WasmInt64Binops) { // TODO(titzer): real 64-bit numbers TestInt64Binop(kExprI64Add, 8888888888888LL, 3333333333333LL, 5555555555555LL); TestInt64Binop(kExprI64Sub, -111111111111LL, 777777777777LL, 888888888888LL); TestInt64Binop(kExprI64Mul, 65130756, 88734, 734); TestInt64Binop(kExprI64DivS, -66, -4777344, 72384); TestInt64Binop(kExprI64DivU, 805306368, 0xF0000000, 5); TestInt64Binop(kExprI64RemS, -3, -3003, 1000); TestInt64Binop(kExprI64RemU, 4, 4004, 1000); TestInt64Binop(kExprI64And, 0xEE, 0xFFEE, 0xFF0000FF); TestInt64Binop(kExprI64Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011); TestInt64Binop(kExprI64Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE); TestInt64Binop(kExprI64Shl, 0xA0000000, 0xA, 28); TestInt64Binop(kExprI64ShrU, 0x0700001000123456LL, 0x7000010001234567LL, 4); TestInt64Binop(kExprI64ShrS, 0xFF00000000000000LL, 0x8000000000000000LL, 7); TestInt64Cmp(kExprI64Eq, 1, -9999, -9999); TestInt64Cmp(kExprI64Ne, 1, -9199, -9999); TestInt64Cmp(kExprI64LtS, 1, -4, 4); TestInt64Cmp(kExprI64LeS, 0, -2, -3); TestInt64Cmp(kExprI64LtU, 1, 0, -6); TestInt64Cmp(kExprI64LeU, 1, 98978, 0xF0000000); } TEST(Run_WasmInt64Clz) { struct { int64_t expected; uint64_t input; } values[] = {{0, 0x8000100000000000}, {1, 0x4000050000000000}, {2, 0x2000030000000000}, {3, 0x1000000300000000}, {4, 0x0805000000000000}, {5, 0x0400600000000000}, {6, 0x0200000000000000}, {7, 0x010000a000000000}, {8, 0x00800c0000000000}, {9, 0x0040000000000000}, {10, 0x0020000d00000000}, {11, 0x00100f0000000000}, {12, 0x0008000000000000}, {13, 0x0004100000000000}, {14, 0x0002002000000000}, {15, 0x0001030000000000}, {16, 0x0000804000000000}, {17, 0x0000400500000000}, {18, 0x0000205000000000}, {19, 0x0000170000000000}, {20, 0x0000087000000000}, {21, 0x0000040500000000}, {22, 0x0000020300000000}, {23, 0x0000010100000000}, {24, 0x0000008900000000}, {25, 0x0000004100000000}, {26, 0x0000002200000000}, {27, 0x0000001300000000}, {28, 0x0000000800000000}, {29, 0x0000000400000000}, {30, 0x0000000200000000}, {31, 0x0000000100000000}, {32, 0x0000000080001000}, {33, 0x0000000040000500}, {34, 0x0000000020000300}, {35, 0x0000000010000003}, {36, 0x0000000008050000}, {37, 0x0000000004006000}, {38, 0x0000000002000000}, {39, 0x00000000010000a0}, {40, 0x0000000000800c00}, {41, 0x0000000000400000}, {42, 0x000000000020000d}, {43, 0x0000000000100f00}, {44, 0x0000000000080000}, {45, 0x0000000000041000}, {46, 0x0000000000020020}, {47, 0x0000000000010300}, {48, 0x0000000000008040}, {49, 0x0000000000004005}, {50, 0x0000000000002050}, {51, 0x0000000000001700}, {52, 0x0000000000000870}, {53, 0x0000000000000405}, {54, 0x0000000000000203}, {55, 0x0000000000000101}, {56, 0x0000000000000089}, {57, 0x0000000000000041}, {58, 0x0000000000000022}, {59, 0x0000000000000013}, {60, 0x0000000000000008}, {61, 0x0000000000000004}, {62, 0x0000000000000002}, {63, 0x0000000000000001}, {64, 0x0000000000000000}}; WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_I64_CLZ(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } TEST(Run_WasmInt64Ctz) { struct { int64_t expected; uint64_t input; } values[] = {{64, 0x0000000000000000}, {63, 0x8000000000000000}, {62, 0x4000000000000000}, {61, 0x2000000000000000}, {60, 0x1000000000000000}, {59, 0xa800000000000000}, {58, 0xf400000000000000}, {57, 0x6200000000000000}, {56, 0x9100000000000000}, {55, 0xcd80000000000000}, {54, 0x0940000000000000}, {53, 0xaf20000000000000}, {52, 0xac10000000000000}, {51, 0xe0b8000000000000}, {50, 0x9ce4000000000000}, {49, 0xc792000000000000}, {48, 0xb8f1000000000000}, {47, 0x3b9f800000000000}, {46, 0xdb4c400000000000}, {45, 0xe9a3200000000000}, {44, 0xfca6100000000000}, {43, 0x6c8a780000000000}, {42, 0x8ce5a40000000000}, {41, 0xcb7d020000000000}, {40, 0xcb4dc10000000000}, {39, 0xdfbec58000000000}, {38, 0x27a9db4000000000}, {37, 0xde3bcb2000000000}, {36, 0xd7e8a61000000000}, {35, 0x9afdbc8800000000}, {34, 0x9afdbc8400000000}, {33, 0x9afdbc8200000000}, {32, 0x9afdbc8100000000}, {31, 0x0000000080000000}, {30, 0x0000000040000000}, {29, 0x0000000020000000}, {28, 0x0000000010000000}, {27, 0x00000000a8000000}, {26, 0x00000000f4000000}, {25, 0x0000000062000000}, {24, 0x0000000091000000}, {23, 0x00000000cd800000}, {22, 0x0000000009400000}, {21, 0x00000000af200000}, {20, 0x00000000ac100000}, {19, 0x00000000e0b80000}, {18, 0x000000009ce40000}, {17, 0x00000000c7920000}, {16, 0x00000000b8f10000}, {15, 0x000000003b9f8000}, {14, 0x00000000db4c4000}, {13, 0x00000000e9a32000}, {12, 0x00000000fca61000}, {11, 0x000000006c8a7800}, {10, 0x000000008ce5a400}, {9, 0x00000000cb7d0200}, {8, 0x00000000cb4dc100}, {7, 0x00000000dfbec580}, {6, 0x0000000027a9db40}, {5, 0x00000000de3bcb20}, {4, 0x00000000d7e8a610}, {3, 0x000000009afdbc88}, {2, 0x000000009afdbc84}, {1, 0x000000009afdbc82}, {0, 0x000000009afdbc81}}; WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_I64_CTZ(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } TEST(Run_WasmInt64Popcnt) { struct { int64_t expected; uint64_t input; } values[] = {{64, 0xffffffffffffffff}, {0, 0x0000000000000000}, {2, 0x0000080000008000}, {26, 0x1123456782345678}, {38, 0xffedcba09edcba09}}; WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } #endif TEST(Run_WASM_Int32DivS_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(std::numeric_limits::min(), -1)); CHECK_TRAP(r.Call(std::numeric_limits::min(), 0)); } TEST(Run_WASM_Int32RemS_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(33, r.Call(133, 100)); CHECK_EQ(0, r.Call(std::numeric_limits::min(), -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(std::numeric_limits::min(), 0)); } TEST(Run_WASM_Int32DivU_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(0, 100)); CHECK_EQ(0, r.Call(std::numeric_limits::min(), -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(std::numeric_limits::min(), 0)); } TEST(Run_WASM_Int32RemU_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(17, r.Call(217, 100)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(std::numeric_limits::min(), 0)); CHECK_EQ(std::numeric_limits::min(), r.Call(std::numeric_limits::min(), -1)); } TEST(Run_WASM_Int32DivS_byzero_const) { for (int8_t denom = -2; denom < 8; denom++) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(denom))); for (int32_t val = -7; val < 8; val++) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } TEST(Run_WASM_Int32DivU_byzero_const) { for (uint32_t denom = 0xfffffffe; denom < 8; denom++) { WasmRunner r(MachineType::Uint32()); BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32(denom))); for (uint32_t val = 0xfffffff0; val < 8; val++) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } TEST(Run_WASM_Int32DivS_trap_effect) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); TestingModule module; module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1)), WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1)))); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(8, 0)); CHECK_TRAP(r.Call(4, 0)); CHECK_TRAP(r.Call(0, 0)); } #if WASM_64 #define as64(x) static_cast(x) TEST(Run_WASM_Int64DivS_trap) { WasmRunner r(MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(as64(0), as64(100))); CHECK_TRAP64(r.Call(as64(100), as64(0))); CHECK_TRAP64(r.Call(as64(-1001), as64(0))); CHECK_TRAP64(r.Call(std::numeric_limits::min(), as64(-1))); CHECK_TRAP64(r.Call(std::numeric_limits::min(), as64(0))); } TEST(Run_WASM_Int64RemS_trap) { WasmRunner r(MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(33, r.Call(as64(133), as64(100))); CHECK_EQ(0, r.Call(std::numeric_limits::min(), as64(-1))); CHECK_TRAP64(r.Call(as64(100), as64(0))); CHECK_TRAP64(r.Call(as64(-1001), as64(0))); CHECK_TRAP64(r.Call(std::numeric_limits::min(), as64(0))); } TEST(Run_WASM_Int64DivU_trap) { WasmRunner r(MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(as64(0), as64(100))); CHECK_EQ(0, r.Call(std::numeric_limits::min(), as64(-1))); CHECK_TRAP64(r.Call(as64(100), as64(0))); CHECK_TRAP64(r.Call(as64(-1001), as64(0))); CHECK_TRAP64(r.Call(std::numeric_limits::min(), as64(0))); } TEST(Run_WASM_Int64RemU_trap) { WasmRunner r(MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(17, r.Call(as64(217), as64(100))); CHECK_TRAP64(r.Call(as64(100), as64(0))); CHECK_TRAP64(r.Call(as64(-1001), as64(0))); CHECK_TRAP64(r.Call(std::numeric_limits::min(), as64(0))); CHECK_EQ(std::numeric_limits::min(), r.Call(std::numeric_limits::min(), as64(-1))); } TEST(Run_WASM_Int64DivS_byzero_const) { for (int8_t denom = -2; denom < 8; denom++) { WasmRunner r(MachineType::Int64()); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64(denom))); for (int64_t val = -7; val < 8; val++) { if (denom == 0) { CHECK_TRAP64(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } TEST(Run_WASM_Int64DivU_byzero_const) { for (uint64_t denom = 0xfffffffffffffffe; denom < 8; denom++) { WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64(denom))); for (uint64_t val = 0xfffffffffffffff0; val < 8; val++) { if (denom == 0) { CHECK_TRAP64(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } #endif void TestFloat32Binop(WasmOpcode opcode, int32_t expected, float a, float b) { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test float parameters } void TestFloat32BinopWithConvert(WasmOpcode opcode, int32_t expected, float a, float b) { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test float parameters } void TestFloat32UnopWithConvert(WasmOpcode opcode, int32_t expected, float a) { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a)))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test float parameters } void TestFloat64Binop(WasmOpcode opcode, int32_t expected, double a, double b) { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test double parameters } void TestFloat64BinopWithConvert(WasmOpcode opcode, int32_t expected, double a, double b) { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test double parameters } void TestFloat64UnopWithConvert(WasmOpcode opcode, int32_t expected, double a) { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a)))); CHECK_EQ(expected, r.Call()); // TODO(titzer): test float parameters } // TODO(titzer): Fix for nosee4 and re-enable. #if 0 TEST(Run_WasmFloat32Binops) { TestFloat32Binop(kExprF32Eq, 1, 8.125f, 8.125f); TestFloat32Binop(kExprF32Ne, 1, 8.125f, 8.127f); TestFloat32Binop(kExprF32Lt, 1, -9.5f, -9.0f); TestFloat32Binop(kExprF32Le, 1, -1111.0f, -1111.0f); TestFloat32Binop(kExprF32Gt, 1, -9.0f, -9.5f); TestFloat32Binop(kExprF32Ge, 1, -1111.0f, -1111.0f); TestFloat32BinopWithConvert(kExprF32Add, 10, 3.5f, 6.5f); TestFloat32BinopWithConvert(kExprF32Sub, 2, 44.5f, 42.5f); TestFloat32BinopWithConvert(kExprF32Mul, -66, -132.1f, 0.5f); TestFloat32BinopWithConvert(kExprF32Div, 11, 22.1f, 2.0f); } TEST(Run_WasmFloat32Unops) { TestFloat32UnopWithConvert(kExprF32Abs, 8, 8.125f); TestFloat32UnopWithConvert(kExprF32Abs, 9, -9.125f); TestFloat32UnopWithConvert(kExprF32Neg, -213, 213.125f); TestFloat32UnopWithConvert(kExprF32Sqrt, 12, 144.4f); } TEST(Run_WasmFloat64Binops) { TestFloat64Binop(kExprF64Eq, 1, 16.25, 16.25); TestFloat64Binop(kExprF64Ne, 1, 16.25, 16.15); TestFloat64Binop(kExprF64Lt, 1, -32.4, 11.7); TestFloat64Binop(kExprF64Le, 1, -88.9, -88.9); TestFloat64Binop(kExprF64Gt, 1, 11.7, -32.4); TestFloat64Binop(kExprF64Ge, 1, -88.9, -88.9); TestFloat64BinopWithConvert(kExprF64Add, 100, 43.5, 56.5); TestFloat64BinopWithConvert(kExprF64Sub, 200, 12200.1, 12000.1); TestFloat64BinopWithConvert(kExprF64Mul, -33, 134, -0.25); TestFloat64BinopWithConvert(kExprF64Div, -1111, -2222.3, 2); } TEST(Run_WasmFloat64Unops) { TestFloat64UnopWithConvert(kExprF64Abs, 108, 108.125); TestFloat64UnopWithConvert(kExprF64Abs, 209, -209.125); TestFloat64UnopWithConvert(kExprF64Neg, -209, 209.125); TestFloat64UnopWithConvert(kExprF64Sqrt, 13, 169.4); } #endif TEST(Run_WasmFloat32Neg) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_EQ(0x80000000, bit_cast(*i) ^ bit_cast(r.Call(*i))); } } TEST(Run_WasmFloat64Neg) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_EQ(0x8000000000000000, bit_cast(*i) ^ bit_cast(r.Call(*i))); } } TEST(Run_Wasm_IfElse_P) { WasmRunner r(MachineType::Int32()); // if (p0) return 11; else return 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_IfElse_Unreachable1) { WasmRunner r; // if (0) unreachable; else return 22; BUILD(r, WASM_IF_ELSE(WASM_ZERO, // -- WASM_UNREACHABLE, // -- WASM_I8(27))); // -- CHECK_EQ(27, r.Call()); } TEST(Run_Wasm_Return12) { WasmRunner r; BUILD(r, WASM_RETURN(WASM_I8(12))); CHECK_EQ(12, r.Call()); } TEST(Run_Wasm_Return17) { WasmRunner r; BUILD(r, WASM_BLOCK(1, WASM_RETURN(WASM_I8(17)))); CHECK_EQ(17, r.Call()); } TEST(Run_Wasm_Return_I32) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } #if WASM_64 TEST(Run_Wasm_Return_I64) { WasmRunner r(MachineType::Int64()); BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } #endif TEST(Run_Wasm_Return_F32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { float expect = *i; float result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } TEST(Run_Wasm_Return_F64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { double expect = *i; double result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } TEST(Run_Wasm_Select) { WasmRunner r(MachineType::Int32()); // return select(a, 11, 22); BUILD(r, WASM_SELECT(WASM_GET_LOCAL(0), WASM_I8(11), WASM_I8(22))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Select_strict1) { WasmRunner r(MachineType::Int32()); // select(a, a = 11, 22); return a BUILD(r, WASM_BLOCK(2, WASM_SELECT(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(11)), WASM_I8(22)), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(11, r.Call(*i)); } } TEST(Run_Wasm_Select_strict2) { WasmRunner r(MachineType::Int32()); // select(a, 11, a = 22); return a; BUILD(r, WASM_BLOCK(2, WASM_SELECT(WASM_GET_LOCAL(0), WASM_I8(11), WASM_SET_LOCAL(0, WASM_I8(22))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(22, r.Call(*i)); } } TEST(Run_Wasm_BrIf_strict) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_BLOCK(1, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(99)))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(99, r.Call(*i)); } } TEST(Run_Wasm_TableSwitch1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_TABLESWITCH_OP(1, 1, WASM_CASE(0)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(93)))); FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(*i)); } } TEST(Run_Wasm_TableSwitch_br) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_TABLESWITCH_OP(1, 2, WASM_CASE_BR(0), WASM_CASE(0)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(91))), WASM_I8(99)); CHECK_EQ(99, r.Call(0)); CHECK_EQ(91, r.Call(1)); CHECK_EQ(91, r.Call(2)); CHECK_EQ(91, r.Call(3)); } TEST(Run_Wasm_TableSwitch_br2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_BLOCK(2, WASM_TABLESWITCH_OP( 1, 4, WASM_CASE_BR(0), WASM_CASE_BR(1), WASM_CASE_BR(2), WASM_CASE(0)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(85))), WASM_RETURN(WASM_I8(86))), WASM_RETURN(WASM_I8(87))), WASM_I8(88)); CHECK_EQ(86, r.Call(0)); CHECK_EQ(87, r.Call(1)); CHECK_EQ(88, r.Call(2)); CHECK_EQ(85, r.Call(3)); CHECK_EQ(85, r.Call(4)); CHECK_EQ(85, r.Call(5)); } TEST(Run_Wasm_TableSwitch2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_TABLESWITCH_OP(2, 2, WASM_CASE(0), WASM_CASE(1)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(91)), WASM_RETURN(WASM_I8(92)))); FOR_INT32_INPUTS(i) { int32_t expected = *i == 0 ? 91 : 92; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_TableSwitch2b) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_TABLESWITCH_OP(2, 2, WASM_CASE(1), WASM_CASE(0)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(81)), WASM_RETURN(WASM_I8(82)))); FOR_INT32_INPUTS(i) { int32_t expected = *i == 0 ? 82 : 81; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_TableSwitch4) { for (int i = 0; i < 4; i++) { const uint16_t br = 0x8000u; uint16_t c = 0; uint16_t cases[] = {i == 0 ? br : c++, i == 1 ? br : c++, i == 2 ? br : c++, i == 3 ? br : c++}; byte code[] = { WASM_BLOCK(1, WASM_TABLESWITCH_OP( 3, 4, WASM_CASE(cases[0]), WASM_CASE(cases[1]), WASM_CASE(cases[2]), WASM_CASE(cases[3])), WASM_TABLESWITCH_BODY( WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(71)), WASM_RETURN(WASM_I8(72)), WASM_RETURN(WASM_I8(73)))), WASM_RETURN(WASM_I8(74))}; WasmRunner r(MachineType::Int32()); r.Build(code, code + arraysize(code)); FOR_INT32_INPUTS(i) { int index = (*i < 0 || *i > 3) ? 3 : *i; int32_t expected = 71 + cases[index]; if (expected >= 0x8000) expected = 74; CHECK_EQ(expected, r.Call(*i)); } } } TEST(Run_Wasm_TableSwitch4b) { for (int a = 0; a < 2; a++) { for (int b = 0; b < 2; b++) { for (int c = 0; c < 2; c++) { for (int d = 0; d < 2; d++) { if (a + b + c + d == 0) continue; if (a + b + c + d == 4) continue; byte code[] = { WASM_TABLESWITCH_OP(2, 4, WASM_CASE(a), WASM_CASE(b), WASM_CASE(c), WASM_CASE(d)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(61)), WASM_RETURN(WASM_I8(62)))}; WasmRunner r(MachineType::Int32()); r.Build(code, code + arraysize(code)); CHECK_EQ(61 + a, r.Call(0)); CHECK_EQ(61 + b, r.Call(1)); CHECK_EQ(61 + c, r.Call(2)); CHECK_EQ(61 + d, r.Call(3)); CHECK_EQ(61 + d, r.Call(4)); } } } } } TEST(Run_Wasm_TableSwitch4_fallthru) { byte code[] = { WASM_TABLESWITCH_OP(4, 4, WASM_CASE(0), WASM_CASE(1), WASM_CASE(2), WASM_CASE(3)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_INC_LOCAL_BY(1, 1), WASM_INC_LOCAL_BY(1, 2), WASM_INC_LOCAL_BY(1, 4), WASM_INC_LOCAL_BY(1, 8)), WASM_GET_LOCAL(1)}; WasmRunner r(MachineType::Int32(), MachineType::Int32()); r.Build(code, code + arraysize(code)); CHECK_EQ(15, r.Call(0, 0)); CHECK_EQ(14, r.Call(1, 0)); CHECK_EQ(12, r.Call(2, 0)); CHECK_EQ(8, r.Call(3, 0)); CHECK_EQ(8, r.Call(4, 0)); CHECK_EQ(115, r.Call(0, 100)); CHECK_EQ(114, r.Call(1, 100)); CHECK_EQ(112, r.Call(2, 100)); CHECK_EQ(108, r.Call(3, 100)); CHECK_EQ(108, r.Call(4, 100)); } TEST(Run_Wasm_TableSwitch4_fallthru_br) { byte code[] = { WASM_TABLESWITCH_OP(4, 4, WASM_CASE(0), WASM_CASE(1), WASM_CASE(2), WASM_CASE(3)), WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_INC_LOCAL_BY(1, 1), WASM_BRV(0, WASM_INC_LOCAL_BY(1, 2)), WASM_INC_LOCAL_BY(1, 4), WASM_BRV(0, WASM_INC_LOCAL_BY(1, 8))), WASM_GET_LOCAL(1)}; WasmRunner r(MachineType::Int32(), MachineType::Int32()); r.Build(code, code + arraysize(code)); CHECK_EQ(3, r.Call(0, 0)); CHECK_EQ(2, r.Call(1, 0)); CHECK_EQ(12, r.Call(2, 0)); CHECK_EQ(8, r.Call(3, 0)); CHECK_EQ(8, r.Call(4, 0)); CHECK_EQ(203, r.Call(0, 200)); CHECK_EQ(202, r.Call(1, 200)); CHECK_EQ(212, r.Call(2, 200)); CHECK_EQ(208, r.Call(3, 200)); CHECK_EQ(208, r.Call(4, 200)); } TEST(Run_Wasm_F32ReinterpretI32) { WasmRunner r; TestingModule module; int32_t* memory = module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_I32_REINTERPRET_F32( WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t expected = *i; memory[0] = expected; CHECK_EQ(expected, r.Call()); } } TEST(Run_Wasm_I32ReinterpretF32) { WasmRunner r(MachineType::Int32()); TestingModule module; int32_t* memory = module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_BLOCK( 2, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))), WASM_I8(107))); FOR_INT32_INPUTS(i) { int32_t expected = *i; CHECK_EQ(107, r.Call(expected)); CHECK_EQ(expected, memory[0]); } } TEST(Run_Wasm_ReturnStore) { WasmRunner r; TestingModule module; int32_t* memory = module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t expected = *i; memory[0] = expected; CHECK_EQ(expected, r.Call()); } } TEST(Run_Wasm_VoidReturn1) { WasmRunner r; BUILD(r, kExprNop); r.Call(); } TEST(Run_Wasm_VoidReturn2) { WasmRunner r; BUILD(r, WASM_RETURN0); r.Call(); } TEST(Run_Wasm_Block_If_P) { WasmRunner r(MachineType::Int32()); // { if (p0) return 51; return 52; } BUILD(r, WASM_BLOCK(2, // -- WASM_IF(WASM_GET_LOCAL(0), // -- WASM_BRV(0, WASM_I8(51))), // -- WASM_I8(52))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 51 : 52; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_BrIf_P) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(51)), WASM_I8(52))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 51 : 52; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_IfElse_P_assign) { WasmRunner r(MachineType::Int32()); // { if (p0) p0 = 71; else p0 = 72; return p0; } BUILD(r, WASM_BLOCK(2, // -- WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_SET_LOCAL(0, WASM_I8(71)), // -- WASM_SET_LOCAL(0, WASM_I8(72))), // -- WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 71 : 72; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_IfElse_P_return) { WasmRunner r(MachineType::Int32()); // if (p0) return 81; else return 82; BUILD(r, // -- WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_RETURN(WASM_I8(81)), // -- WASM_RETURN(WASM_I8(82)))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 81 : 82; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_If_P_assign) { WasmRunner r(MachineType::Int32()); // { if (p0) p0 = 61; p0; } BUILD(r, WASM_BLOCK( 2, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(61))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 61 : *i; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_ExprIf_P) { WasmRunner r(MachineType::Int32()); // p0 ? 11 : 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_ExprIf_P_fallthru) { WasmRunner r(MachineType::Int32()); // p0 ? 11 : 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_CountDown) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_LOOP( 1, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1)))))), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_CountDown_fallthru) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_LOOP(3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAK(0)), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))), WASM_CONTINUE(0)), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_WhileCountDown) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_WHILE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1)))), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_Loop_if_break1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(0)), WASM_SET_LOCAL(0, WASM_I8(99))), WASM_GET_LOCAL(0))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10000, r.Call(10000)); CHECK_EQ(-29, r.Call(-29)); } TEST(Run_Wasm_Loop_if_break2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_LOOP(2, WASM_BR_IF(1, WASM_GET_LOCAL(0)), WASM_SET_LOCAL(0, WASM_I8(99))), WASM_GET_LOCAL(0))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10000, r.Call(10000)); CHECK_EQ(-29, r.Call(-29)); } TEST(Run_Wasm_Loop_if_break_fallthru) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(1, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)), WASM_SET_LOCAL(0, WASM_I8(93)))), WASM_GET_LOCAL(0)); CHECK_EQ(93, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10001, r.Call(10001)); CHECK_EQ(-22, r.Call(-22)); } TEST(Run_Wasm_LoadMemI32) { WasmRunner r(MachineType::Int32()); TestingModule module; int32_t* memory = module.AddMemoryElems(8); module.RandomizeMemory(1111); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(0))); memory[0] = 99999999; CHECK_EQ(99999999, r.Call(0)); memory[0] = 88888888; CHECK_EQ(88888888, r.Call(0)); memory[0] = 77777777; CHECK_EQ(77777777, r.Call(0)); } TEST(Run_Wasm_LoadMemI32_oob) { WasmRunner r(MachineType::Uint32()); TestingModule module; int32_t* memory = module.AddMemoryElems(8); module.RandomizeMemory(1111); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); memory[0] = 88888888; CHECK_EQ(88888888, r.Call(0u)); for (uint32_t offset = 29; offset < 40; offset++) { CHECK_TRAP(r.Call(offset)); } for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) { CHECK_TRAP(r.Call(offset)); } } TEST(Run_Wasm_LoadMemI32_oob_asm) { WasmRunner r(MachineType::Uint32()); TestingModule module; module.asm_js = true; int32_t* memory = module.AddMemoryElems(8); module.RandomizeMemory(1112); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); memory[0] = 999999; CHECK_EQ(999999, r.Call(0u)); // TODO(titzer): offset 29-31 should also be OOB. for (uint32_t offset = 32; offset < 40; offset++) { CHECK_EQ(0, r.Call(offset)); } for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) { CHECK_EQ(0, r.Call(offset)); } } TEST(Run_Wasm_LoadMem_offset_oob) { TestingModule module; module.AddMemoryElems(8); static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; for (size_t m = 0; m < arraysize(machineTypes); m++) { module.RandomizeMemory(1116 + static_cast(m)); WasmRunner r(MachineType::Uint32()); r.env()->module = &module; uint32_t boundary = 24 - WasmOpcodes::MemSize(machineTypes[m]); BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0)), WASM_ZERO); CHECK_EQ(0, r.Call(boundary)); // in bounds. for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } TEST(Run_Wasm_LoadMemI32_offset) { WasmRunner r(MachineType::Int32()); TestingModule module; int32_t* memory = module.AddMemoryElems(4); module.RandomizeMemory(1111); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0))); memory[0] = 66666666; memory[1] = 77777777; memory[2] = 88888888; memory[3] = 99999999; CHECK_EQ(77777777, r.Call(0)); CHECK_EQ(88888888, r.Call(4)); CHECK_EQ(99999999, r.Call(8)); memory[0] = 11111111; memory[1] = 22222222; memory[2] = 33333333; memory[3] = 44444444; CHECK_EQ(22222222, r.Call(0)); CHECK_EQ(33333333, r.Call(4)); CHECK_EQ(44444444, r.Call(8)); } // TODO(titzer): Fix for mips and re-enable. #if !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 TEST(Run_Wasm_LoadMemI32_const_oob) { TestingModule module; const int kMemSize = 12; module.AddMemoryElems(kMemSize); for (int offset = 0; offset < kMemSize + 5; offset++) { for (int index = 0; index < kMemSize + 5; index++) { WasmRunner r; r.env()->module = &module; module.RandomizeMemory(); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index))); if ((offset + index) <= (kMemSize - sizeof(int32_t))) { CHECK_EQ(module.raw_val_at(offset + index), r.Call()); } else { CHECK_TRAP(r.Call()); } } } } #endif TEST(Run_Wasm_StoreMemI32_offset) { WasmRunner r(MachineType::Int32()); const int32_t kWritten = 0xaabbccdd; TestingModule module; int32_t* memory = module.AddMemoryElems(4); r.env()->module = &module; BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0), WASM_I32(kWritten))); for (int i = 0; i < 2; i++) { module.RandomizeMemory(1111); memory[0] = 66666666; memory[1] = 77777777; memory[2] = 88888888; memory[3] = 99999999; CHECK_EQ(kWritten, r.Call(i * 4)); CHECK_EQ(66666666, memory[0]); CHECK_EQ(i == 0 ? kWritten : 77777777, memory[1]); CHECK_EQ(i == 1 ? kWritten : 88888888, memory[2]); CHECK_EQ(i == 2 ? kWritten : 99999999, memory[3]); } } #if WASM_64 // TODO(titzer): Figure out why this fails on 32-bit architectures. TEST(Run_Wasm_StoreMem_offset_oob) { TestingModule module; byte* memory = module.AddMemoryElems(32); #if WASM_64 static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; #else static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Float32(), MachineType::Float64()}; #endif for (size_t m = 0; m < arraysize(machineTypes); m++) { module.RandomizeMemory(1119 + static_cast(m)); WasmRunner r(MachineType::Uint32()); r.env()->module = &module; BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0), WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)), WASM_ZERO); byte memsize = WasmOpcodes::MemSize(machineTypes[m]); uint32_t boundary = 24 - memsize; CHECK_EQ(0, r.Call(boundary)); // in bounds. CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize)); for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } #endif #if WASM_64 TEST(Run_Wasm_F64ReinterpretI64) { WasmRunner r; TestingModule module; int64_t* memory = module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_I64_REINTERPRET_F64( WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int64_t expected = static_cast(*i) * 0x300010001; memory[0] = expected; CHECK_EQ(expected, r.Call()); } } TEST(Run_Wasm_I64ReinterpretF64) { WasmRunner r(MachineType::Int64()); TestingModule module; int64_t* memory = module.AddMemoryElems(8); r.env()->module = &module; BUILD(r, WASM_BLOCK( 2, WASM_STORE_MEM(MachineType::Float64(), WASM_ZERO, WASM_F64_REINTERPRET_I64(WASM_GET_LOCAL(0))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int64_t expected = static_cast(*i) * 0x300010001; CHECK_EQ(expected, r.Call(expected)); CHECK_EQ(expected, memory[0]); } } TEST(Run_Wasm_LoadMemI64) { WasmRunner r; TestingModule module; int64_t* memory = module.AddMemoryElems(8); module.RandomizeMemory(1111); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int64(), WASM_I8(0))); memory[0] = 0xaabbccdd00112233LL; CHECK_EQ(0xaabbccdd00112233LL, r.Call()); memory[0] = 0x33aabbccdd001122LL; CHECK_EQ(0x33aabbccdd001122LL, r.Call()); memory[0] = 77777777; CHECK_EQ(77777777, r.Call()); } #endif TEST(Run_Wasm_LoadMemI32_P) { const int kNumElems = 8; WasmRunner r(MachineType::Int32()); TestingModule module; int32_t* memory = module.AddMemoryElems(kNumElems); module.RandomizeMemory(2222); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); for (int i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(i * 4)); } } TEST(Run_Wasm_MemI32_Sum) { WasmRunner r(MachineType::Int32()); const int kNumElems = 20; const byte kSum = r.AllocateLocal(kAstI32); TestingModule module; uint32_t* memory = module.AddMemoryElems(kNumElems); r.env()->module = &module; BUILD(r, WASM_BLOCK( 2, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kSum, WASM_I32_ADD( WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))), WASM_GET_LOCAL(1))); // Run 4 trials. for (int i = 0; i < 3; i++) { module.RandomizeMemory(i * 33); uint32_t expected = 0; for (size_t j = kNumElems - 1; j > 0; j--) { expected += memory[j]; } uint32_t result = r.Call(static_cast(4 * (kNumElems - 1))); CHECK_EQ(expected, result); } } TEST(Run_Wasm_CheckMachIntsZero) { WasmRunner r(MachineType::Int32()); const int kNumElems = 55; TestingModule module; module.AddMemoryElems(kNumElems); r.env()->module = &module; BUILD(r, kExprBlock, 2, kExprLoop, 1, kExprIf, kExprGetLocal, 0, kExprBr, 0, kExprIfElse, kExprI32LoadMem, 0, kExprGetLocal, 0, kExprBr, 2, kExprI8Const, 255, kExprSetLocal, 0, kExprI32Sub, kExprGetLocal, 0, kExprI8Const, 4, kExprI8Const, 0); module.BlankMemory(); CHECK_EQ(0, r.Call((kNumElems - 1) * 4)); } // TODO(titzer): Fix for msan and re-enable. #if 0 TEST(Run_Wasm_MemF32_Sum) { WasmRunner r(MachineType::Int32()); const byte kSum = r.AllocateLocal(kAstF32); ModuleEnv module; const int kSize = 5; float buffer[kSize] = {-99.25, -888.25, -77.25, 66666.25, 5555.25}; module.mem_start = reinterpret_cast(&buffer); module.mem_end = reinterpret_cast(&buffer[kSize]); r.env()->module = &module; BUILD(r, WASM_BLOCK( 3, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kSum, WASM_F32_ADD( WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Float32(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))), WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_GET_LOCAL(kSum)), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(4 * (kSize - 1))); CHECK_NE(-99.25, buffer[0]); CHECK_EQ(71256.0f, buffer[0]); } #endif #if WASM_64 TEST(Run_Wasm_MemI64_Sum) { WasmRunner r(MachineType::Int32()); const int kNumElems = 20; const byte kSum = r.AllocateLocal(kAstI64); TestingModule module; uint64_t* memory = module.AddMemoryElems(kNumElems); r.env()->module = &module; BUILD(r, WASM_BLOCK( 2, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kSum, WASM_I64_ADD( WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Int64(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(8))))), WASM_GET_LOCAL(1))); // Run 4 trials. for (int i = 0; i < 3; i++) { module.RandomizeMemory(i * 33); uint64_t expected = 0; for (size_t j = kNumElems - 1; j > 0; j--) { expected += memory[j]; } uint64_t result = r.Call(8 * (kNumElems - 1)); CHECK_EQ(expected, result); } } #endif // TODO(titzer): Fix for msan and re-enable. #if 0 template void GenerateAndRunFold(WasmOpcode binop, T* buffer, size_t size, LocalType astType, MachineType memType) { WasmRunner r(MachineType::Int32()); const byte kAccum = r.AllocateLocal(astType); ModuleEnv module; module.mem_start = reinterpret_cast(buffer); module.mem_end = reinterpret_cast(buffer + size); r.env()->module = &module; BUILD( r, WASM_BLOCK( 4, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)), WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kAccum, WASM_BINOP(binop, WASM_GET_LOCAL(kAccum), WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(sizeof(T)))))), WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)), WASM_GET_LOCAL(0))); r.Call(static_cast(sizeof(T) * (size - 1))); } TEST(Run_Wasm_MemF64_Mul) { const size_t kSize = 6; double buffer[kSize] = {1, 2, 2, 2, 2, 2}; GenerateAndRunFold(kExprF64Mul, buffer, kSize, kAstF64, MachineType::Float64()); CHECK_EQ(32, buffer[0]); } #endif TEST(Build_Wasm_Infinite_Loop) { WasmRunner r(MachineType::Int32()); // Only build the graph and compile, don't run. BUILD(r, WASM_INFINITE_LOOP); } TEST(Build_Wasm_Infinite_Loop_effect) { WasmRunner r(MachineType::Int32()); TestingModule module; module.AddMemoryElems(16); r.env()->module = &module; // Only build the graph and compile, don't run. BUILD(r, WASM_LOOP(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))); } TEST(Run_Wasm_Unreachable0a) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV(0, WASM_I8(9)), WASM_RETURN(WASM_GET_LOCAL(0)))); CHECK_EQ(9, r.Call(0)); CHECK_EQ(9, r.Call(1)); } TEST(Run_Wasm_Unreachable0b) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV(0, WASM_I8(7)), WASM_UNREACHABLE)); CHECK_EQ(7, r.Call(0)); CHECK_EQ(7, r.Call(1)); } TEST(Build_Wasm_Unreachable1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE); } TEST(Build_Wasm_Unreachable2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE); } TEST(Build_Wasm_Unreachable3) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE); } TEST(Build_Wasm_UnreachableIf1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); } TEST(Build_Wasm_UnreachableIf2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE)); } TEST(Run_Wasm_Unreachable_Load) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV(0, WASM_GET_LOCAL(0)), WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)))); CHECK_EQ(11, r.Call(11)); CHECK_EQ(21, r.Call(21)); } TEST(Run_Wasm_Infinite_Loop_not_taken1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I8(45))); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(0)); } TEST(Run_Wasm_Infinite_Loop_not_taken2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(1, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(45)), WASM_INFINITE_LOOP))); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } TEST(Run_Wasm_Infinite_Loop_not_taken2_brif) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(45)), WASM_INFINITE_LOOP)); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } // TODO(titzer): Fix for nosee4 and re-enable. #if 0 static void TestBuildGraphForUnop(WasmOpcode opcode, FunctionSig* sig) { WasmRunner r(MachineType::Int32()); init_env(r.env(), sig); BUILD(r, static_cast(opcode), kExprGetLocal, 0); } static void TestBuildGraphForBinop(WasmOpcode opcode, FunctionSig* sig) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); init_env(r.env(), sig); BUILD(r, static_cast(opcode), kExprGetLocal, 0, kExprGetLocal, 1); } TEST(Build_Wasm_SimpleExprs) { // Test that the decoder can build a graph for all supported simple expressions. #define GRAPH_BUILD_TEST(name, opcode, sig) \ if (WasmOpcodes::IsSupported(kExpr##name)) { \ FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \ printf("expression: " #name "\n"); \ if (sig->parameter_count() == 1) { \ TestBuildGraphForUnop(kExpr##name, sig); \ } else { \ TestBuildGraphForBinop(kExpr##name, sig); \ } \ } FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST); #undef GRAPH_BUILD_TEST } #endif TEST(Run_Wasm_Int32LoadInt8_signext) { TestingModule module; const int kNumElems = 16; int8_t* memory = module.AddMemoryElems(kNumElems); module.RandomizeMemory(); memory[0] = -1; WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt8_zeroext) { TestingModule module; const int kNumElems = 16; byte* memory = module.AddMemory(kNumElems); module.RandomizeMemory(77); memory[0] = 255; WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt16_signext) { TestingModule module; const int kNumBytes = 16; byte* memory = module.AddMemory(kNumBytes); module.RandomizeMemory(888); memory[1] = 200; WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumBytes; i += 2) { int32_t expected = memory[i] | (static_cast(memory[i + 1]) << 8); CHECK_EQ(expected, r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt16_zeroext) { TestingModule module; const int kNumBytes = 16; byte* memory = module.AddMemory(kNumBytes); module.RandomizeMemory(9999); memory[1] = 204; WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumBytes; i += 2) { int32_t expected = memory[i] | (memory[i + 1] << 8); CHECK_EQ(expected, r.Call(static_cast(i))); } } TEST(Run_WasmInt32Global) { TestingModule module; int32_t* global = module.AddGlobal(MachineType::Int32()); WasmRunner r(MachineType::Int32()); r.env()->module = &module; // global = global + p0 BUILD(r, WASM_STORE_GLOBAL( 0, WASM_I32_ADD(WASM_LOAD_GLOBAL(0), WASM_GET_LOCAL(0)))); *global = 116; for (int i = 9; i < 444444; i += 111111) { int32_t expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } // TODO(titzer): Fix for msan and re-enable. #if 0 TEST(Run_WasmInt32Globals_DontAlias) { const int kNumGlobals = 3; TestingModule module; int32_t* globals[] = {module.AddGlobal(MachineType::Int32()), module.AddGlobal(MachineType::Int32()), module.AddGlobal(MachineType::Int32())}; for (int g = 0; g < kNumGlobals; g++) { // global = global + p0 WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_STORE_GLOBAL( g, WASM_I32_ADD(WASM_LOAD_GLOBAL(g), WASM_GET_LOCAL(0)))); // Check that reading/writing global number {g} doesn't alter the others. *globals[g] = 116 * g; int32_t before[kNumGlobals]; for (int i = 9; i < 444444; i += 111113) { int32_t sum = *globals[g] + i; for (int j = 0; j < kNumGlobals; j++) before[j] = *globals[j]; r.Call(i); for (int j = 0; j < kNumGlobals; j++) { int32_t expected = j == g ? sum : before[j]; CHECK_EQ(expected, *globals[j]); } } } } #endif #if WASM_64 TEST(Run_WasmInt64Global) { TestingModule module; int64_t* global = module.AddGlobal(MachineType::Int64()); WasmRunner r(MachineType::Int32()); r.env()->module = &module; // global = global + p0 BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL( 0, WASM_I64_ADD( WASM_LOAD_GLOBAL(0), WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO)); *global = 0xFFFFFFFFFFFFFFFFLL; for (int i = 9; i < 444444; i += 111111) { int64_t expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } #endif TEST(Run_WasmFloat32Global) { TestingModule module; float* global = module.AddGlobal(MachineType::Float32()); WasmRunner r(MachineType::Int32()); r.env()->module = &module; // global = global + p0 BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL( 0, WASM_F32_ADD( WASM_LOAD_GLOBAL(0), WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO)); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile float expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } TEST(Run_WasmFloat64Global) { TestingModule module; double* global = module.AddGlobal(MachineType::Float64()); WasmRunner r(MachineType::Int32()); r.env()->module = &module; // global = global + p0 BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL( 0, WASM_F64_ADD( WASM_LOAD_GLOBAL(0), WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO)); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile double expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } TEST(Run_WasmMixedGlobals) { TestingModule module; int32_t* unused = module.AddGlobal(MachineType::Int32()); byte* memory = module.AddMemory(32); int8_t* var_int8 = module.AddGlobal(MachineType::Int8()); uint8_t* var_uint8 = module.AddGlobal(MachineType::Uint8()); int16_t* var_int16 = module.AddGlobal(MachineType::Int16()); uint16_t* var_uint16 = module.AddGlobal(MachineType::Uint16()); int32_t* var_int32 = module.AddGlobal(MachineType::Int32()); uint32_t* var_uint32 = module.AddGlobal(MachineType::Uint32()); float* var_float = module.AddGlobal(MachineType::Float32()); double* var_double = module.AddGlobal(MachineType::Float64()); WasmRunner r(MachineType::Int32()); r.env()->module = &module; BUILD( r, WASM_BLOCK( 9, WASM_STORE_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int8(), WASM_ZERO)), WASM_STORE_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint8(), WASM_ZERO)), WASM_STORE_GLOBAL(3, WASM_LOAD_MEM(MachineType::Int16(), WASM_ZERO)), WASM_STORE_GLOBAL(4, WASM_LOAD_MEM(MachineType::Uint16(), WASM_ZERO)), WASM_STORE_GLOBAL(5, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), WASM_STORE_GLOBAL(6, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)), WASM_STORE_GLOBAL(7, WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)), WASM_STORE_GLOBAL(8, WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)), WASM_ZERO)); memory[0] = 0xaa; memory[1] = 0xcc; memory[2] = 0x55; memory[3] = 0xee; memory[4] = 0x33; memory[5] = 0x22; memory[6] = 0x11; memory[7] = 0x99; r.Call(1); CHECK(static_cast(0xaa) == *var_int8); CHECK(static_cast(0xaa) == *var_uint8); CHECK(static_cast(0xccaa) == *var_int16); CHECK(static_cast(0xccaa) == *var_uint16); CHECK(static_cast(0xee55ccaa) == *var_int32); CHECK(static_cast(0xee55ccaa) == *var_uint32); CHECK(bit_cast(0xee55ccaa) == *var_float); CHECK(bit_cast(0x99112233ee55ccaaULL) == *var_double); USE(unused); } #if WASM_64 // Test the WasmRunner with an Int64 return value and different numbers of // Int64 parameters. TEST(Run_TestI64WasmRunner) { { FOR_INT64_INPUTS(i) { WasmRunner r; BUILD(r, WASM_I64(*i)); CHECK_EQ(*i, r.Call()); } } { WasmRunner r(MachineType::Int64()); BUILD(r, WASM_GET_LOCAL(0)); FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } { WasmRunner r(MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j, r.Call(*i, *j)); } } } { WasmRunner r(MachineType::Int64(), MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64_ADD(WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j + *j, r.Call(*i, *j, *j)); CHECK_EQ(*j + *i + *j, r.Call(*j, *i, *j)); CHECK_EQ(*j + *j + *i, r.Call(*j, *j, *i)); } } } { WasmRunner r(MachineType::Int64(), MachineType::Int64(), MachineType::Int64(), MachineType::Int64()); BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64_ADD(WASM_GET_LOCAL(1), WASM_I64_ADD(WASM_GET_LOCAL(2), WASM_GET_LOCAL(3))))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j + *j + *j, r.Call(*i, *j, *j, *j)); CHECK_EQ(*j + *i + *j + *j, r.Call(*j, *i, *j, *j)); CHECK_EQ(*j + *j + *i + *j, r.Call(*j, *j, *i, *j)); CHECK_EQ(*j + *j + *j + *i, r.Call(*j, *j, *j, *i)); } } } } #endif TEST(Run_WasmCallEmpty) { const int32_t kExpected = -414444; // Build the target function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.i_v()); BUILD(t, WASM_I32(kExpected)); uint32_t index = t.CompileAndAdd(&module); // Build the calling function. WasmRunner r; r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION0(index)); int32_t result = r.Call(); CHECK_EQ(kExpected, result); } // TODO(tizer): Fix on arm and reenable. #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 TEST(Run_WasmCallF32StackParameter) { // Build the target function. LocalType param_types[20]; for (int i = 0; i < 20; i++) param_types[i] = kAstF32; FunctionSig sig(1, 19, param_types); TestingModule module; WasmFunctionCompiler t(&sig); BUILD(t, WASM_GET_LOCAL(17)); uint32_t index = t.CompileAndAdd(&module); // Build the calling function. WasmRunner r; r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION( index, WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f), WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f), WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f), WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f), WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f), WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f))); float result = r.Call(); CHECK_EQ(256.5f, result); } TEST(Run_WasmCallF64StackParameter) { // Build the target function. LocalType param_types[20]; for (int i = 0; i < 20; i++) param_types[i] = kAstF64; FunctionSig sig(1, 19, param_types); TestingModule module; WasmFunctionCompiler t(&sig); BUILD(t, WASM_GET_LOCAL(17)); uint32_t index = t.CompileAndAdd(&module); // Build the calling function. WasmRunner r; r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION(index, WASM_F64(1.0), WASM_F64(2.0), WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0), WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0), WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5), WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5), WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5), WASM_F64(256.5), WASM_F64(512.5))); float result = r.Call(); CHECK_EQ(256.5, result); } #endif TEST(Run_WasmCallVoid) { const byte kMemOffset = 8; const int32_t kElemNum = kMemOffset / sizeof(int32_t); const int32_t kExpected = -414444; // Build the target function. TestSignatures sigs; TestingModule module; module.AddMemory(16); module.RandomizeMemory(); WasmFunctionCompiler t(sigs.v_v()); t.env.module = &module; BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I8(kMemOffset), WASM_I32(kExpected))); uint32_t index = t.CompileAndAdd(&module); // Build the calling function. WasmRunner r; r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION0(index), WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(kMemOffset))); int32_t result = r.Call(); CHECK_EQ(kExpected, result); CHECK_EQ(kExpected, module.raw_mem_start()[kElemNum]); } TEST(Run_WasmCall_Int32Add) { // Build the target function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.i_ii()); BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); uint32_t index = t.CompileAndAdd(&module); // Build the caller function. WasmRunner r(MachineType::Int32(), MachineType::Int32()); r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast(static_cast(*i) + static_cast(*j)); CHECK_EQ(expected, r.Call(*i, *j)); } } } #if WASM_64 TEST(Run_WasmCall_Int64Sub) { // Build the target function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.l_ll()); BUILD(t, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); uint32_t index = t.CompileAndAdd(&module); // Build the caller function. WasmRunner r(MachineType::Int64(), MachineType::Int64()); r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int64_t a = static_cast(*i) << 32 | (static_cast(*j) | 0xFFFFFFFF); int64_t b = static_cast(*j) << 32 | (static_cast(*i) | 0xFFFFFFFF); int64_t expected = static_cast(static_cast(a) - static_cast(b)); CHECK_EQ(expected, r.Call(a, b)); } } } #endif TEST(Run_WasmCall_Float32Sub) { TestSignatures sigs; WasmFunctionCompiler t(sigs.f_ff()); // Build the target function. TestingModule module; BUILD(t, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); uint32_t index = t.CompileAndAdd(&module); // Builder the caller function. WasmRunner r(MachineType::Float32(), MachineType::Float32()); r.env()->module = &module; BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CheckFloatEq(*i - *j, r.Call(*i, *j)); } } } TEST(Run_WasmCall_Float64Sub) { WasmRunner r; TestingModule module; double* memory = module.AddMemoryElems(16); r.env()->module = &module; // TODO(titzer): convert to a binop test. BUILD(r, WASM_BLOCK( 2, WASM_STORE_MEM( MachineType::Float64(), WASM_ZERO, WASM_F64_SUB( WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO), WASM_LOAD_MEM(MachineType::Float64(), WASM_I8(8)))), WASM_I8(107))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { memory[0] = *i; memory[1] = *j; double expected = *i - *j; CHECK_EQ(107, r.Call()); if (expected != expected) { CHECK(memory[0] != memory[0]); } else { CHECK_EQ(expected, memory[0]); } } } } #define ADD_CODE(vec, ...) \ do { \ byte __buf[] = {__VA_ARGS__}; \ for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \ } while (false) void Run_WasmMixedCall_N(int start) { const int kExpected = 6333; const int kElemSize = 8; TestSignatures sigs; #if WASM_64 static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Int64(), MachineType::Float64(), MachineType::Float32(), MachineType::Int64(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int64(), MachineType::Int32(), MachineType::Int32()}; #else static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Float64(), MachineType::Float32(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int32(), MachineType::Int32()}; #endif int num_params = static_cast(arraysize(mixed)) - start; for (int which = 0; which < num_params; which++) { Zone zone; TestingModule module; module.AddMemory(1024); MachineType* memtypes = &mixed[start]; MachineType result = memtypes[which]; // ========================================================================= // Build the selector function. // ========================================================================= uint32_t index; FunctionSig::Builder b(&zone, 1, num_params); b.AddReturn(WasmOpcodes::LocalTypeFor(result)); for (int i = 0; i < num_params; i++) { b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i])); } WasmFunctionCompiler t(b.Build()); t.env.module = &module; BUILD(t, WASM_GET_LOCAL(which)); index = t.CompileAndAdd(&module); // ========================================================================= // Build the calling function. // ========================================================================= WasmRunner r; r.env()->module = &module; { std::vector code; ADD_CODE(code, static_cast(WasmOpcodes::LoadStoreOpcodeOf(result, true)), WasmOpcodes::LoadStoreAccessOf(false)); ADD_CODE(code, WASM_ZERO); ADD_CODE(code, kExprCallFunction, static_cast(index)); for (int i = 0; i < num_params; i++) { int offset = (i + 1) * kElemSize; ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset))); } ADD_CODE(code, WASM_I32(kExpected)); size_t end = code.size(); code.push_back(0); r.Build(&code[0], &code[end]); } // Run the code. for (int t = 0; t < 10; t++) { module.RandomizeMemory(); CHECK_EQ(kExpected, r.Call()); int size = WasmOpcodes::MemSize(result); for (int i = 0; i < size; i++) { int base = (which + 1) * kElemSize; byte expected = module.raw_mem_at(base + i); byte result = module.raw_mem_at(i); CHECK_EQ(expected, result); } } } } TEST(Run_WasmMixedCall_0) { Run_WasmMixedCall_N(0); } TEST(Run_WasmMixedCall_1) { Run_WasmMixedCall_N(1); } TEST(Run_WasmMixedCall_2) { Run_WasmMixedCall_N(2); } TEST(Run_WasmMixedCall_3) { Run_WasmMixedCall_N(3); } TEST(Run_Wasm_CountDown_expr) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_LOOP( 3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAKV(0, WASM_GET_LOCAL(0))), WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))), WASM_CONTINUE(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_ExprBlock2a) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2b) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2c) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(1)), WASM_I8(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2d) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(1)), WASM_I8(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock_ManualSwitch) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(6, WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)), WASM_BRV(0, WASM_I8(11))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)), WASM_BRV(0, WASM_I8(12))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)), WASM_BRV(0, WASM_I8(13))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)), WASM_BRV(0, WASM_I8(14))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)), WASM_BRV(0, WASM_I8(15))), WASM_I8(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } TEST(Run_Wasm_ExprBlock_ManualSwitch_brif) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(6, WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)), WASM_I8(11)), WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)), WASM_I8(12)), WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)), WASM_I8(13)), WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)), WASM_I8(14)), WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)), WASM_I8(15)), WASM_I8(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } TEST(Run_Wasm_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14)))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } TEST(Run_Wasm_ExprBlock_if) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(1, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(11)), WASM_BRV(0, WASM_I8(14))))); CHECK_EQ(11, r.Call(1)); CHECK_EQ(14, r.Call(0)); } TEST(Run_Wasm_ExprBlock_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_BLOCK( 1, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(11)), WASM_BRV(0, WASM_I8(12))), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(13)), WASM_BRV(0, WASM_I8(14)))))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } TEST(Run_Wasm_ExprLoop_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_LOOP( 1, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(11)), WASM_BRV(1, WASM_I8(12))), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(13)), WASM_BRV(1, WASM_I8(14)))))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } #if WASM_64 TEST(Run_Wasm_LoadStoreI64_sx) { byte loads[] = {kExprI64LoadMem8S, kExprI64LoadMem16S, kExprI64LoadMem32S, kExprI64LoadMem}; for (size_t m = 0; m < arraysize(loads); m++) { WasmRunner r; TestingModule module; byte* memory = module.AddMemoryElems(16); r.env()->module = &module; byte code[] = {kExprI64StoreMem, 0, kExprI8Const, 8, loads[m], 0, kExprI8Const, 0}; r.Build(code, code + arraysize(code)); // Try a bunch of different negative values. for (int i = -1; i >= -128; i -= 11) { int size = 1 << m; module.BlankMemory(); memory[size - 1] = static_cast(i); // set the high order byte. int64_t expected = static_cast(i) << ((size - 1) * 8); CHECK_EQ(expected, r.Call()); CHECK_EQ(static_cast(i), memory[8 + size - 1]); for (int j = size; j < 8; j++) { CHECK_EQ(255, memory[8 + j]); } } } } #endif TEST(Run_Wasm_SimpleCallIndirect) { Isolate* isolate = CcTest::InitIsolateOnce(); WasmRunner r(MachineType::Int32()); TestSignatures sigs; TestingModule module; r.env()->module = &module; WasmFunctionCompiler t1(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(&module); WasmFunctionCompiler t2(sigs.i_ii()); BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t2.CompileAndAdd(&module); // Signature table. module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_ii()); module.AddSignature(sigs.d_dd()); // Function table. int table_size = 2; module.module->function_table = new std::vector; module.module->function_table->push_back(0); module.module->function_table->push_back(1); // Function table. Handle fixed = isolate->factory()->NewFixedArray(2 * table_size); fixed->set(0, Smi::FromInt(1)); fixed->set(1, Smi::FromInt(1)); fixed->set(2, *module.function_code->at(0)); fixed->set(3, *module.function_code->at(1)); module.function_table = fixed; // Builder the caller function. BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22))); CHECK_EQ(88, r.Call(0)); CHECK_EQ(44, r.Call(1)); CHECK_TRAP(r.Call(2)); } TEST(Run_Wasm_MultipleCallIndirect) { Isolate* isolate = CcTest::InitIsolateOnce(); WasmRunner r(MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); TestSignatures sigs; TestingModule module; r.env()->module = &module; WasmFunctionCompiler t1(sigs.i_ii()); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(&module); WasmFunctionCompiler t2(sigs.i_ii()); BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t2.CompileAndAdd(&module); // Signature table. module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_ii()); module.AddSignature(sigs.d_dd()); // Function table. int table_size = 2; module.module->function_table = new std::vector; module.module->function_table->push_back(0); module.module->function_table->push_back(1); // Function table. Handle fixed = isolate->factory()->NewFixedArray(2 * table_size); fixed->set(0, Smi::FromInt(1)); fixed->set(1, Smi::FromInt(1)); fixed->set(2, *module.function_code->at(0)); fixed->set(3, *module.function_code->at(1)); module.function_table = fixed; // Builder the caller function. BUILD(r, WASM_I32_ADD(WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)), WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2), WASM_GET_LOCAL(0)))); CHECK_EQ(5, r.Call(0, 1, 2)); CHECK_EQ(19, r.Call(0, 1, 9)); CHECK_EQ(1, r.Call(1, 0, 2)); CHECK_EQ(1, r.Call(1, 0, 9)); CHECK_TRAP(r.Call(0, 2, 1)); CHECK_TRAP(r.Call(1, 2, 0)); CHECK_TRAP(r.Call(2, 0, 1)); CHECK_TRAP(r.Call(2, 1, 0)); } // TODO(titzer): Fix for nosee4 and re-enable. #if 0 TEST(Run_Wasm_F32Floor) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CheckFloatEq(floor(*i), r.Call(*i)); } } TEST(Run_Wasm_F32Ceil) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CheckFloatEq(ceil(*i), r.Call(*i)); } } TEST(Run_Wasm_F32Trunc) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CheckFloatEq(trunc(*i), r.Call(*i)); } } TEST(Run_Wasm_F32NearestInt) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CheckFloatEq(nearbyint(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Floor) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(floor(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Ceil) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(ceil(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Trunc) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(trunc(*i), r.Call(*i)); } } TEST(Run_Wasm_F64NearestInt) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(nearbyint(*i), r.Call(*i)); } } #endif TEST(Run_Wasm_F32Min) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { float expected; if (*i < *j) { expected = *i; } else if (*j < *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CheckFloatEq(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F64Min) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double expected; if (*i < *j) { expected = *i; } else if (*j < *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CheckDoubleEq(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F32Max) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { float expected; if (*i > *j) { expected = *i; } else if (*j > *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CheckFloatEq(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F64Max) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double expected; if (*i > *j) { expected = *i; } else if (*j > *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CheckDoubleEq(expected, r.Call(*i, *j)); } } } #if WASM_64 TEST(Run_Wasm_F32SConvertI64) { WasmRunner r(MachineType::Int64()); BUILD(r, WASM_F32_SCONVERT_I64(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } #if !defined(_WIN64) // TODO(ahaas): Fix this failure. TEST(Run_Wasm_F32UConvertI64) { WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_F32_UCONVERT_I64(WASM_GET_LOCAL(0))); FOR_UINT64_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } #endif TEST(Run_Wasm_F64SConvertI64) { WasmRunner r(MachineType::Int64()); BUILD(r, WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } #if !defined(_WIN64) // TODO(ahaas): Fix this failure. TEST(Run_Wasm_F64UConvertI64) { WasmRunner r(MachineType::Uint64()); BUILD(r, WASM_F64_UCONVERT_I64(WASM_GET_LOCAL(0))); FOR_UINT64_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } #endif TEST(Run_Wasm_I64SConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(INT64_MAX) && *i >= static_cast(INT64_MIN)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } TEST(Run_Wasm_I64SConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(INT64_MAX) && *i >= static_cast(INT64_MIN)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } TEST(Run_Wasm_I64UConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(UINT64_MAX) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } TEST(Run_Wasm_I64UConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(UINT64_MAX) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } #endif // TODO(titzer): Fix and re-enable. #if 0 TEST(Run_Wasm_I32SConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(INT32_MAX) && *i >= static_cast(INT32_MIN)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32SConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(INT32_MAX) && *i >= static_cast(INT32_MIN)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32UConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(UINT32_MAX) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32UConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(UINT32_MAX) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } #endif TEST(Run_Wasm_F64CopySign) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CheckDoubleEq(copysign(*i, *j), r.Call(*i, *j)); } } } // TODO(tizer): Fix on arm and reenable. #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 TEST(Run_Wasm_F32CopySign) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CheckFloatEq(copysign(*i, *j), r.Call(*i, *j)); } } } #endif