// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for MacOS goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef MAP_TYPE #include "v8.h" #include "platform-posix.h" #include "platform.h" #include "vm-state-inl.h" // Manually define these here as weak imports, rather than including execinfo.h. // This lets us launch on 10.4 which does not have these calls. extern "C" { extern int backtrace(void**, int) __attribute__((weak_import)); extern char** backtrace_symbols(void* const*, int) __attribute__((weak_import)); extern void backtrace_symbols_fd(void* const*, int, int) __attribute__((weak_import)); } namespace v8 { namespace internal { // 0 is never a valid thread id on MacOSX since a pthread_t is // a pointer. static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { // Correct Mac OS X Leopard 'ceil' behavior. if (-1.0 < x && x < 0.0) { return -0.0; } else { return ceil(x); } } static Mutex* limit_mutex = NULL; void OS::PostSetUp() { POSIXPostSetUp(); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, i.e., not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast(-1); static void* highest_ever_allocated = reinterpret_cast(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { ASSERT(limit_mutex != NULL); ScopedLock lock(limit_mutex); lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast(reinterpret_cast(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return getpagesize(); } // Constants used for mmap. // kMmapFd is used to pass vm_alloc flags to tag the region with the user // defined tag 255 This helps identify V8-allocated regions in memory analysis // tools like vmmap(1). static const int kMmapFd = VM_MAKE_TAG(255); static const off_t kMmapFdOffset = 0; void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(OS::GetRandomMmapAddr(), msize, prot, MAP_PRIVATE | MAP_ANON, kMmapFd, kMmapFdOffset); if (mbase == MAP_FAILED) { LOG(Isolate::Current(), StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } void OS::Sleep(int milliseconds) { usleep(1000 * milliseconds); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination abort(); } void OS::DebugBreak() { asm("int $3"); } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(OS::GetRandomMmapAddr(), size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(OS::GetRandomMmapAddr(), size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) OS::Free(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { unsigned int images_count = _dyld_image_count(); for (unsigned int i = 0; i < images_count; ++i) { const mach_header* header = _dyld_get_image_header(i); if (header == NULL) continue; #if V8_HOST_ARCH_X64 uint64_t size; char* code_ptr = getsectdatafromheader_64( reinterpret_cast(header), SEG_TEXT, SECT_TEXT, &size); #else unsigned int size; char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size); #endif if (code_ptr == NULL) continue; const uintptr_t slide = _dyld_get_image_vmaddr_slide(i); const uintptr_t start = reinterpret_cast(code_ptr) + slide; LOG(Isolate::Current(), SharedLibraryEvent(_dyld_get_image_name(i), start, start + size)); } } void OS::SignalCodeMovingGC() { } uint64_t OS::CpuFeaturesImpliedByPlatform() { // MacOSX requires all these to install so we can assume they are present. // These constants are defined by the CPUid instructions. const uint64_t one = 1; return (one << SSE2) | (one << CMOV) | (one << RDTSC) | (one << CPUID); } int OS::ActivationFrameAlignment() { // OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI // Function Call Guide". return 16; } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { OSMemoryBarrier(); *ptr = value; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset() { time_t tv = time(NULL); struct tm* t = localtime(&tv); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } int OS::StackWalk(Vector frames) { // If weak link to execinfo lib has failed, ie because we are on 10.4, abort. if (backtrace == NULL) return 0; int frames_size = frames.length(); ScopedVector addresses(frames_size); int frames_count = backtrace(addresses.start(), frames_size); char** symbols = backtrace_symbols(addresses.start(), frames_count); if (symbols == NULL) { return kStackWalkError; } for (int i = 0; i < frames_count; i++) { frames[i].address = addresses[i]; // Format a text representation of the frame based on the information // available. SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), "%s", symbols[i]); // Make sure line termination is in place. frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; } free(symbols); return frames_count; } VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) : address_(ReserveRegion(size)), size_(size) { } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { ASSERT(IsAligned(alignment, static_cast(OS::AllocateAlignment()))); size_t request_size = RoundUp(size + alignment, static_cast(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; Address base = static_cast
(reservation); Address aligned_base = RoundUp(base, alignment); ASSERT_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); ASSERT_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } ASSERT(aligned_size == request_size); address_ = static_cast(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); ASSERT(result); USE(result); } } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::IsReserved() { return address_ != NULL; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } bool VirtualMemory::CommitRegion(void* address, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(address, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(address, size); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::UncommitRegion(void* address, size_t size) { return mmap(address, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleaseRegion(void* address, size_t size) { return munmap(address, size) == 0; } bool VirtualMemory::HasLazyCommits() { return false; } class Thread::PlatformData : public Malloced { public: PlatformData() : thread_(kNoThread) {} pthread_t thread_; // Thread handle for pthread. }; Thread::Thread(const Options& options) : data_(new PlatformData), stack_size_(options.stack_size()) { set_name(options.name()); } Thread::~Thread() { delete data_; } static void SetThreadName(const char* name) { // pthread_setname_np is only available in 10.6 or later, so test // for it at runtime. int (*dynamic_pthread_setname_np)(const char*); *reinterpret_cast(&dynamic_pthread_setname_np) = dlsym(RTLD_DEFAULT, "pthread_setname_np"); if (!dynamic_pthread_setname_np) return; // Mac OS X does not expose the length limit of the name, so hardcode it. static const int kMaxNameLength = 63; USE(kMaxNameLength); ASSERT(Thread::kMaxThreadNameLength <= kMaxNameLength); dynamic_pthread_setname_np(name); } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->data()->thread_ = pthread_self(); SetThreadName(thread->name()); ASSERT(thread->data()->thread_ != kNoThread); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_attr_t* attr_ptr = NULL; pthread_attr_t attr; if (stack_size_ > 0) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, static_cast(stack_size_)); attr_ptr = &attr; } pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this); ASSERT(data_->thread_ != kNoThread); } void Thread::Join() { pthread_join(data_->thread_, NULL); } #ifdef V8_FAST_TLS_SUPPORTED static Atomic32 tls_base_offset_initialized = 0; intptr_t kMacTlsBaseOffset = 0; // It's safe to do the initialization more that once, but it has to be // done at least once. static void InitializeTlsBaseOffset() { const size_t kBufferSize = 128; char buffer[kBufferSize]; size_t buffer_size = kBufferSize; int ctl_name[] = { CTL_KERN , KERN_OSRELEASE }; if (sysctl(ctl_name, 2, buffer, &buffer_size, NULL, 0) != 0) { V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version"); } // The buffer now contains a string of the form XX.YY.ZZ, where // XX is the major kernel version component. // Make sure the buffer is 0-terminated. buffer[kBufferSize - 1] = '\0'; char* period_pos = strchr(buffer, '.'); *period_pos = '\0'; int kernel_version_major = static_cast(strtol(buffer, NULL, 10)); // NOLINT // The constants below are taken from pthreads.s from the XNU kernel // sources archive at www.opensource.apple.com. if (kernel_version_major < 11) { // 8.x.x (Tiger), 9.x.x (Leopard), 10.x.x (Snow Leopard) have the // same offsets. #if defined(V8_HOST_ARCH_IA32) kMacTlsBaseOffset = 0x48; #else kMacTlsBaseOffset = 0x60; #endif } else { // 11.x.x (Lion) changed the offset. kMacTlsBaseOffset = 0; } Release_Store(&tls_base_offset_initialized, 1); } static void CheckFastTls(Thread::LocalStorageKey key) { void* expected = reinterpret_cast(0x1234CAFE); Thread::SetThreadLocal(key, expected); void* actual = Thread::GetExistingThreadLocal(key); if (expected != actual) { V8_Fatal(__FILE__, __LINE__, "V8 failed to initialize fast TLS on current kernel"); } Thread::SetThreadLocal(key, NULL); } #endif // V8_FAST_TLS_SUPPORTED Thread::LocalStorageKey Thread::CreateThreadLocalKey() { #ifdef V8_FAST_TLS_SUPPORTED bool check_fast_tls = false; if (tls_base_offset_initialized == 0) { check_fast_tls = true; InitializeTlsBaseOffset(); } #endif pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); LocalStorageKey typed_key = static_cast(key); #ifdef V8_FAST_TLS_SUPPORTED // If we just initialized fast TLS support, make sure it works. if (check_fast_tls) CheckFastTls(typed_key); #endif return typed_key; } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class MacOSMutex : public Mutex { public: MacOSMutex() { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&mutex_, &attr); } virtual ~MacOSMutex() { pthread_mutex_destroy(&mutex_); } virtual int Lock() { return pthread_mutex_lock(&mutex_); } virtual int Unlock() { return pthread_mutex_unlock(&mutex_); } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; }; Mutex* OS::CreateMutex() { return new MacOSMutex(); } class MacOSSemaphore : public Semaphore { public: explicit MacOSSemaphore(int count) { int r; r = semaphore_create(mach_task_self(), &semaphore_, SYNC_POLICY_FIFO, count); ASSERT(r == KERN_SUCCESS); } ~MacOSSemaphore() { int r; r = semaphore_destroy(mach_task_self(), semaphore_); ASSERT(r == KERN_SUCCESS); } void Wait() { int r; do { r = semaphore_wait(semaphore_); ASSERT(r == KERN_SUCCESS || r == KERN_ABORTED); } while (r == KERN_ABORTED); } bool Wait(int timeout); void Signal() { semaphore_signal(semaphore_); } private: semaphore_t semaphore_; }; bool MacOSSemaphore::Wait(int timeout) { mach_timespec_t ts; ts.tv_sec = timeout / 1000000; ts.tv_nsec = (timeout % 1000000) * 1000; return semaphore_timedwait(semaphore_, ts) != KERN_OPERATION_TIMED_OUT; } Semaphore* OS::CreateSemaphore(int count) { return new MacOSSemaphore(count); } class Sampler::PlatformData : public Malloced { public: PlatformData() : profiled_thread_(mach_thread_self()) {} ~PlatformData() { // Deallocate Mach port for thread. mach_port_deallocate(mach_task_self(), profiled_thread_); } thread_act_t profiled_thread() { return profiled_thread_; } private: // Note: for profiled_thread_ Mach primitives are used instead of PThread's // because the latter doesn't provide thread manipulation primitives required. // For details, consult "Mac OS X Internals" book, Section 7.3. thread_act_t profiled_thread_; }; class SamplerThread : public Thread { public: static const int kSamplerThreadStackSize = 64 * KB; explicit SamplerThread(int interval) : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)), interval_(interval) {} static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); } static void TearDown() { delete mutex_; } static void AddActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::AddActiveSampler(sampler); if (instance_ == NULL) { instance_ = new SamplerThread(sampler->interval()); instance_->Start(); } else { ASSERT(instance_->interval_ == sampler->interval()); } } static void RemoveActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::RemoveActiveSampler(sampler); if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); delete instance_; instance_ = NULL; } } // Implement Thread::Run(). virtual void Run() { SamplerRegistry::State state; while ((state = SamplerRegistry::GetState()) != SamplerRegistry::HAS_NO_SAMPLERS) { // When CPU profiling is enabled both JavaScript and C++ code is // profiled. We must not suspend. if (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS) { SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this); } else { if (RuntimeProfiler::WaitForSomeIsolateToEnterJS()) continue; } OS::Sleep(interval_); } } static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) { if (!sampler->isolate()->IsInitialized()) return; if (!sampler->IsProfiling()) return; SamplerThread* sampler_thread = reinterpret_cast(raw_sampler_thread); sampler_thread->SampleContext(sampler); } void SampleContext(Sampler* sampler) { thread_act_t profiled_thread = sampler->platform_data()->profiled_thread(); TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate()); if (sample == NULL) sample = &sample_obj; if (KERN_SUCCESS != thread_suspend(profiled_thread)) return; #if V8_HOST_ARCH_X64 thread_state_flavor_t flavor = x86_THREAD_STATE64; x86_thread_state64_t state; mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT; #if __DARWIN_UNIX03 #define REGISTER_FIELD(name) __r ## name #else #define REGISTER_FIELD(name) r ## name #endif // __DARWIN_UNIX03 #elif V8_HOST_ARCH_IA32 thread_state_flavor_t flavor = i386_THREAD_STATE; i386_thread_state_t state; mach_msg_type_number_t count = i386_THREAD_STATE_COUNT; #if __DARWIN_UNIX03 #define REGISTER_FIELD(name) __e ## name #else #define REGISTER_FIELD(name) e ## name #endif // __DARWIN_UNIX03 #else #error Unsupported Mac OS X host architecture. #endif // V8_HOST_ARCH if (thread_get_state(profiled_thread, flavor, reinterpret_cast(&state), &count) == KERN_SUCCESS) { sample->state = sampler->isolate()->current_vm_state(); sample->pc = reinterpret_cast
(state.REGISTER_FIELD(ip)); sample->sp = reinterpret_cast
(state.REGISTER_FIELD(sp)); sample->fp = reinterpret_cast
(state.REGISTER_FIELD(bp)); sampler->SampleStack(sample); sampler->Tick(sample); } thread_resume(profiled_thread); } const int interval_; // Protects the process wide state below. static Mutex* mutex_; static SamplerThread* instance_; private: DISALLOW_COPY_AND_ASSIGN(SamplerThread); }; #undef REGISTER_FIELD Mutex* SamplerThread::mutex_ = NULL; SamplerThread* SamplerThread::instance_ = NULL; void OS::SetUp() { // Seed the random number generator. We preserve microsecond resolution. uint64_t seed = Ticks() ^ (getpid() << 16); srandom(static_cast(seed)); limit_mutex = CreateMutex(); SamplerThread::SetUp(); } void OS::TearDown() { SamplerThread::TearDown(); delete limit_mutex; } Sampler::Sampler(Isolate* isolate, int interval) : isolate_(isolate), interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData; } Sampler::~Sampler() { ASSERT(!IsActive()); delete data_; } void Sampler::Start() { ASSERT(!IsActive()); SetActive(true); SamplerThread::AddActiveSampler(this); } void Sampler::Stop() { ASSERT(IsActive()); SamplerThread::RemoveActiveSampler(this); SetActive(false); } } } // namespace v8::internal