// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Declares a Simulator for PPC instructions if we are not generating a native // PPC binary. This Simulator allows us to run and debug PPC code generation on // regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a PPC HW platform. #ifndef V8_PPC_SIMULATOR_PPC_H_ #define V8_PPC_SIMULATOR_PPC_H_ #include "src/allocation.h" #if !defined(USE_SIMULATOR) // Running without a simulator on a native ppc platform. namespace v8 { namespace internal { // When running without a simulator we call the entry directly. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ (entry(p0, p1, p2, p3, p4)) typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*, int, Address, int, void*, Isolate*); // Call the generated regexp code directly. The code at the entry address // should act as a function matching the type ppc_regexp_matcher. // The ninth argument is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ (FUNCTION_CAST(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \ NULL, p8)) // The stack limit beyond which we will throw stack overflow errors in // generated code. Because generated code on ppc uses the C stack, we // just use the C stack limit. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, uintptr_t c_limit) { USE(isolate); return c_limit; } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { return try_catch_address; } static inline void UnregisterCTryCatch() {} }; } } // namespace v8::internal #else // !defined(USE_SIMULATOR) // Running with a simulator. #include "src/assembler.h" #include "src/hashmap.h" #include "src/ppc/constants-ppc.h" namespace v8 { namespace internal { class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class Simulator { public: friend class PPCDebugger; enum Register { no_reg = -1, r0 = 0, sp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, fp, kNumGPRs = 32, d0 = 0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31, kNumFPRs = 32 }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. void set_register(int reg, intptr_t value); intptr_t get_register(int reg) const; double get_double_from_register_pair(int reg); void set_d_register_from_double(int dreg, const double dbl) { DCHECK(dreg >= 0 && dreg < kNumFPRs); fp_registers_[dreg] = dbl; } double get_double_from_d_register(int dreg) { return fp_registers_[dreg]; } // Special case of set_register and get_register to access the raw PC value. void set_pc(intptr_t value); intptr_t get_pc() const; Address get_sp() { return reinterpret_cast
(static_cast(get_register(sp))); } // Accessor to the internal simulator stack area. uintptr_t StackLimit() const; // Executes PPC instructions until the PC reaches end_sim_pc. void Execute(); // Call on program start. static void Initialize(Isolate* isolate); // V8 generally calls into generated JS code with 5 parameters and into // generated RegExp code with 7 parameters. This is a convenience function, // which sets up the simulator state and grabs the result on return. intptr_t Call(byte* entry, int argument_count, ...); // Alternative: call a 2-argument double function. void CallFP(byte* entry, double d0, double d1); int32_t CallFPReturnsInt(byte* entry, double d0, double d1); double CallFPReturnsDouble(byte* entry, double d0, double d1); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // ICache checking. static void FlushICache(v8::internal::HashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_lr, end_sim_pc). bool has_bad_pc() const; private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_lr = -1, // A pc value used to signal the simulator to stop execution. Generally // the lr is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2 }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Helper functions to set the conditional flags in the architecture state. bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); bool BorrowFrom(int32_t left, int32_t right); bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition); // Helper functions to decode common "addressing" modes int32_t GetShiftRm(Instruction* instr, bool* carry_out); int32_t GetImm(Instruction* instr, bool* carry_out); void ProcessPUW(Instruction* instr, int num_regs, int operand_size, intptr_t* start_address, intptr_t* end_address); void HandleRList(Instruction* instr, bool load); void HandleVList(Instruction* inst); void SoftwareInterrupt(Instruction* instr); // Stop helper functions. inline bool isStopInstruction(Instruction* instr); inline bool isWatchedStop(uint32_t bkpt_code); inline bool isEnabledStop(uint32_t bkpt_code); inline void EnableStop(uint32_t bkpt_code); inline void DisableStop(uint32_t bkpt_code); inline void IncreaseStopCounter(uint32_t bkpt_code); void PrintStopInfo(uint32_t code); // Read and write memory. inline uint8_t ReadBU(intptr_t addr); inline int8_t ReadB(intptr_t addr); inline void WriteB(intptr_t addr, uint8_t value); inline void WriteB(intptr_t addr, int8_t value); inline uint16_t ReadHU(intptr_t addr, Instruction* instr); inline int16_t ReadH(intptr_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr); inline void WriteH(intptr_t addr, int16_t value, Instruction* instr); inline uint32_t ReadWU(intptr_t addr, Instruction* instr); inline int32_t ReadW(intptr_t addr, Instruction* instr); inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr); inline void WriteW(intptr_t addr, int32_t value, Instruction* instr); intptr_t* ReadDW(intptr_t addr); void WriteDW(intptr_t addr, int64_t value); void Trace(Instruction* instr); void SetCR0(intptr_t result, bool setSO = false); void ExecuteBranchConditional(Instruction* instr); void ExecuteExt1(Instruction* instr); bool ExecuteExt2_10bit(Instruction* instr); bool ExecuteExt2_9bit_part1(Instruction* instr); void ExecuteExt2_9bit_part2(Instruction* instr); void ExecuteExt2(Instruction* instr); void ExecuteExt4(Instruction* instr); #if V8_TARGET_ARCH_PPC64 void ExecuteExt5(Instruction* instr); #endif void ExecuteGeneric(Instruction* instr); // Executes one instruction. void ExecuteInstruction(Instruction* instr); // ICache. static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, int size); static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); // Runtime call support. static void* RedirectExternalReference( void* external_function, v8::internal::ExternalReference::Type type); // Handle arguments and return value for runtime FP functions. void GetFpArgs(double* x, double* y, intptr_t* z); void SetFpResult(const double& result); void TrashCallerSaveRegisters(); void CallInternal(byte* entry); // Architecture state. // Saturating instructions require a Q flag to indicate saturation. // There is currently no way to read the CPSR directly, and thus read the Q // flag, so this is left unimplemented. intptr_t registers_[kNumGPRs]; int32_t condition_reg_; int32_t fp_condition_reg_; intptr_t special_reg_lr_; intptr_t special_reg_pc_; intptr_t special_reg_ctr_; int32_t special_reg_xer_; double fp_registers_[kNumFPRs]; // Simulator support. char* stack_; bool pc_modified_; int icount_; // Debugger input. char* last_debugger_input_; // Icache simulation v8::internal::HashMap* i_cache_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; v8::internal::Isolate* isolate_; // A stop is watched if its code is less than kNumOfWatchedStops. // Only watched stops support enabling/disabling and the counter feature. static const uint32_t kNumOfWatchedStops = 256; // Breakpoint is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops_[code].count is unset. // The value watched_stops_[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops_[kNumOfWatchedStops]; }; // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ reinterpret_cast(Simulator::current(Isolate::Current())->Call( \ FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \ (intptr_t)p3, (intptr_t)p4)) #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ Simulator::current(Isolate::Current()) \ ->Call(entry, 10, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \ (intptr_t)p3, (intptr_t)p4, (intptr_t)p5, (intptr_t)p6, \ (intptr_t)p7, (intptr_t)NULL, (intptr_t)p8) // The simulator has its own stack. Thus it has a different stack limit from // the C-based native code. Setting the c_limit to indicate a very small // stack cause stack overflow errors, since the simulator ignores the input. // This is unlikely to be an issue in practice, though it might cause testing // trouble down the line. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, uintptr_t c_limit) { return Simulator::current(isolate)->StackLimit(); } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { Simulator* sim = Simulator::current(Isolate::Current()); return sim->PushAddress(try_catch_address); } static inline void UnregisterCTryCatch() { Simulator::current(Isolate::Current())->PopAddress(); } }; } } // namespace v8::internal #endif // !defined(USE_SIMULATOR) #endif // V8_PPC_SIMULATOR_PPC_H_