// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "graph-tester.h" #include "src/compiler/generic-node-inl.h" #include "src/compiler/graph-reducer.h" using namespace v8::internal; using namespace v8::internal::compiler; const uint8_t OPCODE_A0 = 10; const uint8_t OPCODE_A1 = 11; const uint8_t OPCODE_A2 = 12; const uint8_t OPCODE_B0 = 20; const uint8_t OPCODE_B1 = 21; const uint8_t OPCODE_B2 = 22; const uint8_t OPCODE_C0 = 30; const uint8_t OPCODE_C1 = 31; const uint8_t OPCODE_C2 = 32; static SimpleOperator OPA0(OPCODE_A0, Operator::kNoWrite, 0, 0, "opa0"); static SimpleOperator OPA1(OPCODE_A1, Operator::kNoWrite, 1, 0, "opa1"); static SimpleOperator OPA2(OPCODE_A2, Operator::kNoWrite, 2, 0, "opa2"); static SimpleOperator OPB0(OPCODE_B0, Operator::kNoWrite, 0, 0, "opa0"); static SimpleOperator OPB1(OPCODE_B1, Operator::kNoWrite, 1, 0, "opa1"); static SimpleOperator OPB2(OPCODE_B2, Operator::kNoWrite, 2, 0, "opa2"); static SimpleOperator OPC0(OPCODE_C0, Operator::kNoWrite, 0, 0, "opc0"); static SimpleOperator OPC1(OPCODE_C1, Operator::kNoWrite, 1, 0, "opc1"); static SimpleOperator OPC2(OPCODE_C2, Operator::kNoWrite, 2, 0, "opc2"); // Replaces all "A" operators with "B" operators without creating new nodes. class InPlaceABReducer : public Reducer { public: virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_A0: CHECK_EQ(0, node->InputCount()); node->set_op(&OPB0); return Replace(node); case OPCODE_A1: CHECK_EQ(1, node->InputCount()); node->set_op(&OPB1); return Replace(node); case OPCODE_A2: CHECK_EQ(2, node->InputCount()); node->set_op(&OPB2); return Replace(node); } return NoChange(); } }; // Replaces all "A" operators with "B" operators by allocating new nodes. class NewABReducer : public Reducer { public: explicit NewABReducer(Graph* graph) : graph_(graph) {} virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_A0: CHECK_EQ(0, node->InputCount()); return Replace(graph_->NewNode(&OPB0)); case OPCODE_A1: CHECK_EQ(1, node->InputCount()); return Replace(graph_->NewNode(&OPB1, node->InputAt(0))); case OPCODE_A2: CHECK_EQ(2, node->InputCount()); return Replace( graph_->NewNode(&OPB2, node->InputAt(0), node->InputAt(1))); } return NoChange(); } Graph* graph_; }; // Replaces all "B" operators with "C" operators without creating new nodes. class InPlaceBCReducer : public Reducer { public: virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_B0: CHECK_EQ(0, node->InputCount()); node->set_op(&OPC0); return Replace(node); case OPCODE_B1: CHECK_EQ(1, node->InputCount()); node->set_op(&OPC1); return Replace(node); case OPCODE_B2: CHECK_EQ(2, node->InputCount()); node->set_op(&OPC2); return Replace(node); } return NoChange(); } }; // Wraps all "OPA0" nodes in "OPB1" operators by allocating new nodes. class A0Wrapper FINAL : public Reducer { public: explicit A0Wrapper(Graph* graph) : graph_(graph) {} virtual Reduction Reduce(Node* node) OVERRIDE { switch (node->op()->opcode()) { case OPCODE_A0: CHECK_EQ(0, node->InputCount()); return Replace(graph_->NewNode(&OPB1, node)); } return NoChange(); } Graph* graph_; }; // Wraps all "OPB0" nodes in two "OPC1" operators by allocating new nodes. class B0Wrapper FINAL : public Reducer { public: explicit B0Wrapper(Graph* graph) : graph_(graph) {} virtual Reduction Reduce(Node* node) OVERRIDE { switch (node->op()->opcode()) { case OPCODE_B0: CHECK_EQ(0, node->InputCount()); return Replace(graph_->NewNode(&OPC1, graph_->NewNode(&OPC1, node))); } return NoChange(); } Graph* graph_; }; // Replaces all "OPA1" nodes with the first input. class A1Forwarder : public Reducer { virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_A1: CHECK_EQ(1, node->InputCount()); return Replace(node->InputAt(0)); } return NoChange(); } }; // Replaces all "OPB1" nodes with the first input. class B1Forwarder : public Reducer { virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_B1: CHECK_EQ(1, node->InputCount()); return Replace(node->InputAt(0)); } return NoChange(); } }; // Swaps the inputs to "OP2A" and "OP2B" nodes based on ids. class AB2Sorter : public Reducer { virtual Reduction Reduce(Node* node) { switch (node->op()->opcode()) { case OPCODE_A2: case OPCODE_B2: CHECK_EQ(2, node->InputCount()); Node* x = node->InputAt(0); Node* y = node->InputAt(1); if (x->id() > y->id()) { node->ReplaceInput(0, y); node->ReplaceInput(1, x); return Replace(node); } } return NoChange(); } }; // Simply records the nodes visited. class ReducerRecorder : public Reducer { public: explicit ReducerRecorder(Zone* zone) : set(NodeSet::key_compare(), NodeSet::allocator_type(zone)) {} virtual Reduction Reduce(Node* node) { set.insert(node); return NoChange(); } void CheckContains(Node* node) { CHECK_EQ(1, static_cast(set.count(node))); } NodeSet set; }; TEST(ReduceGraphFromEnd1) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* end = graph.NewNode(&OPA1, n1); graph.SetEnd(end); GraphReducer reducer(&graph); ReducerRecorder recorder(graph.zone()); reducer.AddReducer(&recorder); reducer.ReduceGraph(); recorder.CheckContains(n1); recorder.CheckContains(end); } TEST(ReduceGraphFromEnd2) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = graph.NewNode(&OPA2, n2, n3); graph.SetEnd(end); GraphReducer reducer(&graph); ReducerRecorder recorder(graph.zone()); reducer.AddReducer(&recorder); reducer.ReduceGraph(); recorder.CheckContains(n1); recorder.CheckContains(n2); recorder.CheckContains(n3); recorder.CheckContains(end); } TEST(ReduceInPlace1) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* end = graph.NewNode(&OPA1, n1); graph.SetEnd(end); GraphReducer reducer(&graph); InPlaceABReducer r; reducer.AddReducer(&r); // Tests A* => B* with in-place updates. for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPB0, n1->op()); CHECK_EQ(&OPB1, end->op()); CHECK_EQ(n1, end->InputAt(0)); } } TEST(ReduceInPlace2) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = graph.NewNode(&OPA2, n2, n3); graph.SetEnd(end); GraphReducer reducer(&graph); InPlaceABReducer r; reducer.AddReducer(&r); // Tests A* => B* with in-place updates. for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPB0, n1->op()); CHECK_EQ(&OPB1, n2->op()); CHECK_EQ(n1, n2->InputAt(0)); CHECK_EQ(&OPB1, n3->op()); CHECK_EQ(n1, n3->InputAt(0)); CHECK_EQ(&OPB2, end->op()); CHECK_EQ(n2, end->InputAt(0)); CHECK_EQ(n3, end->InputAt(1)); } } TEST(ReduceNew1) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = graph.NewNode(&OPA2, n2, n3); graph.SetEnd(end); GraphReducer reducer(&graph); NewABReducer r(&graph); reducer.AddReducer(&r); // Tests A* => B* while creating new nodes. for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); if (i == 0) { CHECK_NE(before, graph.NodeCount()); } else { CHECK_EQ(before, graph.NodeCount()); } Node* nend = graph.end(); CHECK_NE(end, nend); // end() should be updated too. Node* nn2 = nend->InputAt(0); Node* nn3 = nend->InputAt(1); Node* nn1 = nn2->InputAt(0); CHECK_EQ(nn1, nn3->InputAt(0)); CHECK_EQ(&OPB0, nn1->op()); CHECK_EQ(&OPB1, nn2->op()); CHECK_EQ(&OPB1, nn3->op()); CHECK_EQ(&OPB2, nend->op()); } } TEST(Wrapping1) { GraphTester graph; Node* end = graph.NewNode(&OPA0); graph.SetEnd(end); CHECK_EQ(1, graph.NodeCount()); GraphReducer reducer(&graph); A0Wrapper r(&graph); reducer.AddReducer(&r); reducer.ReduceGraph(); CHECK_EQ(2, graph.NodeCount()); Node* nend = graph.end(); CHECK_NE(end, nend); CHECK_EQ(&OPB1, nend->op()); CHECK_EQ(1, nend->InputCount()); CHECK_EQ(end, nend->InputAt(0)); } TEST(Wrapping2) { GraphTester graph; Node* end = graph.NewNode(&OPB0); graph.SetEnd(end); CHECK_EQ(1, graph.NodeCount()); GraphReducer reducer(&graph); B0Wrapper r(&graph); reducer.AddReducer(&r); reducer.ReduceGraph(); CHECK_EQ(3, graph.NodeCount()); Node* nend = graph.end(); CHECK_NE(end, nend); CHECK_EQ(&OPC1, nend->op()); CHECK_EQ(1, nend->InputCount()); Node* n1 = nend->InputAt(0); CHECK_NE(end, n1); CHECK_EQ(&OPC1, n1->op()); CHECK_EQ(1, n1->InputCount()); CHECK_EQ(end, n1->InputAt(0)); } TEST(Forwarding1) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* end = graph.NewNode(&OPA1, n1); graph.SetEnd(end); GraphReducer reducer(&graph); A1Forwarder r; reducer.AddReducer(&r); // Tests A1(x) => x for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPA0, n1->op()); CHECK_EQ(n1, graph.end()); } } TEST(Forwarding2) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = graph.NewNode(&OPA2, n2, n3); graph.SetEnd(end); GraphReducer reducer(&graph); A1Forwarder r; reducer.AddReducer(&r); // Tests reducing A2(A1(x), A1(y)) => A2(x, y). for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPA0, n1->op()); CHECK_EQ(n1, end->InputAt(0)); CHECK_EQ(n1, end->InputAt(1)); CHECK_EQ(&OPA2, end->op()); CHECK_EQ(0, n2->UseCount()); CHECK_EQ(0, n3->UseCount()); } } TEST(Forwarding3) { // Tests reducing a chain of A1(A1(A1(A1(x)))) => x. for (int i = 0; i < 8; i++) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* end = n1; for (int j = 0; j < i; j++) { end = graph.NewNode(&OPA1, end); } graph.SetEnd(end); GraphReducer reducer(&graph); A1Forwarder r; reducer.AddReducer(&r); for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPA0, n1->op()); CHECK_EQ(n1, graph.end()); } } } TEST(ReduceForward1) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = graph.NewNode(&OPA2, n2, n3); graph.SetEnd(end); GraphReducer reducer(&graph); InPlaceABReducer r; B1Forwarder f; reducer.AddReducer(&r); reducer.AddReducer(&f); // Tests first reducing A => B, then B1(x) => x. for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPB0, n1->op()); CHECK(n2->IsDead()); CHECK_EQ(n1, end->InputAt(0)); CHECK(n3->IsDead()); CHECK_EQ(n1, end->InputAt(0)); CHECK_EQ(&OPB2, end->op()); CHECK_EQ(0, n2->UseCount()); CHECK_EQ(0, n3->UseCount()); } } TEST(Sorter1) { HandleAndZoneScope scope; AB2Sorter r; for (int i = 0; i < 6; i++) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* n2 = graph.NewNode(&OPA1, n1); Node* n3 = graph.NewNode(&OPA1, n1); Node* end = NULL; // Initialize to please the compiler. if (i == 0) end = graph.NewNode(&OPA2, n2, n3); if (i == 1) end = graph.NewNode(&OPA2, n3, n2); if (i == 2) end = graph.NewNode(&OPA2, n2, n1); if (i == 3) end = graph.NewNode(&OPA2, n1, n2); if (i == 4) end = graph.NewNode(&OPA2, n3, n1); if (i == 5) end = graph.NewNode(&OPA2, n1, n3); graph.SetEnd(end); GraphReducer reducer(&graph); reducer.AddReducer(&r); int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPA0, n1->op()); CHECK_EQ(&OPA1, n2->op()); CHECK_EQ(&OPA1, n3->op()); CHECK_EQ(&OPA2, end->op()); CHECK_EQ(end, graph.end()); CHECK(end->InputAt(0)->id() <= end->InputAt(1)->id()); } } // Generate a node graph with the given permutations. void GenDAG(Graph* graph, int* p3, int* p2, int* p1) { Node* level4 = graph->NewNode(&OPA0); Node* level3[] = {graph->NewNode(&OPA1, level4), graph->NewNode(&OPA1, level4)}; Node* level2[] = {graph->NewNode(&OPA1, level3[p3[0]]), graph->NewNode(&OPA1, level3[p3[1]]), graph->NewNode(&OPA1, level3[p3[0]]), graph->NewNode(&OPA1, level3[p3[1]])}; Node* level1[] = {graph->NewNode(&OPA2, level2[p2[0]], level2[p2[1]]), graph->NewNode(&OPA2, level2[p2[2]], level2[p2[3]])}; Node* end = graph->NewNode(&OPA2, level1[p1[0]], level1[p1[1]]); graph->SetEnd(end); } TEST(SortForwardReduce) { GraphTester graph; // Tests combined reductions on a series of DAGs. for (int j = 0; j < 2; j++) { int p3[] = {j, 1 - j}; for (int m = 0; m < 2; m++) { int p1[] = {m, 1 - m}; for (int k = 0; k < 24; k++) { // All permutations of 0, 1, 2, 3 int p2[] = {-1, -1, -1, -1}; int n = k; for (int d = 4; d >= 1; d--) { // Construct permutation. int p = n % d; for (int z = 0; z < 4; z++) { if (p2[z] == -1) { if (p == 0) p2[z] = d - 1; p--; } } n = n / d; } GenDAG(&graph, p3, p2, p1); GraphReducer reducer(&graph); AB2Sorter r1; A1Forwarder r2; InPlaceABReducer r3; reducer.AddReducer(&r1); reducer.AddReducer(&r2); reducer.AddReducer(&r3); reducer.ReduceGraph(); Node* end = graph.end(); CHECK_EQ(&OPB2, end->op()); Node* n1 = end->InputAt(0); Node* n2 = end->InputAt(1); CHECK_NE(n1, n2); CHECK(n1->id() < n2->id()); CHECK_EQ(&OPB2, n1->op()); CHECK_EQ(&OPB2, n2->op()); Node* n4 = n1->InputAt(0); CHECK_EQ(&OPB0, n4->op()); CHECK_EQ(n4, n1->InputAt(1)); CHECK_EQ(n4, n2->InputAt(0)); CHECK_EQ(n4, n2->InputAt(1)); } } } } TEST(Order) { // Test that the order of reducers doesn't matter, as they should be // rerun for changed nodes. for (int i = 0; i < 2; i++) { GraphTester graph; Node* n1 = graph.NewNode(&OPA0); Node* end = graph.NewNode(&OPA1, n1); graph.SetEnd(end); GraphReducer reducer(&graph); InPlaceABReducer abr; InPlaceBCReducer bcr; if (i == 0) { reducer.AddReducer(&abr); reducer.AddReducer(&bcr); } else { reducer.AddReducer(&bcr); reducer.AddReducer(&abr); } // Tests A* => C* with in-place updates. for (int i = 0; i < 3; i++) { int before = graph.NodeCount(); reducer.ReduceGraph(); CHECK_EQ(before, graph.NodeCount()); CHECK_EQ(&OPC0, n1->op()); CHECK_EQ(&OPC1, end->op()); CHECK_EQ(n1, end->InputAt(0)); } } }