// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "src/base/platform/platform.h" #include "src/snapshot/snapshot.h" #include "src/v8.h" #include "test/cctest/cctest.h" using namespace v8::internal; #if 0 static void VerifyRegionMarking(Address page_start) { #ifdef ENABLE_CARDMARKING_WRITE_BARRIER Page* p = Page::FromAddress(page_start); p->SetRegionMarks(Page::kAllRegionsCleanMarks); for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr)); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { Page::FromAddress(addr)->MarkRegionDirty(addr); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(Page::FromAddress(addr)->IsRegionDirty(addr)); } #endif } #endif // TODO(gc) you can no longer allocate pages like this. Details are hidden. #if 0 TEST(Page) { byte* mem = NewArray(2*Page::kPageSize); CHECK(mem != NULL); Address start = reinterpret_cast
(mem); Address page_start = RoundUp(start, Page::kPageSize); Page* p = Page::FromAddress(page_start); // Initialized Page has heap pointer, normally set by memory_allocator. p->heap_ = CcTest::heap(); CHECK(p->address() == page_start); CHECK(p->is_valid()); p->opaque_header = 0; p->SetIsLargeObjectPage(false); CHECK(!p->next_page()->is_valid()); CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset); CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize); CHECK(p->Offset(page_start + Page::kObjectStartOffset) == Page::kObjectStartOffset); CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize); CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart()); CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd()); // test region marking VerifyRegionMarking(page_start); DeleteArray(mem); } #endif namespace v8 { namespace internal { // Temporarily sets a given allocator in an isolate. class TestMemoryAllocatorScope { public: TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator) : isolate_(isolate), old_allocator_(isolate->memory_allocator_) { isolate->memory_allocator_ = allocator; } ~TestMemoryAllocatorScope() { isolate_->memory_allocator_ = old_allocator_; } private: Isolate* isolate_; MemoryAllocator* old_allocator_; DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope); }; // Temporarily sets a given code range in an isolate. class TestCodeRangeScope { public: TestCodeRangeScope(Isolate* isolate, CodeRange* code_range) : isolate_(isolate), old_code_range_(isolate->code_range_) { isolate->code_range_ = code_range; } ~TestCodeRangeScope() { isolate_->code_range_ = old_code_range_; } private: Isolate* isolate_; CodeRange* old_code_range_; DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope); }; } // namespace internal } // namespace v8 static void VerifyMemoryChunk(Isolate* isolate, Heap* heap, CodeRange* code_range, size_t reserve_area_size, size_t commit_area_size, size_t second_commit_area_size, Executability executable) { MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); TestCodeRangeScope test_code_range_scope(isolate, code_range); size_t header_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardStartOffset() : MemoryChunk::kObjectStartOffset; size_t guard_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0; MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size, commit_area_size, executable, NULL); size_t alignment = code_range != NULL && code_range->valid() ? MemoryChunk::kAlignment : v8::base::OS::CommitPageSize(); size_t reserved_size = ((executable == EXECUTABLE)) ? RoundUp(header_size + guard_size + reserve_area_size + guard_size, alignment) : RoundUp(header_size + reserve_area_size, v8::base::OS::CommitPageSize()); CHECK(memory_chunk->size() == reserved_size); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == commit_area_size); Address area_start = memory_chunk->area_start(); memory_chunk->CommitArea(second_commit_area_size); CHECK(area_start == memory_chunk->area_start()); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == second_commit_area_size); memory_allocator->Free(memory_chunk); memory_allocator->TearDown(); delete memory_allocator; } TEST(Regress3540) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); const int pageSize = Page::kPageSize; MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK( memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); CodeRange* code_range = new CodeRange(isolate); const size_t code_range_size = 4 * pageSize; if (!code_range->SetUp( code_range_size + RoundUp(v8::base::OS::CommitPageSize() * kReservedCodeRangePages, MemoryChunk::kAlignment) + v8::internal::MemoryAllocator::CodePageAreaSize())) { return; } Address address; size_t size; address = code_range->AllocateRawMemory( code_range_size - 2 * pageSize, code_range_size - 2 * pageSize, &size); CHECK(address != NULL); Address null_address; size_t null_size; null_address = code_range->AllocateRawMemory( code_range_size - pageSize, code_range_size - pageSize, &null_size); CHECK(null_address == NULL); code_range->FreeRawMemory(address, size); delete code_range; memory_allocator->TearDown(); delete memory_allocator; } static unsigned int Pseudorandom() { static uint32_t lo = 2345; lo = 18273 * (lo & 0xFFFFF) + (lo >> 16); return lo & 0xFFFFF; } TEST(MemoryChunk) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t reserve_area_size = 1 * MB; size_t initial_commit_area_size, second_commit_area_size; for (int i = 0; i < 100; i++) { initial_commit_area_size = Pseudorandom(); second_commit_area_size = Pseudorandom(); // With CodeRange. CodeRange* code_range = new CodeRange(isolate); const size_t code_range_size = 32 * MB; if (!code_range->SetUp(code_range_size)) return; VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); delete code_range; // Without CodeRange. code_range = NULL; VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); } } TEST(MemoryAllocator) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); int total_pages = 0; OldSpace faked_space(heap, OLD_SPACE, NOT_EXECUTABLE); Page* first_page = memory_allocator->AllocatePage( faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE); first_page->InsertAfter(faked_space.anchor()->prev_page()); CHECK(first_page->is_valid()); CHECK(first_page->next_page() == faked_space.anchor()); total_pages++; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); } // Again, we should get n or n - 1 pages. Page* other = memory_allocator->AllocatePage( faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE); CHECK(other->is_valid()); total_pages++; other->InsertAfter(first_page); int page_count = 0; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); page_count++; } CHECK(total_pages == page_count); Page* second_page = first_page->next_page(); CHECK(second_page->is_valid()); memory_allocator->Free(first_page); memory_allocator->Free(second_page); memory_allocator->TearDown(); delete memory_allocator; } TEST(NewSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); NewSpace new_space(heap); CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(), CcTest::heap()->ReservedSemiSpaceSize())); CHECK(new_space.HasBeenSetUp()); while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) { Object* obj = new_space.AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize) .ToObjectChecked(); CHECK(new_space.Contains(HeapObject::cast(obj))); } new_space.TearDown(); memory_allocator->TearDown(); delete memory_allocator; } TEST(OldSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); OldSpace* s = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(s != NULL); CHECK(s->SetUp()); while (s->Available() > 0) { s->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize).ToObjectChecked(); } s->TearDown(); delete s; memory_allocator->TearDown(); delete memory_allocator; } TEST(LargeObjectSpace) { v8::V8::Initialize(); LargeObjectSpace* lo = CcTest::heap()->lo_space(); CHECK(lo != NULL); int lo_size = Page::kPageSize; Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked(); CHECK(obj->IsHeapObject()); HeapObject* ho = HeapObject::cast(obj); CHECK(lo->Contains(HeapObject::cast(obj))); CHECK(lo->FindObject(ho->address()) == obj); CHECK(lo->Contains(ho)); while (true) { intptr_t available = lo->Available(); { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE); if (allocation.IsRetry()) break; } // The available value is conservative such that it may report // zero prior to heap exhaustion. CHECK(lo->Available() < available || available == 0); } CHECK(!lo->IsEmpty()); CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry()); } TEST(SizeOfFirstPageIsLargeEnough) { if (i::FLAG_always_opt) return; // Bootstrapping without a snapshot causes more allocations. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; if (Snapshot::EmbedsScript(isolate)) return; // If this test fails due to enabling experimental natives that are not part // of the snapshot, we may need to adjust CalculateFirstPageSizes. // Freshly initialized VM gets by with one page per space. for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages()); } // Executing the empty script gets by with one page per space. HandleScope scope(isolate); CompileRun("/*empty*/"); for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages()); } // No large objects required to perform the above steps. CHECK(isolate->heap()->lo_space()->IsEmpty()); } UNINITIALIZED_TEST(NewSpaceGrowsToTargetCapacity) { FLAG_target_semi_space_size = 2 * (Page::kPageSize / MB); if (FLAG_optimize_for_size) return; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); NewSpace* new_space = i_isolate->heap()->new_space(); // This test doesn't work if we start with a non-default new space // configuration. if (new_space->InitialTotalCapacity() == Page::kPageSize) { CHECK(new_space->CommittedMemory() == new_space->InitialTotalCapacity()); // Fill up the first (and only) page of the semi space. FillCurrentPage(new_space); // Try to allocate out of the new space. A new page should be added and // the // allocation should succeed. v8::internal::AllocationResult allocation = new_space->AllocateRawUnaligned(80); CHECK(!allocation.IsRetry()); CHECK(new_space->CommittedMemory() == 2 * Page::kPageSize); // Turn the allocation into a proper object so isolate teardown won't // crash. HeapObject* free_space = NULL; CHECK(allocation.To(&free_space)); new_space->heap()->CreateFillerObjectAt(free_space->address(), 80); } } isolate->Dispose(); }