// Copyright 2014 the V8 project authors. All rights reserved. Use of this // source code is governed by a BSD-style license that can be found in the // LICENSE file. #include #include #include #include "src/base/bits.h" #include "src/base/ieee754.h" #include "src/base/overflowing-math.h" #include "src/base/safe_conversions.h" #include "src/base/utils/random-number-generator.h" #include "src/common/ptr-compr-inl.h" #include "src/objects/objects-inl.h" #include "src/utils/boxed-float.h" #include "src/utils/utils.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/codegen-tester.h" #include "test/cctest/compiler/value-helper.h" namespace v8 { namespace internal { namespace compiler { TEST(RunInt32Add) { RawMachineAssemblerTester m; Node* add = m.Int32Add(m.Int32Constant(0), m.Int32Constant(1)); m.Return(add); CHECK_EQ(1, m.Call()); } static int RunInt32AddShift(bool is_left, int32_t add_left, int32_t add_right, int32_t shift_left, int32_t shit_right) { RawMachineAssemblerTester m; Node* shift = m.Word32Shl(m.Int32Constant(shift_left), m.Int32Constant(shit_right)); Node* add = m.Int32Add(m.Int32Constant(add_left), m.Int32Constant(add_right)); Node* lsa = is_left ? m.Int32Add(shift, add) : m.Int32Add(add, shift); m.Return(lsa); return m.Call(); } TEST(RunInt32AddShift) { struct Test_case { int32_t add_left, add_right, shift_left, shit_right, expected; }; Test_case tc[] = { {20, 22, 4, 2, 58}, {20, 22, 4, 1, 50}, {20, 22, 1, 6, 106}, {INT_MAX - 2, 1, 1, 1, INT_MIN}, // INT_MAX - 2 + 1 + (1 << 1), overflow. }; const size_t tc_size = sizeof(tc) / sizeof(Test_case); for (size_t i = 0; i < tc_size; ++i) { CHECK_EQ(tc[i].expected, RunInt32AddShift(false, tc[i].add_left, tc[i].add_right, tc[i].shift_left, tc[i].shit_right)); CHECK_EQ(tc[i].expected, RunInt32AddShift(true, tc[i].add_left, tc[i].add_right, tc[i].shift_left, tc[i].shit_right)); } } TEST(RunWord32ReverseBits) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); if (!m.machine()->Word32ReverseBits().IsSupported()) { // We can only test the operator if it exists on the testing platform. return; } m.Return(m.AddNode(m.machine()->Word32ReverseBits().op(), m.Parameter(0))); CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000))); CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x1E6A2C48))); CHECK_EQ(uint32_t(0xFEDCBA09), m.Call(uint32_t(0x905D3B7F))); CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x80808080))); CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x10204080))); CHECK_EQ(uint32_t(0xF0703010), m.Call(uint32_t(0x080C0E0F))); CHECK_EQ(uint32_t(0x1F8D0A3A), m.Call(uint32_t(0x5C50B1F8))); CHECK_EQ(uint32_t(0xFFFFFFFF), m.Call(uint32_t(0xFFFFFFFF))); } TEST(RunWord32ReverseBytes) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.AddNode(m.machine()->Word32ReverseBytes(), m.Parameter(0))); CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000))); CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x78563412))); CHECK_EQ(uint32_t(0xFEDCBA09), m.Call(uint32_t(0x09BADCFE))); CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x01010101))); CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x08040201))); CHECK_EQ(uint32_t(0xF0703010), m.Call(uint32_t(0x103070F0))); CHECK_EQ(uint32_t(0x1F8D0A3A), m.Call(uint32_t(0x3A0A8D1F))); CHECK_EQ(uint32_t(0xFFFFFFFF), m.Call(uint32_t(0xFFFFFFFF))); } TEST(RunWord32Ctz) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); if (!m.machine()->Word32Ctz().IsSupported()) { // We can only test the operator if it exists on the testing platform. return; } m.Return(m.AddNode(m.machine()->Word32Ctz().op(), m.Parameter(0))); CHECK_EQ(32, m.Call(uint32_t(0x00000000))); CHECK_EQ(31, m.Call(uint32_t(0x80000000))); CHECK_EQ(30, m.Call(uint32_t(0x40000000))); CHECK_EQ(29, m.Call(uint32_t(0x20000000))); CHECK_EQ(28, m.Call(uint32_t(0x10000000))); CHECK_EQ(27, m.Call(uint32_t(0xA8000000))); CHECK_EQ(26, m.Call(uint32_t(0xF4000000))); CHECK_EQ(25, m.Call(uint32_t(0x62000000))); CHECK_EQ(24, m.Call(uint32_t(0x91000000))); CHECK_EQ(23, m.Call(uint32_t(0xCD800000))); CHECK_EQ(22, m.Call(uint32_t(0x09400000))); CHECK_EQ(21, m.Call(uint32_t(0xAF200000))); CHECK_EQ(20, m.Call(uint32_t(0xAC100000))); CHECK_EQ(19, m.Call(uint32_t(0xE0B80000))); CHECK_EQ(18, m.Call(uint32_t(0x9CE40000))); CHECK_EQ(17, m.Call(uint32_t(0xC7920000))); CHECK_EQ(16, m.Call(uint32_t(0xB8F10000))); CHECK_EQ(15, m.Call(uint32_t(0x3B9F8000))); CHECK_EQ(14, m.Call(uint32_t(0xDB4C4000))); CHECK_EQ(13, m.Call(uint32_t(0xE9A32000))); CHECK_EQ(12, m.Call(uint32_t(0xFCA61000))); CHECK_EQ(11, m.Call(uint32_t(0x6C8A7800))); CHECK_EQ(10, m.Call(uint32_t(0x8CE5A400))); CHECK_EQ(9, m.Call(uint32_t(0xCB7D0200))); CHECK_EQ(8, m.Call(uint32_t(0xCB4DC100))); CHECK_EQ(7, m.Call(uint32_t(0xDFBEC580))); CHECK_EQ(6, m.Call(uint32_t(0x27A9DB40))); CHECK_EQ(5, m.Call(uint32_t(0xDE3BCB20))); CHECK_EQ(4, m.Call(uint32_t(0xD7E8A610))); CHECK_EQ(3, m.Call(uint32_t(0x9AFDBC88))); CHECK_EQ(2, m.Call(uint32_t(0x9AFDBC84))); CHECK_EQ(1, m.Call(uint32_t(0x9AFDBC82))); CHECK_EQ(0, m.Call(uint32_t(0x9AFDBC81))); } TEST(RunWord32Clz) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Clz(m.Parameter(0))); CHECK_EQ(0, m.Call(uint32_t(0x80001000))); CHECK_EQ(1, m.Call(uint32_t(0x40000500))); CHECK_EQ(2, m.Call(uint32_t(0x20000300))); CHECK_EQ(3, m.Call(uint32_t(0x10000003))); CHECK_EQ(4, m.Call(uint32_t(0x08050000))); CHECK_EQ(5, m.Call(uint32_t(0x04006000))); CHECK_EQ(6, m.Call(uint32_t(0x02000000))); CHECK_EQ(7, m.Call(uint32_t(0x010000A0))); CHECK_EQ(8, m.Call(uint32_t(0x00800C00))); CHECK_EQ(9, m.Call(uint32_t(0x00400000))); CHECK_EQ(10, m.Call(uint32_t(0x0020000D))); CHECK_EQ(11, m.Call(uint32_t(0x00100F00))); CHECK_EQ(12, m.Call(uint32_t(0x00080000))); CHECK_EQ(13, m.Call(uint32_t(0x00041000))); CHECK_EQ(14, m.Call(uint32_t(0x00020020))); CHECK_EQ(15, m.Call(uint32_t(0x00010300))); CHECK_EQ(16, m.Call(uint32_t(0x00008040))); CHECK_EQ(17, m.Call(uint32_t(0x00004005))); CHECK_EQ(18, m.Call(uint32_t(0x00002050))); CHECK_EQ(19, m.Call(uint32_t(0x00001700))); CHECK_EQ(20, m.Call(uint32_t(0x00000870))); CHECK_EQ(21, m.Call(uint32_t(0x00000405))); CHECK_EQ(22, m.Call(uint32_t(0x00000203))); CHECK_EQ(23, m.Call(uint32_t(0x00000101))); CHECK_EQ(24, m.Call(uint32_t(0x00000089))); CHECK_EQ(25, m.Call(uint32_t(0x00000041))); CHECK_EQ(26, m.Call(uint32_t(0x00000022))); CHECK_EQ(27, m.Call(uint32_t(0x00000013))); CHECK_EQ(28, m.Call(uint32_t(0x00000008))); CHECK_EQ(29, m.Call(uint32_t(0x00000004))); CHECK_EQ(30, m.Call(uint32_t(0x00000002))); CHECK_EQ(31, m.Call(uint32_t(0x00000001))); CHECK_EQ(32, m.Call(uint32_t(0x00000000))); } TEST(RunWord32Popcnt) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); if (!m.machine()->Word32Popcnt().IsSupported()) { // We can only test the operator if it exists on the testing platform. return; } m.Return(m.AddNode(m.machine()->Word32Popcnt().op(), m.Parameter(0))); CHECK_EQ(0, m.Call(uint32_t(0x00000000))); CHECK_EQ(1, m.Call(uint32_t(0x00000001))); CHECK_EQ(1, m.Call(uint32_t(0x80000000))); CHECK_EQ(32, m.Call(uint32_t(0xFFFFFFFF))); CHECK_EQ(6, m.Call(uint32_t(0x000DC100))); CHECK_EQ(9, m.Call(uint32_t(0xE00DC100))); CHECK_EQ(11, m.Call(uint32_t(0xE00DC103))); CHECK_EQ(9, m.Call(uint32_t(0x000DC107))); } #if V8_TARGET_ARCH_64_BIT TEST(RunWord64ReverseBits) { RawMachineAssemblerTester m(MachineType::Uint64()); if (!m.machine()->Word64ReverseBits().IsSupported()) { return; } m.Return(m.AddNode(m.machine()->Word64ReverseBits().op(), m.Parameter(0))); CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000))); CHECK_EQ(uint64_t(0x1234567890ABCDEF), m.Call(uint64_t(0xF7B3D5091E6A2C48))); CHECK_EQ(uint64_t(0xFEDCBA0987654321), m.Call(uint64_t(0x84C2A6E1905D3B7F))); CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x8080808080808080))); CHECK_EQ(uint64_t(0x0102040803060C01), m.Call(uint64_t(0x803060C010204080))); CHECK_EQ(uint64_t(0xF0703010E060200F), m.Call(uint64_t(0xF0040607080C0E0F))); CHECK_EQ(uint64_t(0x2F8A6DF01C21FA3B), m.Call(uint64_t(0xDC5F84380FB651F4))); CHECK_EQ(uint64_t(0xFFFFFFFFFFFFFFFF), m.Call(uint64_t(0xFFFFFFFFFFFFFFFF))); } TEST(RunWord64ReverseBytes) { BufferedRawMachineAssemblerTester m(MachineType::Uint64()); m.Return(m.AddNode(m.machine()->Word64ReverseBytes(), m.Parameter(0))); CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000))); CHECK_EQ(uint64_t(0x1234567890ABCDEF), m.Call(uint64_t(0xEFCDAB9078563412))); CHECK_EQ(uint64_t(0xFEDCBA0987654321), m.Call(uint64_t(0x2143658709BADCFE))); CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x0101010101010101))); CHECK_EQ(uint64_t(0x0102040803060C01), m.Call(uint64_t(0x010C060308040201))); CHECK_EQ(uint64_t(0xF0703010E060200F), m.Call(uint64_t(0x0F2060E0103070F0))); CHECK_EQ(uint64_t(0x2F8A6DF01C21FA3B), m.Call(uint64_t(0x3BFA211CF06D8A2F))); CHECK_EQ(uint64_t(0xFFFFFFFFFFFFFFFF), m.Call(uint64_t(0xFFFFFFFFFFFFFFFF))); } TEST(RunWord64Clz) { BufferedRawMachineAssemblerTester m(MachineType::Uint64()); m.Return(m.Word64Clz(m.Parameter(0))); CHECK_EQ(0, m.Call(uint64_t(0x8000100000000000))); CHECK_EQ(1, m.Call(uint64_t(0x4000050000000000))); CHECK_EQ(2, m.Call(uint64_t(0x2000030000000000))); CHECK_EQ(3, m.Call(uint64_t(0x1000000300000000))); CHECK_EQ(4, m.Call(uint64_t(0x0805000000000000))); CHECK_EQ(5, m.Call(uint64_t(0x0400600000000000))); CHECK_EQ(6, m.Call(uint64_t(0x0200000000000000))); CHECK_EQ(7, m.Call(uint64_t(0x010000A000000000))); CHECK_EQ(8, m.Call(uint64_t(0x00800C0000000000))); CHECK_EQ(9, m.Call(uint64_t(0x0040000000000000))); CHECK_EQ(10, m.Call(uint64_t(0x0020000D00000000))); CHECK_EQ(11, m.Call(uint64_t(0x00100F0000000000))); CHECK_EQ(12, m.Call(uint64_t(0x0008000000000000))); CHECK_EQ(13, m.Call(uint64_t(0x0004100000000000))); CHECK_EQ(14, m.Call(uint64_t(0x0002002000000000))); CHECK_EQ(15, m.Call(uint64_t(0x0001030000000000))); CHECK_EQ(16, m.Call(uint64_t(0x0000804000000000))); CHECK_EQ(17, m.Call(uint64_t(0x0000400500000000))); CHECK_EQ(18, m.Call(uint64_t(0x0000205000000000))); CHECK_EQ(19, m.Call(uint64_t(0x0000170000000000))); CHECK_EQ(20, m.Call(uint64_t(0x0000087000000000))); CHECK_EQ(21, m.Call(uint64_t(0x0000040500000000))); CHECK_EQ(22, m.Call(uint64_t(0x0000020300000000))); CHECK_EQ(23, m.Call(uint64_t(0x0000010100000000))); CHECK_EQ(24, m.Call(uint64_t(0x0000008900000000))); CHECK_EQ(25, m.Call(uint64_t(0x0000004100000000))); CHECK_EQ(26, m.Call(uint64_t(0x0000002200000000))); CHECK_EQ(27, m.Call(uint64_t(0x0000001300000000))); CHECK_EQ(28, m.Call(uint64_t(0x0000000800000000))); CHECK_EQ(29, m.Call(uint64_t(0x0000000400000000))); CHECK_EQ(30, m.Call(uint64_t(0x0000000200000000))); CHECK_EQ(31, m.Call(uint64_t(0x0000000100000000))); CHECK_EQ(32, m.Call(uint64_t(0x0000000080001000))); CHECK_EQ(33, m.Call(uint64_t(0x0000000040000500))); CHECK_EQ(34, m.Call(uint64_t(0x0000000020000300))); CHECK_EQ(35, m.Call(uint64_t(0x0000000010000003))); CHECK_EQ(36, m.Call(uint64_t(0x0000000008050000))); CHECK_EQ(37, m.Call(uint64_t(0x0000000004006000))); CHECK_EQ(38, m.Call(uint64_t(0x0000000002000000))); CHECK_EQ(39, m.Call(uint64_t(0x00000000010000A0))); CHECK_EQ(40, m.Call(uint64_t(0x0000000000800C00))); CHECK_EQ(41, m.Call(uint64_t(0x0000000000400000))); CHECK_EQ(42, m.Call(uint64_t(0x000000000020000D))); CHECK_EQ(43, m.Call(uint64_t(0x0000000000100F00))); CHECK_EQ(44, m.Call(uint64_t(0x0000000000080000))); CHECK_EQ(45, m.Call(uint64_t(0x0000000000041000))); CHECK_EQ(46, m.Call(uint64_t(0x0000000000020020))); CHECK_EQ(47, m.Call(uint64_t(0x0000000000010300))); CHECK_EQ(48, m.Call(uint64_t(0x0000000000008040))); CHECK_EQ(49, m.Call(uint64_t(0x0000000000004005))); CHECK_EQ(50, m.Call(uint64_t(0x0000000000002050))); CHECK_EQ(51, m.Call(uint64_t(0x0000000000001700))); CHECK_EQ(52, m.Call(uint64_t(0x0000000000000870))); CHECK_EQ(53, m.Call(uint64_t(0x0000000000000405))); CHECK_EQ(54, m.Call(uint64_t(0x0000000000000203))); CHECK_EQ(55, m.Call(uint64_t(0x0000000000000101))); CHECK_EQ(56, m.Call(uint64_t(0x0000000000000089))); CHECK_EQ(57, m.Call(uint64_t(0x0000000000000041))); CHECK_EQ(58, m.Call(uint64_t(0x0000000000000022))); CHECK_EQ(59, m.Call(uint64_t(0x0000000000000013))); CHECK_EQ(60, m.Call(uint64_t(0x0000000000000008))); CHECK_EQ(61, m.Call(uint64_t(0x0000000000000004))); CHECK_EQ(62, m.Call(uint64_t(0x0000000000000002))); CHECK_EQ(63, m.Call(uint64_t(0x0000000000000001))); CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000))); } TEST(RunWord64Ctz) { RawMachineAssemblerTester m(MachineType::Uint64()); if (!m.machine()->Word64Ctz().IsSupported()) { return; } m.Return(m.AddNode(m.machine()->Word64Ctz().op(), m.Parameter(0))); CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000))); CHECK_EQ(63, m.Call(uint64_t(0x8000000000000000))); CHECK_EQ(62, m.Call(uint64_t(0x4000000000000000))); CHECK_EQ(61, m.Call(uint64_t(0x2000000000000000))); CHECK_EQ(60, m.Call(uint64_t(0x1000000000000000))); CHECK_EQ(59, m.Call(uint64_t(0xA800000000000000))); CHECK_EQ(58, m.Call(uint64_t(0xF400000000000000))); CHECK_EQ(57, m.Call(uint64_t(0x6200000000000000))); CHECK_EQ(56, m.Call(uint64_t(0x9100000000000000))); CHECK_EQ(55, m.Call(uint64_t(0xCD80000000000000))); CHECK_EQ(54, m.Call(uint64_t(0x0940000000000000))); CHECK_EQ(53, m.Call(uint64_t(0xAF20000000000000))); CHECK_EQ(52, m.Call(uint64_t(0xAC10000000000000))); CHECK_EQ(51, m.Call(uint64_t(0xE0B8000000000000))); CHECK_EQ(50, m.Call(uint64_t(0x9CE4000000000000))); CHECK_EQ(49, m.Call(uint64_t(0xC792000000000000))); CHECK_EQ(48, m.Call(uint64_t(0xB8F1000000000000))); CHECK_EQ(47, m.Call(uint64_t(0x3B9F800000000000))); CHECK_EQ(46, m.Call(uint64_t(0xDB4C400000000000))); CHECK_EQ(45, m.Call(uint64_t(0xE9A3200000000000))); CHECK_EQ(44, m.Call(uint64_t(0xFCA6100000000000))); CHECK_EQ(43, m.Call(uint64_t(0x6C8A780000000000))); CHECK_EQ(42, m.Call(uint64_t(0x8CE5A40000000000))); CHECK_EQ(41, m.Call(uint64_t(0xCB7D020000000000))); CHECK_EQ(40, m.Call(uint64_t(0xCB4DC10000000000))); CHECK_EQ(39, m.Call(uint64_t(0xDFBEC58000000000))); CHECK_EQ(38, m.Call(uint64_t(0x27A9DB4000000000))); CHECK_EQ(37, m.Call(uint64_t(0xDE3BCB2000000000))); CHECK_EQ(36, m.Call(uint64_t(0xD7E8A61000000000))); CHECK_EQ(35, m.Call(uint64_t(0x9AFDBC8800000000))); CHECK_EQ(34, m.Call(uint64_t(0x9AFDBC8400000000))); CHECK_EQ(33, m.Call(uint64_t(0x9AFDBC8200000000))); CHECK_EQ(32, m.Call(uint64_t(0x9AFDBC8100000000))); CHECK_EQ(31, m.Call(uint64_t(0x0000000080000000))); CHECK_EQ(30, m.Call(uint64_t(0x0000000040000000))); CHECK_EQ(29, m.Call(uint64_t(0x0000000020000000))); CHECK_EQ(28, m.Call(uint64_t(0x0000000010000000))); CHECK_EQ(27, m.Call(uint64_t(0x00000000A8000000))); CHECK_EQ(26, m.Call(uint64_t(0x00000000F4000000))); CHECK_EQ(25, m.Call(uint64_t(0x0000000062000000))); CHECK_EQ(24, m.Call(uint64_t(0x0000000091000000))); CHECK_EQ(23, m.Call(uint64_t(0x00000000CD800000))); CHECK_EQ(22, m.Call(uint64_t(0x0000000009400000))); CHECK_EQ(21, m.Call(uint64_t(0x00000000AF200000))); CHECK_EQ(20, m.Call(uint64_t(0x00000000AC100000))); CHECK_EQ(19, m.Call(uint64_t(0x00000000E0B80000))); CHECK_EQ(18, m.Call(uint64_t(0x000000009CE40000))); CHECK_EQ(17, m.Call(uint64_t(0x00000000C7920000))); CHECK_EQ(16, m.Call(uint64_t(0x00000000B8F10000))); CHECK_EQ(15, m.Call(uint64_t(0x000000003B9F8000))); CHECK_EQ(14, m.Call(uint64_t(0x00000000DB4C4000))); CHECK_EQ(13, m.Call(uint64_t(0x00000000E9A32000))); CHECK_EQ(12, m.Call(uint64_t(0x00000000FCA61000))); CHECK_EQ(11, m.Call(uint64_t(0x000000006C8A7800))); CHECK_EQ(10, m.Call(uint64_t(0x000000008CE5A400))); CHECK_EQ(9, m.Call(uint64_t(0x00000000CB7D0200))); CHECK_EQ(8, m.Call(uint64_t(0x00000000CB4DC100))); CHECK_EQ(7, m.Call(uint64_t(0x00000000DFBEC580))); CHECK_EQ(6, m.Call(uint64_t(0x0000000027A9DB40))); CHECK_EQ(5, m.Call(uint64_t(0x00000000DE3BCB20))); CHECK_EQ(4, m.Call(uint64_t(0x00000000D7E8A610))); CHECK_EQ(3, m.Call(uint64_t(0x000000009AFDBC88))); CHECK_EQ(2, m.Call(uint64_t(0x000000009AFDBC84))); CHECK_EQ(1, m.Call(uint64_t(0x000000009AFDBC82))); CHECK_EQ(0, m.Call(uint64_t(0x000000009AFDBC81))); } TEST(RunWord64Popcnt) { BufferedRawMachineAssemblerTester m(MachineType::Uint64()); if (!m.machine()->Word64Popcnt().IsSupported()) { return; } m.Return(m.AddNode(m.machine()->Word64Popcnt().op(), m.Parameter(0))); CHECK_EQ(0, m.Call(uint64_t(0x0000000000000000))); CHECK_EQ(1, m.Call(uint64_t(0x0000000000000001))); CHECK_EQ(1, m.Call(uint64_t(0x8000000000000000))); CHECK_EQ(64, m.Call(uint64_t(0xFFFFFFFFFFFFFFFF))); CHECK_EQ(12, m.Call(uint64_t(0x000DC100000DC100))); CHECK_EQ(18, m.Call(uint64_t(0xE00DC100E00DC100))); CHECK_EQ(22, m.Call(uint64_t(0xE00DC103E00DC103))); CHECK_EQ(18, m.Call(uint64_t(0x000DC107000DC107))); } #endif // V8_TARGET_ARCH_64_BIT TEST(RunWord32Select) { BufferedRawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); if (!m.machine()->Word32Select().IsSupported()) { return; } Node* cmp = m.Word32Equal(m.Parameter(2), m.Int32Constant(0)); m.Return(m.Word32Select(cmp, m.Parameter(0), m.Parameter(1))); constexpr int input1 = 16; constexpr int input2 = 3443; for (int i = 0; i < 2; ++i) { int expected = i == 0 ? input1 : input2; CHECK_EQ(expected, m.Call(input1, input2, i)); } } TEST(RunWord64Select) { BufferedRawMachineAssemblerTester m( MachineType::Int64(), MachineType::Int64(), MachineType::Int32()); if (!m.machine()->Word64Select().IsSupported()) { return; } Node* cmp = m.Word32Equal(m.Parameter(2), m.Int32Constant(0)); m.Return(m.Word64Select(cmp, m.Parameter(0), m.Parameter(1))); constexpr int64_t input1 = 16; constexpr int64_t input2 = 0x123456789abc; for (int i = 0; i < 2; ++i) { int64_t expected = i == 0 ? input1 : input2; CHECK_EQ(expected, m.Call(input1, input2, i)); } } TEST(RunSelectUnorderedEqual) { BufferedRawMachineAssemblerTester m( MachineType::Int64(), MachineType::Int64(), MachineType::Float32()); if (!m.machine()->Word64Select().IsSupported()) { return; } Node* cmp = m.Float32Equal(m.Parameter(2), m.Float32Constant(0)); m.Return(m.Word64Select(cmp, m.Parameter(0), m.Parameter(1))); constexpr int64_t input1 = 16; constexpr int64_t input2 = 0x123456789abc; CHECK_EQ(input1, m.Call(input1, input2, float{0})); CHECK_EQ(input2, m.Call(input1, input2, float{1})); CHECK_EQ(input2, m.Call(input1, input2, std::nanf(""))); } TEST(RunSelectUnorderedNotEqual) { BufferedRawMachineAssemblerTester m( MachineType::Int64(), MachineType::Int64(), MachineType::Float32()); if (!m.machine()->Word64Select().IsSupported()) { return; } Node* cmp = m.Float32NotEqual(m.Parameter(2), m.Float32Constant(0)); m.Return(m.Word64Select(cmp, m.Parameter(0), m.Parameter(1))); constexpr int64_t input1 = 16; constexpr int64_t input2 = 0x123456789abc; CHECK_EQ(input2, m.Call(input1, input2, float{0})); CHECK_EQ(input1, m.Call(input1, input2, float{1})); CHECK_EQ(input1, m.Call(input1, input2, std::nanf(""))); } namespace { void FooForSelect() {} } // namespace TEST(RunWord32SelectWithMemoryInput) { BufferedRawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); if (!m.machine()->Word32Select().IsSupported()) { return; } // Test that the generated code also works with values spilled on the stack. auto* foo_ptr = &FooForSelect; constexpr int input1 = 16; int input2 = 3443; // Load {value2} before the function call so that it gets spilled. Node* value2 = m.LoadFromPointer(&input2, MachineType::Int32()); Node* function = m.LoadFromPointer(&foo_ptr, MachineType::Pointer()); // Call a function so that {value2} gets spilled on the stack. m.CallCFunction(function, MachineType::Int32()); Node* cmp = m.Word32Equal(m.Parameter(1), m.Int32Constant(0)); m.Return(m.Word32Select(cmp, m.Parameter(0), value2)); for (int i = 0; i < 2; ++i) { int32_t expected = i == 0 ? input1 : input2; CHECK_EQ(expected, m.Call(input1, i)); } } TEST(RunWord64SelectWithMemoryInput) { BufferedRawMachineAssemblerTester m(MachineType::Int64(), MachineType::Int32()); if (!m.machine()->Word64Select().IsSupported()) { return; } // Test that the generated code also works with values spilled on the stack. auto* foo_ptr = &FooForSelect; constexpr int64_t input1 = 16; int64_t input2 = 0x12345678ABCD; // Load {value2} before the function call so that it gets spilled. Node* value2 = m.LoadFromPointer(&input2, MachineType::Int64()); Node* function = m.LoadFromPointer(&foo_ptr, MachineType::Pointer()); // Call a function so that {value2} gets spilled on the stack. m.CallCFunction(function, MachineType::Int32()); Node* cmp = m.Word32Equal(m.Parameter(1), m.Int32Constant(0)); m.Return(m.Word64Select(cmp, m.Parameter(0), value2)); for (int i = 0; i < 2; ++i) { int64_t expected = i == 0 ? input1 : input2; CHECK_EQ(expected, m.Call(input1, i)); } } TEST(RunFloat32SelectRegFloatCompare) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); if (!m.machine()->Float32Select().IsSupported()) { return; } Node* cmp = m.Float32Equal(m.Parameter(0), m.Parameter(1)); m.Return(m.Float32Select(cmp, m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { float expected_result = pl == pr ? pl : pr; CHECK_FLOAT_EQ(expected_result, m.Call(pl, pr)); } } } TEST(RunFloat64SelectRegFloatCompare) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); if (!m.machine()->Float64Select().IsSupported()) { return; } Node* cmp = m.Float64LessThan(m.Parameter(0), m.Parameter(1)); m.Return(m.Float64Select(cmp, m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected_result = pl < pr ? pl : pr; CHECK_DOUBLE_EQ(expected_result, m.Call(pl, pr)); } } } TEST(RunFloat32SelectImmediateOnLeftFloatCompare) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); if (!m.machine()->Float32Select().IsSupported()) { return; } const float pl = -5.0; Node* a = m.Float32Constant(pl); Node* cmp = m.Float32LessThan(a, m.Parameter(0)); m.Return(m.Float32Select(cmp, a, m.Parameter(0))); FOR_FLOAT32_INPUTS(pr) { float expected_result = pl < pr ? pl : pr; CHECK_FLOAT_EQ(expected_result, m.Call(pr)); } } TEST(RunFloat64SelectImmediateOnRightFloatCompare) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64Select().IsSupported()) { return; } double pr = 5.0; Node* b = m.Float64Constant(pr); Node* cmp = m.Float64LessThanOrEqual(m.Parameter(0), b); m.Return(m.Float64Select(cmp, m.Parameter(0), b)); FOR_FLOAT64_INPUTS(pl) { double expected_result = pl <= pr ? pl : pr; CHECK_DOUBLE_EQ(expected_result, m.Call(pl)); } } TEST(RunFloat32SelectImmediateIntCompare) { BufferedRawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); if (!m.machine()->Float32Select().IsSupported()) { return; } float tval = -1.0; float fval = 1.0; Node* cmp = m.Int32LessThanOrEqual(m.Parameter(0), m.Parameter(1)); m.Return(m.Float64Select(cmp, m.Float32Constant(tval), m.Float32Constant(fval))); FOR_INT32_INPUTS(pl) { FOR_INT32_INPUTS(pr) { float expected_result = pl <= pr ? tval : fval; CHECK_FLOAT_EQ(expected_result, m.Call(pl, pr)); } } } TEST(RunFloat64SelectImmediateIntCompare) { BufferedRawMachineAssemblerTester m(MachineType::Int64(), MachineType::Int64()); if (!m.machine()->Float64Select().IsSupported()) { return; } double tval = -1.0; double fval = 1.0; Node* cmp = m.Int64LessThan(m.Parameter(0), m.Parameter(1)); m.Return(m.Float64Select(cmp, m.Float64Constant(tval), m.Float64Constant(fval))); FOR_INT64_INPUTS(pl) { FOR_INT64_INPUTS(pr) { double expected_result = pl < pr ? tval : fval; CHECK_DOUBLE_EQ(expected_result, m.Call(pl, pr)); } } } static Node* Int32Input(RawMachineAssemblerTester* m, int index) { switch (index) { case 0: return m->Parameter(0); case 1: return m->Parameter(1); case 2: return m->Int32Constant(0); case 3: return m->Int32Constant(1); case 4: return m->Int32Constant(-1); case 5: return m->Int32Constant(0xFF); case 6: return m->Int32Constant(0x01234567); case 7: return m->Load(MachineType::Int32(), m->PointerConstant(nullptr)); default: return nullptr; } } TEST(CodeGenInt32Binop) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word32And(), m.machine()->Word32Or(), m.machine()->Word32Xor(), m.machine()->Word32Shl(), m.machine()->Word32Shr(), m.machine()->Word32Sar(), m.machine()->Word32Equal(), m.machine()->Int32Add(), m.machine()->Int32Sub(), m.machine()->Int32Mul(), m.machine()->Int32MulHigh(), m.machine()->Int32Div(), m.machine()->Uint32Div(), m.machine()->Int32Mod(), m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { for (int j = 0; j < 8; j++) { for (int k = 0; k < 8; k++) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); Node* a = Int32Input(&m, j); Node* b = Int32Input(&m, k); m.Return(m.AddNode(kOps[i], a, b)); m.GenerateCode(); } } } } TEST(CodeGenNop) { RawMachineAssemblerTester m; m.Return(m.Int32Constant(0)); m.GenerateCode(); } #if V8_TARGET_ARCH_64_BIT static Node* Int64Input(RawMachineAssemblerTester* m, int index) { switch (index) { case 0: return m->Parameter(0); case 1: return m->Parameter(1); case 2: return m->Int64Constant(0); case 3: return m->Int64Constant(1); case 4: return m->Int64Constant(-1); case 5: return m->Int64Constant(0xFF); case 6: return m->Int64Constant(0x0123456789ABCDEFLL); case 7: return m->Load(MachineType::Int64(), m->PointerConstant(nullptr)); default: return nullptr; } } TEST(CodeGenInt64Binop) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word64And(), m.machine()->Word64Or(), m.machine()->Word64Xor(), m.machine()->Word64Shl(), m.machine()->Word64Shr(), m.machine()->Word64Sar(), m.machine()->Word64Equal(), m.machine()->Int64Add(), m.machine()->Int64Sub(), m.machine()->Int64Mul(), m.machine()->Int64Div(), m.machine()->Uint64Div(), m.machine()->Int64Mod(), m.machine()->Uint64Mod(), m.machine()->Int64LessThan(), m.machine()->Int64LessThanOrEqual(), m.machine()->Uint64LessThan(), m.machine()->Uint64LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { for (int j = 0; j < 8; j++) { for (int k = 0; k < 8; k++) { RawMachineAssemblerTester m(MachineType::Int64(), MachineType::Int64()); Node* a = Int64Input(&m, j); Node* b = Int64Input(&m, k); m.Return(m.AddNode(kOps[i], a, b)); m.GenerateCode(); } } } } TEST(RunInt64AddWithOverflowP) { int64_t actual_val = -1; RawMachineAssemblerTester m; Int64BinopTester bt(&m); Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); bt.AddReturn(ovf); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int64_t expected_val; int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, bt.call(i, j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt64AddWithOverflowImm) { int64_t actual_val = -1, expected_val = 0; FOR_INT64_INPUTS(i) { { RawMachineAssemblerTester m(MachineType::Int64()); Node* add = m.Int64AddWithOverflow(m.Int64Constant(i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); FOR_INT64_INPUTS(j) { int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(MachineType::Int64()); Node* add = m.Int64AddWithOverflow(m.Parameter(0), m.Int64Constant(i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); FOR_INT64_INPUTS(j) { int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT64_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int64AddWithOverflow(m.Int64Constant(i), m.Int64Constant(j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt64AddWithOverflowInBranchP) { int constant = 911777; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; Int64BinopTester bt(&m); Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, add); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int64Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, add); Node* truncated = m.TruncateInt64ToInt32(val); bt.AddReturn(truncated); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int32_t expected = constant; int64_t result; if (!base::bits::SignedAddOverflow64(i, j, &result)) { expected = static_cast(result); } CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt64SubWithOverflowP) { int64_t actual_val = -1; RawMachineAssemblerTester m; Int64BinopTester bt(&m); Node* add = m.Int64SubWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); bt.AddReturn(ovf); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int64_t expected_val; int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, bt.call(i, j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt64SubWithOverflowImm) { int64_t actual_val = -1, expected_val = 0; FOR_INT64_INPUTS(i) { { RawMachineAssemblerTester m(MachineType::Int64()); Node* add = m.Int64SubWithOverflow(m.Int64Constant(i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); FOR_INT64_INPUTS(j) { int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(MachineType::Int64()); Node* add = m.Int64SubWithOverflow(m.Parameter(0), m.Int64Constant(i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); FOR_INT64_INPUTS(j) { int expected_ovf = base::bits::SignedSubOverflow64(j, i, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT64_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int64SubWithOverflow(m.Int64Constant(i), m.Int64Constant(j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val); m.Return(ovf); int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt64SubWithOverflowInBranchP) { int constant = 911999; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; Int64BinopTester bt(&m); Node* sub = m.Int64SubWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, sub); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int64Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, sub); Node* truncated = m.TruncateInt64ToInt32(val); bt.AddReturn(truncated); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int32_t expected = constant; int64_t result; if (!base::bits::SignedSubOverflow64(i, j, &result)) { expected = static_cast(result); } CHECK_EQ(expected, static_cast(bt.call(i, j))); } } } static int64_t RunInt64AddShift(bool is_left, int64_t add_left, int64_t add_right, int64_t shift_left, int64_t shit_right) { RawMachineAssemblerTester m; Node* shift = m.Word64Shl(m.Int64Constant(4), m.Int64Constant(2)); Node* add = m.Int64Add(m.Int64Constant(20), m.Int64Constant(22)); Node* dlsa = is_left ? m.Int64Add(shift, add) : m.Int64Add(add, shift); m.Return(dlsa); return m.Call(); } TEST(RunInt64AddShift) { struct Test_case { int64_t add_left, add_right, shift_left, shit_right, expected; }; Test_case tc[] = { {20, 22, 4, 2, 58}, {20, 22, 4, 1, 50}, {20, 22, 1, 6, 106}, {INT64_MAX - 2, 1, 1, 1, INT64_MIN}, // INT64_MAX - 2 + 1 + (1 << 1), overflow. }; const size_t tc_size = sizeof(tc) / sizeof(Test_case); for (size_t i = 0; i < tc_size; ++i) { CHECK_EQ(58, RunInt64AddShift(false, tc[i].add_left, tc[i].add_right, tc[i].shift_left, tc[i].shit_right)); CHECK_EQ(58, RunInt64AddShift(true, tc[i].add_left, tc[i].add_right, tc[i].shift_left, tc[i].shit_right)); } } // TODO(titzer): add tests that run 64-bit integer operations. #endif // V8_TARGET_ARCH_64_BIT TEST(RunGoto) { RawMachineAssemblerTester m; int constant = 99999; RawMachineLabel next; m.Goto(&next); m.Bind(&next); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunGotoMultiple) { RawMachineAssemblerTester m; int constant = 9999977; RawMachineLabel labels[10]; for (size_t i = 0; i < arraysize(labels); i++) { m.Goto(&labels[i]); m.Bind(&labels[i]); } m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunBranch) { RawMachineAssemblerTester m; int constant = 999777; RawMachineLabel blocka, blockb; m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(0 - constant)); m.Bind(&blockb); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunDiamond2) { RawMachineAssemblerTester m; int constant = 995666; RawMachineLabel blocka, blockb, end; m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunLoop) { RawMachineAssemblerTester m; int constant = 999555; RawMachineLabel header, body, exit; m.Goto(&header); m.Bind(&header); m.Branch(m.Int32Constant(0), &body, &exit); m.Bind(&body); m.Goto(&header); m.Bind(&exit); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } template static void BuildDiamondPhi(RawMachineAssemblerTester* m, Node* cond_node, MachineRepresentation rep, Node* true_node, Node* false_node) { RawMachineLabel blocka, blockb, end; m->Branch(cond_node, &blocka, &blockb); m->Bind(&blocka); m->Goto(&end); m->Bind(&blockb); m->Goto(&end); m->Bind(&end); Node* phi = m->Phi(rep, true_node, false_node); m->Return(phi); } TEST(RunDiamondPhiConst) { RawMachineAssemblerTester m(MachineType::Int32()); int false_val = 0xFF666; int true_val = 0x00DDD; Node* true_node = m.Int32Constant(true_val); Node* false_node = m.Int32Constant(false_val); BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32, true_node, false_node); CHECK_EQ(false_val, m.Call(0)); CHECK_EQ(true_val, m.Call(1)); } TEST(RunDiamondPhiNumber) { RawMachineAssemblerTester m(MachineType::Int32()); double false_val = -11.1; double true_val = 200.1; Node* true_node = m.NumberConstant(true_val); Node* false_node = m.NumberConstant(false_val); BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node, false_node); m.CheckNumber(false_val, m.Call(0)); m.CheckNumber(true_val, m.Call(1)); } TEST(RunDiamondPhiString) { RawMachineAssemblerTester m(MachineType::Int32()); const char* false_val = "false"; const char* true_val = "true"; Node* true_node = m.StringConstant(true_val); Node* false_node = m.StringConstant(false_val); BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node, false_node); m.CheckString(false_val, m.Call(0)); m.CheckString(true_val, m.Call(1)); } TEST(RunDiamondPhiParam) { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32, m.Parameter(1), m.Parameter(2)); int32_t c1 = 0x260CB75A; int32_t c2 = 0xCD3E9C8B; int result = m.Call(0, c1, c2); CHECK_EQ(c2, result); result = m.Call(1, c1, c2); CHECK_EQ(c1, result); } TEST(RunLoopPhiConst) { RawMachineAssemblerTester m; int true_val = 0x44000; int false_val = 0x00888; Node* cond_node = m.Int32Constant(0); Node* true_node = m.Int32Constant(true_val); Node* false_node = m.Int32Constant(false_val); // x = false_val; while(false) { x = true_val; } return x; RawMachineLabel body, header, end; m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, true_node); m.Branch(cond_node, &body, &end); m.Bind(&body); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunLoopPhiParam) { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); RawMachineLabel blocka, blockb, end; m.Goto(&blocka); m.Bind(&blocka); Node* phi = m.Phi(MachineRepresentation::kWord32, m.Parameter(1), m.Parameter(2)); Node* cond = m.Phi(MachineRepresentation::kWord32, m.Parameter(0), m.Int32Constant(0)); m.Branch(cond, &blockb, &end); m.Bind(&blockb); m.Goto(&blocka); m.Bind(&end); m.Return(phi); int32_t c1 = 0xA81903B4; int32_t c2 = 0x5A1207DA; int result = m.Call(0, c1, c2); CHECK_EQ(c1, result); result = m.Call(1, c1, c2); CHECK_EQ(c2, result); } TEST(RunLoopPhiInduction) { RawMachineAssemblerTester m; int false_val = 0x10777; // x = false_val; while(false) { x++; } return x; RawMachineLabel header, body, end; Node* false_node = m.Int32Constant(false_val); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node); m.Branch(m.Int32Constant(0), &body, &end); m.Bind(&body); Node* add = m.Int32Add(phi, m.Int32Constant(1)); phi->ReplaceInput(1, add); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunLoopIncrement) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x ^ param) { x++; } return x; RawMachineLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero); m.Branch(m.WordXor(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); } TEST(RunLoopIncrement2) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x < param) { x++; } return x; RawMachineLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero); m.Branch(m.Int32LessThan(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); CHECK_EQ(0, bt.call(-200, 0)); } TEST(RunLoopIncrement3) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x < param) { x++; } return x; RawMachineLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero); m.Branch(m.Uint32LessThan(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); CHECK_EQ(200, bt.call(200, 0)); } TEST(RunLoopDecrement) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = param; while(x) { x--; } return x; RawMachineLabel header, body, end; m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, bt.param0, m.Int32Constant(0)); m.Branch(phi, &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Sub(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(0, bt.call(11, 0)); CHECK_EQ(0, bt.call(110, 0)); CHECK_EQ(0, bt.call(197, 0)); } TEST(RunLoopIncrementFloat32) { RawMachineAssemblerTester m; // x = -3.0f; while(x < 10f) { x = x + 0.5f; } return (int) (double) x; RawMachineLabel header, body, end; Node* minus_3 = m.Float32Constant(-3.0f); Node* ten = m.Float32Constant(10.0f); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kFloat32, minus_3, ten); m.Branch(m.Float32LessThan(phi, ten), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Float32Add(phi, m.Float32Constant(0.5f))); m.Goto(&header); m.Bind(&end); m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(phi))); CHECK_EQ(10, m.Call()); } TEST(RunLoopIncrementFloat64) { RawMachineAssemblerTester m; // x = -3.0; while(x < 10) { x = x + 0.5; } return (int) x; RawMachineLabel header, body, end; Node* minus_3 = m.Float64Constant(-3.0); Node* ten = m.Float64Constant(10.0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kFloat64, minus_3, ten); m.Branch(m.Float64LessThan(phi, ten), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Float64Add(phi, m.Float64Constant(0.5))); m.Goto(&header); m.Bind(&end); m.Return(m.ChangeFloat64ToInt32(phi)); CHECK_EQ(10, m.Call()); } TEST(RunSwitch1) { RawMachineAssemblerTester m; int constant = 11223344; RawMachineLabel block0, block1, def, end; RawMachineLabel* case_labels[] = {&block0, &block1}; int32_t case_values[] = {0, 1}; m.Switch(m.Int32Constant(0), &def, case_values, case_labels, arraysize(case_labels)); m.Bind(&block0); m.Goto(&end); m.Bind(&block1); m.Goto(&end); m.Bind(&def); m.Goto(&end); m.Bind(&end); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunSwitch2) { RawMachineAssemblerTester m(MachineType::Int32()); RawMachineLabel blocka, blockb, blockc; RawMachineLabel* case_labels[] = {&blocka, &blockb}; int32_t case_values[] = {std::numeric_limits::min(), std::numeric_limits::max()}; m.Switch(m.Parameter(0), &blockc, case_values, case_labels, arraysize(case_labels)); m.Bind(&blocka); m.Return(m.Int32Constant(-1)); m.Bind(&blockb); m.Return(m.Int32Constant(1)); m.Bind(&blockc); m.Return(m.Int32Constant(0)); CHECK_EQ(1, m.Call(std::numeric_limits::max())); CHECK_EQ(-1, m.Call(std::numeric_limits::min())); for (int i = -100; i < 100; i += 25) { CHECK_EQ(0, m.Call(i)); } } TEST(RunSwitch3) { RawMachineAssemblerTester m(MachineType::Int32()); RawMachineLabel blocka, blockb, blockc; RawMachineLabel* case_labels[] = {&blocka, &blockb}; int32_t case_values[] = {std::numeric_limits::min() + 0, std::numeric_limits::min() + 1}; m.Switch(m.Parameter(0), &blockc, case_values, case_labels, arraysize(case_labels)); m.Bind(&blocka); m.Return(m.Int32Constant(0)); m.Bind(&blockb); m.Return(m.Int32Constant(1)); m.Bind(&blockc); m.Return(m.Int32Constant(2)); CHECK_EQ(0, m.Call(std::numeric_limits::min() + 0)); CHECK_EQ(1, m.Call(std::numeric_limits::min() + 1)); for (int i = -100; i < 100; i += 25) { CHECK_EQ(2, m.Call(i)); } } TEST(RunSwitch4) { RawMachineAssemblerTester m(MachineType::Int32()); const size_t kNumCases = 512; const size_t kNumValues = kNumCases + 1; int32_t values[kNumValues]; m.main_isolate()->random_number_generator()->NextBytes(values, sizeof(values)); RawMachineLabel end, def; int32_t case_values[kNumCases]; RawMachineLabel* case_labels[kNumCases]; Node* results[kNumValues]; for (size_t i = 0; i < kNumCases; ++i) { case_values[i] = static_cast(i); case_labels[i] = m.main_zone()->New(); } m.Switch(m.Parameter(0), &def, case_values, case_labels, arraysize(case_labels)); for (size_t i = 0; i < kNumCases; ++i) { m.Bind(case_labels[i]); results[i] = m.Int32Constant(values[i]); m.Goto(&end); } m.Bind(&def); results[kNumCases] = m.Int32Constant(values[kNumCases]); m.Goto(&end); m.Bind(&end); const int num_results = static_cast(arraysize(results)); Node* phi = m.AddNode(m.common()->Phi(MachineRepresentation::kWord32, num_results), num_results, results); m.Return(phi); for (size_t i = 0; i < kNumValues; ++i) { CHECK_EQ(values[i], m.Call(static_cast(i))); } } TEST(RunInt32AddP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { // Use uint32_t because signed overflow is UB in C. int expected = static_cast(static_cast(i) + static_cast(j)); CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt32AddAndWord32EqualP) { { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Parameter(0), m.Word32Equal(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(i) + (j == k)); CHECK_EQ(expected, m.Call(i, j, k)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Word32Equal(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((i == j) + bit_cast(k)); CHECK_EQ(expected, m.Call(i, j, k)); } } } } } TEST(RunInt32AddAndWord32EqualImm) { { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Int32Constant(i), m.Word32Equal(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(i) + (j == k)); CHECK_EQ(expected, m.Call(j, k)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Word32Equal(m.Int32Constant(i), m.Parameter(0)), m.Parameter(1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((i == j) + bit_cast(k)); CHECK_EQ(expected, m.Call(j, k)); } } } } } TEST(RunInt32AddAndWord32NotEqualP) { { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Parameter(0), m.Word32NotEqual(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(i) + (j != k)); CHECK_EQ(expected, m.Call(i, j, k)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Word32NotEqual(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((i != j) + bit_cast(k)); CHECK_EQ(expected, m.Call(i, j, k)); } } } } } TEST(RunInt32AddAndWord32NotEqualImm) { { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Int32Constant(i), m.Word32NotEqual(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(i) + (j != k)); CHECK_EQ(expected, m.Call(j, k)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); m.Return(m.Int32Add(m.Word32NotEqual(m.Int32Constant(i), m.Parameter(0)), m.Parameter(1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((i != j) + bit_cast(k)); CHECK_EQ(expected, m.Call(j, k)); } } } } } TEST(RunInt32AddAndWord32SarP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = i + (j >> shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (i >> shift) + k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32AddAndWord32ShlP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = i + (j << shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (i << shift) + k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32AddAndWord32ShrP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = i + (j >> shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Add(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (i >> shift) + k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32AddInBranch) { static const int32_t constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i + j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i + j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Add(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i + j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Int32Add(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i + j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Add(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = ((i + right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunInt32AddInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i + j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Int32Add(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i + j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Int32Add(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (i + j) == 0; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Int32Add(m.Parameter(0), m.Int32Constant(i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (j + i) == 0; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); m.Return(m.Word32Equal( m.Int32Add(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = (i + right) == 0; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunInt32SubP) { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); m.Return(m.Int32Sub(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i - j; CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt32SubImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Int32Sub(m.Int32Constant(i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = i - j; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(i))); FOR_UINT32_INPUTS(j) { uint32_t expected = j - i; CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunInt32SubImm2) { BufferedRawMachineAssemblerTester r; r.Return(r.Int32Sub(r.Int32Constant(-1), r.Int32Constant(0))); CHECK_EQ(-1, r.Call()); } TEST(RunInt32SubAndWord32SarP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = i - (j >> shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = (i >> shift) - k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32SubAndWord32ShlP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = i - (j << shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (i << shift) - k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32SubAndWord32ShrP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. uint32_t expected = i - (j >> shift); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Int32Sub(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. uint32_t expected = (i >> shift) - k; CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunInt32SubInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i - j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i - j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i - j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i - j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = ((i - right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunInt32SubInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i - j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Int32Sub(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i - j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (i - j) == 0; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.Int32Constant(i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (j - i) == 0; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); m.Return(m.Word32Equal( m.Int32Sub(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = (i - right) == 0; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunInt32MulP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Mul(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int expected = base::MulWithWraparound(i, j); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Int32Mul(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i * j; CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunInt32MulHighP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32MulHigh(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast( (static_cast(i) * static_cast(j)) >> 32); CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt32MulImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Int32Mul(m.Int32Constant(i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = i * j; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant(i))); FOR_UINT32_INPUTS(j) { uint32_t expected = j * i; CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunInt32MulAndInt32AddP) { { FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m(MachineType::Int32()); int32_t p0 = i; int32_t p1 = j; m.Return(m.Int32Add(m.Int32Constant(p0), m.Int32Mul(m.Parameter(0), m.Int32Constant(p1)))); FOR_INT32_INPUTS(k) { int32_t p2 = k; int expected = base::AddWithWraparound(p0, base::MulWithWraparound(p1, p2)); CHECK_EQ(expected, m.Call(p2)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return( m.Int32Add(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = i; int32_t p1 = j; int32_t p2 = k; int expected = base::AddWithWraparound(p0, base::MulWithWraparound(p1, p2)); CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return( m.Int32Add(m.Int32Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = i; int32_t p1 = j; int32_t p2 = k; int expected = base::AddWithWraparound(base::MulWithWraparound(p0, p1), p2); CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Int32Add(m.Int32Constant(i), m.Int32Mul(bt.param0, bt.param1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = j; int32_t p1 = k; int expected = base::AddWithWraparound(i, base::MulWithWraparound(p0, p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunInt32MulAndInt32SubP) { { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); m.Return( m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = i; int32_t p1 = j; int32_t p2 = k; int expected = base::SubWithWraparound(p0, base::MulWithWraparound(p1, p2)); CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Int32Sub(m.Int32Constant(i), m.Int32Mul(bt.param0, bt.param1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = j; int32_t p1 = k; int expected = base::SubWithWraparound(i, base::MulWithWraparound(p0, p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32MulHighP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Uint32MulHigh(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = bit_cast(static_cast( (static_cast(i) * static_cast(j)) >> 32)); CHECK_EQ(expected, bt.call(bit_cast(i), bit_cast(j))); } } } TEST(RunInt32DivP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Div(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = i; int p1 = j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 / p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Int32Div(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = i; int p1 = j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(base::AddWithWraparound(p0, (p0 / p1))); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32DivP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Uint32Div(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = i; uint32_t p1 = j; if (p1 != 0) { int32_t expected = bit_cast(p0 / p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Div(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = i; uint32_t p1 = j; if (p1 != 0) { int32_t expected = bit_cast(p0 + (p0 / p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunInt32ModP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Mod(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = i; int p1 = j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 % p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Int32Mod(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = i; int p1 = j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(base::AddWithWraparound(p0, (p0 % p1))); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32ModP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Uint32Mod(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = i; uint32_t p1 = j; if (p1 != 0) { uint32_t expected = static_cast(p0 % p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Mod(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = i; uint32_t p1 = j; if (p1 != 0) { uint32_t expected = static_cast(p0 + (p0 % p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunWord32AndP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = i & j; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(bt.param0, m.Word32BitwiseNot(bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = i & ~(j); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(m.Word32BitwiseNot(bt.param0), bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = ~(i)&j; CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunWord32AndAndWord32ShlP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shl(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i << (j & 0x1F); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shl(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i << (0x1F & j); CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunWord32AndAndWord32ShrP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shr(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i >> (j & 0x1F); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shr(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i >> (0x1F & j); CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunWord32AndAndWord32SarP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Sar(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = i >> (j & 0x1F); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Sar(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = i >> (0x1F & j); CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunWord32AndImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32And(m.Int32Constant(i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = i & j; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32And(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = i & ~(j); CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunWord32AndInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i & j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i & j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32And(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i & j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Word32And(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i & j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32And(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = ((i & right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunWord32AndInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i & j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32And(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i & j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32And(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (i & j) == 0; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32And(m.Parameter(0), m.Int32Constant(i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (j & i) == 0; CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunWord32OrP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i | j; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(bt.param0, m.Word32BitwiseNot(bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i | ~(j); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(m.Word32BitwiseNot(bt.param0), bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = ~(i) | j; CHECK_EQ(expected, bt.call(i, j)); } } } } TEST(RunWord32OrImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Or(m.Int32Constant(i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = i | j; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Or(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = i | ~(j); CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunWord32OrInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = (i | j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = (i | j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Or(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(j) { int32_t expected = (i | j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Int32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Word32Or(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(j) { int32_t expected = (i | j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Or(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = ((i | right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunWord32OrInComparison) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i | j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Or(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (i | j) == 0; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32Or(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (i | j) == 0; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32Or(m.Parameter(0), m.Int32Constant(i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (j | i) == 0; CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunWord32XorP) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Xor(m.Int32Constant(i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = i ^ j; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = i ^ j; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(bt.param0, m.Word32BitwiseNot(bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = i ^ ~(j); CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(m.Word32BitwiseNot(bt.param0), bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = ~(i) ^ j; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Xor(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = i ^ ~(j); CHECK_EQ(expected, m.Call(j)); } } } } TEST(RunWord32XorInBranch) { static const uint32_t constant = 987654321; { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i ^ j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); RawMachineLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (i ^ j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(i, j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Xor(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i ^ j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Word32Xor(m.Int32Constant(i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (i ^ j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Xor(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = j >> shift; break; case IrOpcode::kWord32Shl: right = static_cast(j) << shift; break; case IrOpcode::kWord32Shr: right = static_cast(j) >> shift; break; } int32_t expected = ((i ^ right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i, j, shift)); } } } } } } TEST(RunWord32ShlP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { uint32_t expected = j << shift; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Shl(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = i << shift; CHECK_EQ(expected, bt.call(i, shift)); } } } } TEST(RunWord32ShlInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Shl(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (i << shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Shl(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (i << shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (i << shift); CHECK_EQ(expected, m.Call(i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (i << shift); CHECK_EQ(expected, m.Call(i)); } } } } TEST(RunWord32ShrP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { uint32_t expected = j >> shift; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Shr(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = i >> shift; CHECK_EQ(expected, bt.call(i, shift)); } } CHECK_EQ(0x00010000u, bt.call(0x80000000, 15)); } } TEST(RunWordShiftInBranch) { static const uint32_t constant = 987654321; FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { int32_t expected = ((i << shift) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i)); } } FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { int32_t expected = ((i >> shift) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i)); } } FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Int32()); RawMachineLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(i) { int32_t expected = ((i >> shift) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(i)); } } } TEST(RunWord32ShrInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Shr(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (i >> shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Shr(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (i >> shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (i >> shift); CHECK_EQ(expected, m.Call(i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (i >> shift); CHECK_EQ(expected, m.Call(i)); } } } } TEST(RunWord32SarP) { { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift))); FOR_INT32_INPUTS(j) { int32_t expected = j >> shift; CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Sar(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = i >> shift; CHECK_EQ(expected, bt.call(i, shift)); } } CHECK_EQ(bit_cast(0xFFFF0000), bt.call(0x80000000, 15)); } } TEST(RunWord32SarInComparison) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Sar(bt.param0, bt.param1), m.Int32Constant(0))); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = 0 == (i >> shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Sar(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = 0 == (i >> shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Int32()); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)))); FOR_INT32_INPUTS(i) { int32_t expected = 0 == (i >> shift); CHECK_EQ(expected, m.Call(i)); } } } { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Int32()); m.Return( m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_INT32_INPUTS(i) { int32_t expected = 0 == (i >> shift); CHECK_EQ(expected, m.Call(i)); } } } } TEST(RunWord32RorP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { int32_t expected = base::bits::RotateRight32(j, shift); CHECK_EQ(expected, m.Call(j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Ror(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = base::bits::RotateRight32(i, shift); CHECK_EQ(expected, bt.call(i, shift)); } } } } TEST(RunWord32RorInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Ror(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == base::bits::RotateRight32(i, shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Ror(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == base::bits::RotateRight32(i, shift); CHECK_EQ(expected, bt.call(i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == base::bits::RotateRight32(i, shift); CHECK_EQ(expected, m.Call(i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(MachineType::Uint32()); m.Return( m.Word32Equal(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == base::bits::RotateRight32(i, shift); CHECK_EQ(expected, m.Call(i)); } } } } TEST(RunWord32BitwiseNotP) { RawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.Word32BitwiseNot(m.Parameter(0))); FOR_INT32_INPUTS(i) { int expected = ~(i); CHECK_EQ(expected, m.Call(i)); } } TEST(RunInt32NegP) { RawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.Int32Neg(m.Parameter(0))); FOR_INT32_INPUTS(i) { int expected = base::NegateWithWraparound(i); CHECK_EQ(expected, m.Call(i)); } } TEST(RunWord32EqualAndWord32SarP) { { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Int32(), MachineType::Uint32()); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (i == (j >> shift)); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Int32(), MachineType::Uint32(), MachineType::Int32()); m.Return(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_INT32_INPUTS(k) { int32_t expected = ((i >> shift) == k); CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunWord32EqualAndWord32ShlP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (i == (j << shift)); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = ((i << shift) == k); CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunWord32EqualAndWord32ShrP) { { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (i == (j >> shift)); CHECK_EQ(expected, m.Call(i, j, shift)); } } } } { RawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = ((i >> shift) == k); CHECK_EQ(expected, m.Call(i, shift, k)); } } } } } TEST(RunDeadNodes) { for (int i = 0; true; i++) { RawMachineAssemblerTester m_v; RawMachineAssemblerTester m_i(MachineType::Int32()); RawMachineAssemblerTester& m = i == 5 ? m_i : m_v; int constant = 0x55 + i; switch (i) { case 0: m.Int32Constant(44); break; case 1: m.StringConstant("unused"); break; case 2: m.NumberConstant(11.1); break; case 3: m.PointerConstant(&constant); break; case 4: m.LoadFromPointer(&constant, MachineType::Int32()); break; case 5: m.Parameter(0); break; default: return; } m.Return(m.Int32Constant(constant)); if (i != 5) { CHECK_EQ(constant, m.Call()); } else { CHECK_EQ(constant, m.Call(0)); } } } TEST(RunDeadInt32Binops) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word32And(), m.machine()->Word32Or(), m.machine()->Word32Xor(), m.machine()->Word32Shl(), m.machine()->Word32Shr(), m.machine()->Word32Sar(), m.machine()->Word32Ror(), m.machine()->Word32Equal(), m.machine()->Int32Add(), m.machine()->Int32Sub(), m.machine()->Int32Mul(), m.machine()->Int32MulHigh(), m.machine()->Int32Div(), m.machine()->Uint32Div(), m.machine()->Int32Mod(), m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); int32_t constant = static_cast(0x55555 + i); m.AddNode(kOps[i], m.Parameter(0), m.Parameter(1)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call(1, 1)); } } TEST(RunFloat32Add) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Add(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i + j, m.Call(i, j)); } } } TEST(RunFloat32Sub) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Sub(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, m.Call(i, j)); } } } TEST(RunFloat32Neg) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.AddNode(m.machine()->Float32Neg(), m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(-0.0f - i, m.Call(i)); } } TEST(RunFloat32Mul) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Mul(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i * j, m.Call(i, j)); } } } TEST(RunFloat32Div) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Div(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(base::Divide(i, j), m.Call(i, j)); } } } TEST(RunFloat64Add) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Add(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i + j, m.Call(i, j)); } } } TEST(RunFloat64Sub) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Sub(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i - j, m.Call(i, j)); } } } TEST(RunFloat64Neg) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.AddNode(m.machine()->Float64Neg(), m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(-0.0 - i, m.Call(i)); } } TEST(RunFloat64Mul) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Mul(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i * j, m.Call(i, j)); } } } TEST(RunFloat64Div) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Div(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(base::Divide(i, j), m.Call(i, j)); } } } TEST(RunFloat64Mod) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Mod(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(Modulo(i, j), m.Call(i, j)); } } } TEST(RunDeadFloat32Binops) { RawMachineAssemblerTester m; const Operator* ops[] = {m.machine()->Float32Add(), m.machine()->Float32Sub(), m.machine()->Float32Mul(), m.machine()->Float32Div(), nullptr}; for (int i = 0; ops[i] != nullptr; i++) { RawMachineAssemblerTester m; int constant = 0x53355 + i; m.AddNode(ops[i], m.Float32Constant(0.1f), m.Float32Constant(1.11f)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } } TEST(RunDeadFloat64Binops) { RawMachineAssemblerTester m; const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(), m.machine()->Float64Mul(), m.machine()->Float64Div(), m.machine()->Float64Mod(), nullptr}; for (int i = 0; ops[i] != nullptr; i++) { RawMachineAssemblerTester m; int constant = 0x53355 + i; m.AddNode(ops[i], m.Float64Constant(0.1), m.Float64Constant(1.11)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } } TEST(RunFloat32AddP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Add(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl + pr, bt.call(pl, pr)); } } } TEST(RunFloat64AddP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Add(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(pl + pr, bt.call(pl, pr)); } } } TEST(RunFloat64MaxP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Max(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMax(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat64MinP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Min(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMin(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat32Max) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Max(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(JSMax(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat32Min) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Min(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(JSMin(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat64Max) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Max(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMax(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat64Min) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Min(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMin(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat32SubP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Sub(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl - pr, bt.call(pl, pr)); } } } TEST(RunFloat32SubImm1) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.Float32Sub(m.Float32Constant(i), m.Parameter(0))); FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, m.Call(j)); } } } TEST(RunFloat32SubImm2) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.Float32Sub(m.Parameter(0), m.Float32Constant(i))); FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(j - i, m.Call(j)); } } } TEST(RunFloat64SubImm1) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Sub(m.Float64Constant(i), m.Parameter(0))); FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i - j, m.Call(j)); } } } TEST(RunFloat64SubImm2) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Sub(m.Parameter(0), m.Float64Constant(i))); FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(j - i, m.Call(j)); } } } TEST(RunFloat64SubP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Sub(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = pl - pr; CHECK_DOUBLE_EQ(expected, bt.call(pl, pr)); } } } TEST(RunFloat32MulP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Mul(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl * pr, bt.call(pl, pr)); } } } TEST(RunFloat64MulP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Mul(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = pl * pr; CHECK_DOUBLE_EQ(expected, bt.call(pl, pr)); } } } TEST(RunFloat32MulAndFloat32Neg) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Neg(m.Float32Mul(m.Parameter(0), m.Parameter(1)))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(-(i * j), m.Call(i, j)); } } } TEST(RunFloat64MulAndFloat64Neg) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Neg(m.Float64Mul(m.Parameter(0), m.Parameter(1)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(-(i * j), m.Call(i, j)); } } } TEST(RunFloat32NegAndFloat32Mul1) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Mul(m.Float32Neg(m.Parameter(0)), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((-i * j), m.Call(i, j)); } } } TEST(RunFloat64NegAndFloat64Mul1) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Mul(m.Float64Neg(m.Parameter(0)), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((-i * j), m.Call(i, j)); } } } TEST(RunFloat32NegAndFloat32Mul2) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return(m.Float32Mul(m.Parameter(0), m.Float32Neg(m.Parameter(1)))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((i * -j), m.Call(i, j)); } } } TEST(RunFloat64NegAndFloat64Mul2) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Mul(m.Parameter(0), m.Float64Neg(m.Parameter(1)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((i * -j), m.Call(i, j)); } } } TEST(RunFloat32NegAndFloat32Mul3) { BufferedRawMachineAssemblerTester m(MachineType::Float32(), MachineType::Float32()); m.Return( m.Float32Mul(m.Float32Neg(m.Parameter(0)), m.Float32Neg(m.Parameter(1)))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((-i * -j), m.Call(i, j)); } } } TEST(RunFloat64NegAndFloat64Mul3) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return( m.Float64Mul(m.Float64Neg(m.Parameter(0)), m.Float64Neg(m.Parameter(1)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((-i * -j), m.Call(i, j)); } } } TEST(RunFloat64MulAndFloat64Add1) { BufferedRawMachineAssemblerTester m( MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Add(m.Float64Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ((i * j) + k, m.Call(i, j, k)); } } } } TEST(RunFloat64MulAndFloat64Add2) { BufferedRawMachineAssemblerTester m( MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Add(m.Parameter(0), m.Float64Mul(m.Parameter(1), m.Parameter(2)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ(i + (j * k), m.Call(i, j, k)); } } } } TEST(RunFloat64MulAndFloat64Sub1) { BufferedRawMachineAssemblerTester m( MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Sub(m.Float64Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ((i * j) - k, m.Call(i, j, k)); } } } } TEST(RunFloat64MulAndFloat64Sub2) { BufferedRawMachineAssemblerTester m( MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Sub(m.Parameter(0), m.Float64Mul(m.Parameter(1), m.Parameter(2)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ(i - (j * k), m.Call(i, j, k)); } } } } TEST(RunFloat64MulImm1) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Mul(m.Float64Constant(i), m.Parameter(0))); FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i * j, m.Call(j)); } } } TEST(RunFloat64MulImm2) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Mul(m.Parameter(0), m.Float64Constant(i))); FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(j * i, m.Call(j)); } } } TEST(RunFloat32DivP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Div(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(base::Divide(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat64DivP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Div(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(base::Divide(pl, pr), bt.call(pl, pr)); } } } TEST(RunFloat64ModP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Mod(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(Modulo(i, j), bt.call(i, j)); } } } TEST(RunChangeInt32ToFloat64_A) { int32_t magic = 0x986234; BufferedRawMachineAssemblerTester m; m.Return(m.ChangeInt32ToFloat64(m.Int32Constant(magic))); CHECK_DOUBLE_EQ(static_cast(magic), m.Call()); } TEST(RunChangeInt32ToFloat64_B) { BufferedRawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.ChangeInt32ToFloat64(m.Parameter(0))); FOR_INT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast(i), m.Call(i)); } } TEST(RunChangeUint32ToFloat64) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.ChangeUint32ToFloat64(m.Parameter(0))); FOR_UINT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast(i), m.Call(i)); } } TEST(RunTruncateFloat32ToInt32) { // The upper bound is (INT32_MAX + 1), which is the lowest float-representable // number above INT32_MAX which cannot be represented as int32. float upper_bound = 2147483648.0f; // We use INT32_MIN as a lower bound because (INT32_MIN - 1) is not // representable as float, and no number between (INT32_MIN - 1) and INT32_MIN // is. float lower_bound = static_cast(INT32_MIN); { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TruncateFloat32ToInt32(m.Parameter(0), TruncateKind::kArchitectureDefault)); FOR_FLOAT32_INPUTS(i) { if (i < upper_bound && i >= lower_bound) { CHECK_FLOAT_EQ(static_cast(i), m.Call(i)); } else if (i < lower_bound) { #if (V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64) && !_MIPS_ARCH_MIPS32R6 && \ !_MIPS_ARCH_MIPS64R6 CHECK_FLOAT_EQ(std::numeric_limits::max(), m.Call(i)); #else CHECK_FLOAT_EQ(std::numeric_limits::min(), m.Call(i)); #endif } else if (i >= upper_bound) { #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 CHECK_FLOAT_EQ(std::numeric_limits::min(), m.Call(i)); #else CHECK_FLOAT_EQ(std::numeric_limits::max(), m.Call(i)); #endif } else { DCHECK(std::isnan(i)); #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390X || \ V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 CHECK_FLOAT_EQ(std::numeric_limits::min(), m.Call(i)); #elif V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM CHECK_FLOAT_EQ(0, m.Call(i)); #elif V8_TARGET_ARCH_RISCV64 CHECK_FLOAT_EQ(std::numeric_limits::max(), m.Call(i)); #endif } } } { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TruncateFloat32ToInt32(m.Parameter(0), TruncateKind::kSetOverflowToMin)); FOR_FLOAT32_INPUTS(i) { if (i < upper_bound && i >= lower_bound) { CHECK_FLOAT_EQ(static_cast(i), m.Call(i)); } else if (!std::isnan(i)) { CHECK_FLOAT_EQ(std::numeric_limits::min(), m.Call(i)); } else { DCHECK(std::isnan(i)); #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390X || \ V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 CHECK_FLOAT_EQ(std::numeric_limits::min(), m.Call(i)); #elif V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM CHECK_FLOAT_EQ(0, m.Call(i)); #endif } } } } TEST(RunTruncateFloat32ToUint32) { // The upper bound is (UINT32_MAX + 1), which is the lowest // float-representable number above UINT32_MAX which cannot be represented as // uint32. double upper_bound = 4294967296.0f; double lower_bound = -1.0f; // No tests outside the range of UINT32 are performed, as the semantics are // tricky on x64. On this architecture, the assembler transforms float32 into // a signed int64 instead of an unsigned int32. Overflow can then be detected // by converting back to float and testing for equality as done in // wasm-compiler.cc . // // On arm architectures, TruncateKind::kArchitectureDefault rounds towards 0 // upon overflow and returns 0 if the input is NaN. // TruncateKind::kSetOverflowToMin returns 0 on overflow and NaN. { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TruncateFloat32ToUint32(m.Parameter(0), TruncateKind::kArchitectureDefault)); FOR_UINT32_INPUTS(i) { volatile float input = static_cast(i); if (input < upper_bound) { CHECK_EQ(static_cast(input), m.Call(input)); } } FOR_FLOAT32_INPUTS(j) { if ((j < upper_bound) && (j > lower_bound)) { CHECK_FLOAT_EQ(static_cast(j), m.Call(j)); } } } { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TruncateFloat32ToUint32(m.Parameter(0), TruncateKind::kSetOverflowToMin)); FOR_UINT32_INPUTS(i) { volatile float input = static_cast(i); if (input < upper_bound) { CHECK_EQ(static_cast(input), m.Call(input)); } } FOR_FLOAT32_INPUTS(j) { if ((j < upper_bound) && (j > lower_bound)) { CHECK_FLOAT_EQ(static_cast(j), m.Call(j)); } } } } TEST(RunChangeFloat64ToInt32_A) { BufferedRawMachineAssemblerTester m; double magic = 11.1; m.Return(m.ChangeFloat64ToInt32(m.Float64Constant(magic))); CHECK_EQ(static_cast(magic), m.Call()); } TEST(RunChangeFloat64ToInt32_B) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.ChangeFloat64ToInt32(m.Parameter(0))); // Note we don't check fractional inputs, or inputs outside the range of // int32, because these Convert operators really should be Change operators. FOR_INT32_INPUTS(i) { CHECK_EQ(i, m.Call(static_cast(i))); } for (int32_t n = 1; n < 31; ++n) { CHECK_EQ(1 << n, m.Call(static_cast(1 << n))); } for (int32_t n = 1; n < 31; ++n) { CHECK_EQ(3 << n, m.Call(static_cast(3 << n))); } } TEST(RunChangeFloat64ToUint32) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.ChangeFloat64ToUint32(m.Parameter(0))); { FOR_UINT32_INPUTS(i) { CHECK_EQ(i, m.Call(static_cast(i))); } } // Check various powers of 2. for (int32_t n = 1; n < 31; ++n) { { CHECK_EQ(1u << n, m.Call(static_cast(1u << n))); } { CHECK_EQ(3u << n, m.Call(static_cast(3u << n))); } } // Note we don't check fractional inputs, because these Convert operators // really should be Change operators. } TEST(RunTruncateFloat64ToFloat32) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_FLOAT_EQ(DoubleToFloat32(i), m.Call(i)); } } uint64_t ToInt64(uint32_t low, uint32_t high) { return (static_cast(high) << 32) | static_cast(low); } #if V8_TARGET_ARCH_32_BIT && !V8_TARGET_ARCH_X87 TEST(RunInt32PairAdd) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairAdd = m.Int32PairAdd(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairAdd)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairAdd)); m.Return(m.Int32Constant(74)); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)); CHECK_EQ(i + j, ToInt64(low, high)); } } } TEST(RunInt32PairAddUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection(1, m.Int32PairAdd(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ( static_cast((i + j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)))); } } } void TestInt32PairAddWithSharedInput(int a, int b, int c, int d) { BufferedRawMachineAssemblerTester m(MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairAdd = m.Int32PairAdd(m.Parameter(a), m.Parameter(b), m.Parameter(c), m.Parameter(d)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairAdd)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairAdd)); m.Return(m.Int32Constant(74)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { m.Call(i, j); uint32_t inputs[] = {i, j}; CHECK_EQ(ToInt64(inputs[a], inputs[b]) + ToInt64(inputs[c], inputs[d]), ToInt64(low, high)); } } } TEST(RunInt32PairAddWithSharedInput) { TestInt32PairAddWithSharedInput(0, 0, 0, 0); TestInt32PairAddWithSharedInput(1, 0, 0, 0); TestInt32PairAddWithSharedInput(0, 1, 0, 0); TestInt32PairAddWithSharedInput(0, 0, 1, 0); TestInt32PairAddWithSharedInput(0, 0, 0, 1); TestInt32PairAddWithSharedInput(1, 1, 0, 0); } TEST(RunInt32PairSub) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairSub = m.Int32PairSub(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairSub)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairSub)); m.Return(m.Int32Constant(74)); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)); CHECK_EQ(i - j, ToInt64(low, high)); } } } TEST(RunInt32PairSubUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection(1, m.Int32PairSub(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ( static_cast((i - j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)))); } } } void TestInt32PairSubWithSharedInput(int a, int b, int c, int d) { BufferedRawMachineAssemblerTester m(MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairSub = m.Int32PairSub(m.Parameter(a), m.Parameter(b), m.Parameter(c), m.Parameter(d)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairSub)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairSub)); m.Return(m.Int32Constant(74)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { m.Call(i, j); uint32_t inputs[] = {i, j}; CHECK_EQ(ToInt64(inputs[a], inputs[b]) - ToInt64(inputs[c], inputs[d]), ToInt64(low, high)); } } } TEST(RunInt32PairSubWithSharedInput) { TestInt32PairSubWithSharedInput(0, 0, 0, 0); TestInt32PairSubWithSharedInput(1, 0, 0, 0); TestInt32PairSubWithSharedInput(0, 1, 0, 0); TestInt32PairSubWithSharedInput(0, 0, 1, 0); TestInt32PairSubWithSharedInput(0, 0, 0, 1); TestInt32PairSubWithSharedInput(1, 1, 0, 0); } TEST(RunInt32PairMul) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairMul = m.Int32PairMul(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairMul)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairMul)); m.Return(m.Int32Constant(74)); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)); CHECK_EQ(i * j, ToInt64(low, high)); } } } TEST(RunInt32PairMulUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection(1, m.Int32PairMul(m.Parameter(0), m.Parameter(1), m.Parameter(2), m.Parameter(3)))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ( static_cast((i * j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), static_cast(j & 0xFFFFFFFF), static_cast(j >> 32)))); } } } void TestInt32PairMulWithSharedInput(int a, int b, int c, int d) { BufferedRawMachineAssemblerTester m(MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairMul = m.Int32PairMul(m.Parameter(a), m.Parameter(b), m.Parameter(c), m.Parameter(d)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairMul)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairMul)); m.Return(m.Int32Constant(74)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { m.Call(i, j); uint32_t inputs[] = {i, j}; CHECK_EQ(ToInt64(inputs[a], inputs[b]) * ToInt64(inputs[c], inputs[d]), ToInt64(low, high)); } } } TEST(RunInt32PairMulWithSharedInput) { TestInt32PairMulWithSharedInput(0, 0, 0, 0); TestInt32PairMulWithSharedInput(1, 0, 0, 0); TestInt32PairMulWithSharedInput(0, 1, 0, 0); TestInt32PairMulWithSharedInput(0, 0, 1, 0); TestInt32PairMulWithSharedInput(0, 0, 0, 1); TestInt32PairMulWithSharedInput(1, 1, 0, 0); TestInt32PairMulWithSharedInput(0, 1, 1, 0); } TEST(RunWord32PairShl) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairShl = m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairShl)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairShl)); m.Return(m.Int32Constant(74)); FOR_UINT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j); CHECK_EQ(i << j, ToInt64(low, high)); } } } TEST(RunWord32PairShlUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection( 1, m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2)))); FOR_UINT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { CHECK_EQ( static_cast((i << j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j))); } } } void TestWord32PairShlWithSharedInput(int a, int b) { BufferedRawMachineAssemblerTester m(MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairAdd = m.Word32PairShl(m.Parameter(a), m.Parameter(b), m.Parameter(1)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairAdd)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairAdd)); m.Return(m.Int32Constant(74)); FOR_UINT32_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { m.Call(i, j); uint32_t inputs[] = {i, j}; CHECK_EQ(ToInt64(inputs[a], inputs[b]) << j, ToInt64(low, high)); } } } TEST(RunWord32PairShlWithSharedInput) { TestWord32PairShlWithSharedInput(0, 0); TestWord32PairShlWithSharedInput(0, 1); TestWord32PairShlWithSharedInput(1, 0); TestWord32PairShlWithSharedInput(1, 1); } TEST(RunWord32PairShr) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairAdd = m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairAdd)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairAdd)); m.Return(m.Int32Constant(74)); FOR_UINT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j); CHECK_EQ(i >> j, ToInt64(low, high)); } } } TEST(RunWord32PairShrUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection( 1, m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2)))); FOR_UINT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { CHECK_EQ( static_cast((i >> j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j))); } } } TEST(RunWord32PairSar) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); uint32_t high; uint32_t low; Node* PairAdd = m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2)); m.StoreToPointer(&low, MachineRepresentation::kWord32, m.Projection(0, PairAdd)); m.StoreToPointer(&high, MachineRepresentation::kWord32, m.Projection(1, PairAdd)); m.Return(m.Int32Constant(74)); FOR_INT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j); CHECK_EQ(i >> j, static_cast(ToInt64(low, high))); } } } TEST(RunWord32PairSarUseOnlyHighWord) { BufferedRawMachineAssemblerTester m( MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32()); m.Return(m.Projection( 1, m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2)))); FOR_INT64_INPUTS(i) { for (uint32_t j = 0; j < 64; j++) { CHECK_EQ( static_cast((i >> j) >> 32), static_cast(m.Call(static_cast(i & 0xFFFFFFFF), static_cast(i >> 32), j))); } } } #endif TEST(RunDeadChangeFloat64ToInt32) { RawMachineAssemblerTester m; const int magic = 0x88ABCDA4; m.ChangeFloat64ToInt32(m.Float64Constant(999.78)); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunDeadChangeInt32ToFloat64) { RawMachineAssemblerTester m; const int magic = 0x8834ABCD; m.ChangeInt32ToFloat64(m.Int32Constant(magic - 6888)); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunLoopPhiInduction2) { RawMachineAssemblerTester m; int false_val = 0x10777; // x = false_val; while(false) { x++; } return x; RawMachineLabel header, body, end; Node* false_node = m.Int32Constant(false_val); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node); m.Branch(m.Int32Constant(0), &body, &end); m.Bind(&body); Node* add = m.Int32Add(phi, m.Int32Constant(1)); phi->ReplaceInput(1, add); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunFloatDiamond) { RawMachineAssemblerTester m; const int magic = 99645; float buffer = 0.1f; float constant = 99.99f; RawMachineLabel blocka, blockb, end; Node* k1 = m.Float32Constant(constant); Node* k2 = m.Float32Constant(0 - constant); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(MachineRepresentation::kFloat32, k2, k1); m.Store(MachineRepresentation::kFloat32, m.PointerConstant(&buffer), m.IntPtrConstant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK(constant == buffer); } TEST(RunDoubleDiamond) { RawMachineAssemblerTester m; const int magic = 99645; double buffer = 0.1; double constant = 99.99; RawMachineLabel blocka, blockb, end; Node* k1 = m.Float64Constant(constant); Node* k2 = m.Float64Constant(0 - constant); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(MachineRepresentation::kFloat64, k2, k1); m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(constant, buffer); } TEST(RunRefDiamond) { RawMachineAssemblerTester m; const int magic = 99644; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("A"); String buffer; RawMachineLabel blocka, blockb, end; Node* k1 = m.StringConstant("A"); Node* k2 = m.StringConstant("B"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(MachineRepresentation::kTagged, k2, k1); if (COMPRESS_POINTERS_BOOL) { // Since |buffer| is located off-heap, use full pointer store. m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&buffer), m.Int32Constant(0), m.BitcastTaggedToWord(phi), kNoWriteBarrier); } else { m.Store(MachineRepresentation::kTagged, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); } m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK(rexpected->SameValue(buffer)); } TEST(RunDoubleRefDiamond) { RawMachineAssemblerTester m; const int magic = 99648; double dbuffer = 0.1; double dconstant = 99.99; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("AX"); String rbuffer; RawMachineLabel blocka, blockb, end; Node* d1 = m.Float64Constant(dconstant); Node* d2 = m.Float64Constant(0 - dconstant); Node* r1 = m.StringConstant("AX"); Node* r2 = m.StringConstant("BX"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* dphi = m.Phi(MachineRepresentation::kFloat64, d2, d1); Node* rphi = m.Phi(MachineRepresentation::kTagged, r2, r1); m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi, kNoWriteBarrier); if (COMPRESS_POINTERS_BOOL) { // Since |buffer| is located off-heap, use full pointer store. m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&rbuffer), m.Int32Constant(0), m.BitcastTaggedToWord(rphi), kNoWriteBarrier); } else { m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0), rphi, kNoWriteBarrier); } m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(dconstant, dbuffer); CHECK(rexpected->SameValue(rbuffer)); } TEST(RunDoubleRefDoubleDiamond) { RawMachineAssemblerTester m; const int magic = 99649; double dbuffer = 0.1; double dconstant = 99.997; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("AD"); String rbuffer; RawMachineLabel blocka, blockb, mid, blockd, blocke, end; Node* d1 = m.Float64Constant(dconstant); Node* d2 = m.Float64Constant(0 - dconstant); Node* r1 = m.StringConstant("AD"); Node* r2 = m.StringConstant("BD"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&mid); m.Bind(&blockb); m.Goto(&mid); m.Bind(&mid); Node* dphi1 = m.Phi(MachineRepresentation::kFloat64, d2, d1); Node* rphi1 = m.Phi(MachineRepresentation::kTagged, r2, r1); m.Branch(m.Int32Constant(0), &blockd, &blocke); m.Bind(&blockd); m.Goto(&end); m.Bind(&blocke); m.Goto(&end); m.Bind(&end); Node* dphi2 = m.Phi(MachineRepresentation::kFloat64, d1, dphi1); Node* rphi2 = m.Phi(MachineRepresentation::kTagged, r1, rphi1); m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi2, kNoWriteBarrier); if (COMPRESS_POINTERS_BOOL) { // Since |buffer| is located off-heap, use full pointer store. m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&rbuffer), m.Int32Constant(0), m.BitcastTaggedToWord(rphi2), kNoWriteBarrier); } else { m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0), rphi2, kNoWriteBarrier); } m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(dconstant, dbuffer); CHECK(rexpected->SameValue(rbuffer)); } TEST(RunDoubleLoopPhi) { RawMachineAssemblerTester m; RawMachineLabel header, body, end; int magic = 99773; double buffer = 0.99; double dconstant = 777.1; Node* zero = m.Int32Constant(0); Node* dk = m.Float64Constant(dconstant); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(MachineRepresentation::kFloat64, dk, dk); phi->ReplaceInput(1, phi); m.Branch(zero, &body, &end); m.Bind(&body); m.Goto(&header); m.Bind(&end); m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunCountToTenAccRaw) { RawMachineAssemblerTester m; Node* zero = m.Int32Constant(0); Node* ten = m.Int32Constant(10); Node* one = m.Int32Constant(1); RawMachineLabel header, body, body_cont, end; m.Goto(&header); m.Bind(&header); Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero); Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero); m.Goto(&body); m.Bind(&body); Node* next_i = m.Int32Add(i, one); Node* next_j = m.Int32Add(j, one); m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont); m.Bind(&body_cont); i->ReplaceInput(1, next_i); j->ReplaceInput(1, next_j); m.Goto(&header); m.Bind(&end); m.Return(ten); CHECK_EQ(10, m.Call()); } TEST(RunCountToTenAccRaw2) { RawMachineAssemblerTester m; Node* zero = m.Int32Constant(0); Node* ten = m.Int32Constant(10); Node* one = m.Int32Constant(1); RawMachineLabel header, body, body_cont, end; m.Goto(&header); m.Bind(&header); Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero); Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero); Node* k = m.Phi(MachineRepresentation::kWord32, zero, zero); m.Goto(&body); m.Bind(&body); Node* next_i = m.Int32Add(i, one); Node* next_j = m.Int32Add(j, one); Node* next_k = m.Int32Add(j, one); m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont); m.Bind(&body_cont); i->ReplaceInput(1, next_i); j->ReplaceInput(1, next_j); k->ReplaceInput(1, next_k); m.Goto(&header); m.Bind(&end); m.Return(ten); CHECK_EQ(10, m.Call()); } TEST(RunAddTree) { RawMachineAssemblerTester m; int32_t inputs[] = {11, 12, 13, 14, 15, 16, 17, 18}; Node* base = m.PointerConstant(inputs); Node* n0 = m.Load(MachineType::Int32(), base, m.Int32Constant(0 * sizeof(int32_t))); Node* n1 = m.Load(MachineType::Int32(), base, m.Int32Constant(1 * sizeof(int32_t))); Node* n2 = m.Load(MachineType::Int32(), base, m.Int32Constant(2 * sizeof(int32_t))); Node* n3 = m.Load(MachineType::Int32(), base, m.Int32Constant(3 * sizeof(int32_t))); Node* n4 = m.Load(MachineType::Int32(), base, m.Int32Constant(4 * sizeof(int32_t))); Node* n5 = m.Load(MachineType::Int32(), base, m.Int32Constant(5 * sizeof(int32_t))); Node* n6 = m.Load(MachineType::Int32(), base, m.Int32Constant(6 * sizeof(int32_t))); Node* n7 = m.Load(MachineType::Int32(), base, m.Int32Constant(7 * sizeof(int32_t))); Node* i1 = m.Int32Add(n0, n1); Node* i2 = m.Int32Add(n2, n3); Node* i3 = m.Int32Add(n4, n5); Node* i4 = m.Int32Add(n6, n7); Node* i5 = m.Int32Add(i1, i2); Node* i6 = m.Int32Add(i3, i4); Node* i7 = m.Int32Add(i5, i6); m.Return(i7); CHECK_EQ(116, m.Call()); } static const int kFloat64CompareHelperTestCases = 15; static const int kFloat64CompareHelperNodeType = 4; static int Float64CompareHelper(RawMachineAssemblerTester* m, int test_case, int node_type, double x, double y) { static double buffer[2]; buffer[0] = x; buffer[1] = y; CHECK(0 <= test_case && test_case < kFloat64CompareHelperTestCases); CHECK(0 <= node_type && node_type < kFloat64CompareHelperNodeType); CHECK(x < y); bool load_a = node_type / 2 == 1; bool load_b = node_type % 2 == 1; Node* a = load_a ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[0])) : m->Float64Constant(x); Node* b = load_b ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[1])) : m->Float64Constant(y); Node* cmp = nullptr; bool expected = false; switch (test_case) { // Equal tests. case 0: cmp = m->Float64Equal(a, b); expected = false; break; case 1: cmp = m->Float64Equal(a, a); expected = true; break; // LessThan tests. case 2: cmp = m->Float64LessThan(a, b); expected = true; break; case 3: cmp = m->Float64LessThan(b, a); expected = false; break; case 4: cmp = m->Float64LessThan(a, a); expected = false; break; // LessThanOrEqual tests. case 5: cmp = m->Float64LessThanOrEqual(a, b); expected = true; break; case 6: cmp = m->Float64LessThanOrEqual(b, a); expected = false; break; case 7: cmp = m->Float64LessThanOrEqual(a, a); expected = true; break; // NotEqual tests. case 8: cmp = m->Float64NotEqual(a, b); expected = true; break; case 9: cmp = m->Float64NotEqual(b, a); expected = true; break; case 10: cmp = m->Float64NotEqual(a, a); expected = false; break; // GreaterThan tests. case 11: cmp = m->Float64GreaterThan(a, a); expected = false; break; case 12: cmp = m->Float64GreaterThan(a, b); expected = false; break; // GreaterThanOrEqual tests. case 13: cmp = m->Float64GreaterThanOrEqual(a, a); expected = true; break; case 14: cmp = m->Float64GreaterThanOrEqual(b, a); expected = true; break; default: UNREACHABLE(); } m->Return(cmp); return expected; } TEST(RunFloat64Compare) { double inf = V8_INFINITY; // All pairs (a1, a2) are of the form a1 < a2. double inputs[] = {0.0, 1.0, -1.0, 0.22, -1.22, 0.22, -inf, 0.22, 0.22, inf, -inf, inf}; for (int test = 0; test < kFloat64CompareHelperTestCases; test++) { for (int node_type = 0; node_type < kFloat64CompareHelperNodeType; node_type++) { for (size_t input = 0; input < arraysize(inputs); input += 2) { RawMachineAssemblerTester m; int expected = Float64CompareHelper(&m, test, node_type, inputs[input], inputs[input + 1]); CHECK_EQ(expected, m.Call()); } } } } TEST(RunFloat64UnorderedCompare) { RawMachineAssemblerTester m; const Operator* operators[] = {m.machine()->Float64Equal(), m.machine()->Float64LessThan(), m.machine()->Float64LessThanOrEqual()}; double nan = std::numeric_limits::quiet_NaN(); FOR_FLOAT64_INPUTS(i) { for (size_t o = 0; o < arraysize(operators); ++o) { for (int j = 0; j < 2; j++) { RawMachineAssemblerTester m; Node* a = m.Float64Constant(i); Node* b = m.Float64Constant(nan); if (j == 1) std::swap(a, b); m.Return(m.AddNode(operators[o], a, b)); CHECK_EQ(0, m.Call()); } } } } TEST(RunFloat64Equal) { double input_a = 0.0; double input_b = 0.0; RawMachineAssemblerTester m; Node* a = m.LoadFromPointer(&input_a, MachineType::Float64()); Node* b = m.LoadFromPointer(&input_b, MachineType::Float64()); m.Return(m.Float64Equal(a, b)); CompareWrapper cmp(IrOpcode::kFloat64Equal); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { input_a = pl; input_b = pr; int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0; CHECK_EQ(expected, m.Call()); } } } TEST(RunFloat64LessThan) { double input_a = 0.0; double input_b = 0.0; RawMachineAssemblerTester m; Node* a = m.LoadFromPointer(&input_a, MachineType::Float64()); Node* b = m.LoadFromPointer(&input_b, MachineType::Float64()); m.Return(m.Float64LessThan(a, b)); CompareWrapper cmp(IrOpcode::kFloat64LessThan); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { input_a = pl; input_b = pr; int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0; CHECK_EQ(expected, m.Call()); } } } static void IntPtrCompare(intptr_t left, intptr_t right) { for (int test = 0; test < 7; test++) { RawMachineAssemblerTester m(MachineType::Pointer(), MachineType::Pointer()); Node* p0 = m.Parameter(0); Node* p1 = m.Parameter(1); Node* res = nullptr; bool expected = false; switch (test) { case 0: res = m.IntPtrLessThan(p0, p1); expected = true; break; case 1: res = m.IntPtrLessThanOrEqual(p0, p1); expected = true; break; case 2: res = m.IntPtrEqual(p0, p1); expected = false; break; case 3: res = m.IntPtrGreaterThanOrEqual(p0, p1); expected = false; break; case 4: res = m.IntPtrGreaterThan(p0, p1); expected = false; break; case 5: res = m.IntPtrEqual(p0, p0); expected = true; break; case 6: res = m.IntPtrNotEqual(p0, p1); expected = true; break; default: UNREACHABLE(); break; } m.Return(res); CHECK_EQ(expected, m.Call(reinterpret_cast(left), reinterpret_cast(right))); } } TEST(RunIntPtrCompare) { intptr_t min = std::numeric_limits::min(); intptr_t max = std::numeric_limits::max(); // An ascending chain of intptr_t intptr_t inputs[] = {min, min / 2, -1, 0, 1, max / 2, max}; for (size_t i = 0; i < arraysize(inputs) - 1; i++) { IntPtrCompare(inputs[i], inputs[i + 1]); } } TEST(RunTestIntPtrArithmetic) { static const int kInputSize = 10; int32_t inputs[kInputSize]; int32_t outputs[kInputSize]; for (int i = 0; i < kInputSize; i++) { inputs[i] = i; outputs[i] = -1; } RawMachineAssemblerTester m; Node* input = m.PointerConstant(&inputs[0]); Node* output = m.PointerConstant(&outputs[kInputSize - 1]); Node* elem_size = m.IntPtrConstant(sizeof(inputs[0])); for (int i = 0; i < kInputSize; i++) { m.Store(MachineRepresentation::kWord32, output, m.Load(MachineType::Int32(), input), kNoWriteBarrier); input = m.IntPtrAdd(input, elem_size); output = m.IntPtrSub(output, elem_size); } m.Return(input); CHECK_EQ(&inputs[kInputSize], m.Call()); for (int i = 0; i < kInputSize; i++) { CHECK_EQ(i, inputs[i]); CHECK_EQ(kInputSize - i - 1, outputs[i]); } } TEST(RunSpillLotsOfThings) { static const int kInputSize = 1000; RawMachineAssemblerTester m; Node* accs[kInputSize]; int32_t outputs[kInputSize]; Node* one = m.Int32Constant(1); Node* acc = one; for (int i = 0; i < kInputSize; i++) { acc = m.Int32Add(acc, one); accs[i] = acc; } for (int i = 0; i < kInputSize; i++) { m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]); } m.Return(one); m.Call(); for (int i = 0; i < kInputSize; i++) { CHECK_EQ(outputs[i], i + 2); } } TEST(RunSpillConstantsAndParameters) { static const int kInputSize = 1000; static const int32_t kBase = 987; RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); int32_t outputs[kInputSize]; Node* csts[kInputSize]; Node* accs[kInputSize]; Node* acc = m.Int32Constant(0); for (int i = 0; i < kInputSize; i++) { csts[i] = m.Int32Constant(base::AddWithWraparound(kBase, i)); } for (int i = 0; i < kInputSize; i++) { acc = m.Int32Add(acc, csts[i]); accs[i] = acc; } for (int i = 0; i < kInputSize; i++) { m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]); } m.Return(m.Int32Add(acc, m.Int32Add(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = base::AddWithWraparound(i, j); for (int k = 0; k < kInputSize; k++) { expected = base::AddWithWraparound(expected, kBase + k); } CHECK_EQ(expected, m.Call(i, j)); expected = 0; for (int k = 0; k < kInputSize; k++) { expected += kBase + k; CHECK_EQ(expected, outputs[k]); } } } } TEST(RunNewSpaceConstantsInPhi) { RawMachineAssemblerTester m(MachineType::Int32()); Isolate* isolate = CcTest::i_isolate(); Handle true_val = isolate->factory()->NewHeapNumber(11.2); Handle false_val = isolate->factory()->NewHeapNumber(11.3); Node* true_node = m.HeapConstant(true_val); Node* false_node = m.HeapConstant(false_val); RawMachineLabel blocka, blockb, end; m.Branch(m.Parameter(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(MachineRepresentation::kTagged, true_node, false_node); m.Return(phi); CHECK_EQ(*false_val, m.Call(0)); CHECK_EQ(*true_val, m.Call(1)); } TEST(RunInt32AddWithOverflowP) { int32_t actual_val = -1; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); bt.AddReturn(ovf); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected_val; int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, bt.call(i, j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32AddWithOverflowImm) { int32_t actual_val = -1, expected_val = 0; FOR_INT32_INPUTS(i) { { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32AddWithOverflow(m.Int32Constant(i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32AddWithOverflow(m.Parameter(0), m.Int32Constant(i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int32AddWithOverflow(m.Int32Constant(i), m.Int32Constant(j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32AddWithOverflowInBranchP) { int constant = 911777; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, add); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, add); bt.AddReturn(val); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected; if (base::bits::SignedAddOverflow32(i, j, &expected)) expected = constant; CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt32SubWithOverflowP) { int32_t actual_val = -1; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32SubWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); bt.AddReturn(ovf); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected_val; int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, bt.call(i, j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32SubWithOverflowImm) { int32_t actual_val = -1, expected_val = 0; FOR_INT32_INPUTS(i) { { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32SubWithOverflow(m.Int32Constant(i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32SubWithOverflow(m.Parameter(0), m.Int32Constant(i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedSubOverflow32(j, i, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int32SubWithOverflow(m.Int32Constant(i), m.Int32Constant(j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32SubWithOverflowInBranchP) { int constant = 911999; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* sub = m.Int32SubWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, sub); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, sub); bt.AddReturn(val); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected; if (base::bits::SignedSubOverflow32(i, j, &expected)) expected = constant; CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunInt32MulWithOverflowP) { int32_t actual_val = -1; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); bt.AddReturn(ovf); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected_val; int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, bt.call(i, j)); if (!expected_ovf) { CHECK_EQ(expected_val, actual_val); } } } } TEST(RunInt32MulWithOverflowImm) { int32_t actual_val = -1, expected_val = 0; FOR_INT32_INPUTS(i) { { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32MulWithOverflow(m.Int32Constant(i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); if (!expected_ovf) { CHECK_EQ(expected_val, actual_val); } } } { RawMachineAssemblerTester m(MachineType::Int32()); Node* add = m.Int32MulWithOverflow(m.Parameter(0), m.Int32Constant(i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call(j)); if (!expected_ovf) { CHECK_EQ(expected_val, actual_val); } } } FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int32MulWithOverflow(m.Int32Constant(i), m.Int32Constant(j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val); m.Return(ovf); int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); if (!expected_ovf) { CHECK_EQ(expected_val, actual_val); } } } } TEST(RunInt32MulWithOverflowInBranchP) { int constant = 911777; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, add); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, add); bt.AddReturn(val); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected; if (base::bits::SignedMulOverflow32(i, j, &expected)) expected = constant; CHECK_EQ(expected, bt.call(i, j)); } } } TEST(RunWord64EqualInBranchP) { int64_t input; RawMachineLabel blocka, blockb; RawMachineAssemblerTester m; if (!m.machine()->Is64()) return; Node* value = m.LoadFromPointer(&input, MachineType::Int64()); m.Branch(m.Word64Equal(value, m.Int64Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(1)); m.Bind(&blockb); m.Return(m.Int32Constant(2)); input = int64_t{0}; CHECK_EQ(1, m.Call()); input = int64_t{1}; CHECK_EQ(2, m.Call()); input = int64_t{0x100000000}; CHECK_EQ(2, m.Call()); } TEST(RunChangeInt32ToInt64P) { if (kSystemPointerSize < 8) return; int64_t actual = -1; RawMachineAssemblerTester m(MachineType::Int32()); m.StoreToPointer(&actual, MachineRepresentation::kWord64, m.ChangeInt32ToInt64(m.Parameter(0))); m.Return(m.Int32Constant(0)); FOR_INT32_INPUTS(i) { int64_t expected = i; CHECK_EQ(0, m.Call(i)); CHECK_EQ(expected, actual); } } TEST(RunChangeUint32ToUint64P) { if (kSystemPointerSize < 8) return; int64_t actual = -1; RawMachineAssemblerTester m(MachineType::Uint32()); m.StoreToPointer(&actual, MachineRepresentation::kWord64, m.ChangeUint32ToUint64(m.Parameter(0))); m.Return(m.Int32Constant(0)); FOR_UINT32_INPUTS(i) { int64_t expected = static_cast(i); CHECK_EQ(0, m.Call(i)); CHECK_EQ(expected, actual); } } TEST(RunTruncateInt64ToInt32P) { if (kSystemPointerSize < 8) return; int64_t expected = -1; RawMachineAssemblerTester m; m.Return(m.TruncateInt64ToInt32( m.LoadFromPointer(&expected, MachineType::Int64()))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { expected = (static_cast(j) << 32) | i; CHECK_EQ(static_cast(expected), m.Call()); } } } TEST(RunTruncateFloat64ToWord32P) { struct { double from; double raw; } kValues[] = {{0, 0}, {0.5, 0}, {-0.5, 0}, {1.5, 1}, {-1.5, -1}, {5.5, 5}, {-5.0, -5}, {std::numeric_limits::quiet_NaN(), 0}, {std::numeric_limits::infinity(), 0}, {-std::numeric_limits::quiet_NaN(), 0}, {-std::numeric_limits::infinity(), 0}, {4.94065645841e-324, 0}, {-4.94065645841e-324, 0}, {0.9999999999999999, 0}, {-0.9999999999999999, 0}, {4294967296.0, 0}, {-4294967296.0, 0}, {9223372036854775000.0, 4294966272.0}, {-9223372036854775000.0, -4294966272.0}, {4.5036e+15, 372629504}, {-4.5036e+15, -372629504}, {287524199.5377777, 0x11234567}, {-287524199.5377777, -0x11234567}, {2300193596.302222, 2300193596.0}, {-2300193596.302222, -2300193596.0}, {4600387192.604444, 305419896}, {-4600387192.604444, -305419896}, {4823855600872397.0, 1737075661}, {-4823855600872397.0, -1737075661}, {4503603922337791.0, -1}, {-4503603922337791.0, 1}, {4503601774854143.0, 2147483647}, {-4503601774854143.0, -2147483647}, {9007207844675582.0, -2}, {-9007207844675582.0, 2}, {2.4178527921507624e+24, -536870912}, {-2.4178527921507624e+24, 536870912}, {2.417853945072267e+24, -536870912}, {-2.417853945072267e+24, 536870912}, {4.8357055843015248e+24, -1073741824}, {-4.8357055843015248e+24, 1073741824}, {4.8357078901445341e+24, -1073741824}, {-4.8357078901445341e+24, 1073741824}, {2147483647.0, 2147483647.0}, {-2147483648.0, -2147483648.0}, {9.6714111686030497e+24, -2147483648.0}, {-9.6714111686030497e+24, -2147483648.0}, {9.6714157802890681e+24, -2147483648.0}, {-9.6714157802890681e+24, -2147483648.0}, {1.9342813113834065e+25, 2147483648.0}, {-1.9342813113834065e+25, 2147483648.0}, {3.868562622766813e+25, 0}, {-3.868562622766813e+25, 0}, {1.7976931348623157e+308, 0}, {-1.7976931348623157e+308, 0}}; double input = -1.0; RawMachineAssemblerTester m; m.Return(m.TruncateFloat64ToWord32( m.LoadFromPointer(&input, MachineType::Float64()))); for (size_t i = 0; i < arraysize(kValues); ++i) { input = kValues[i].from; uint64_t expected = static_cast(kValues[i].raw); CHECK_EQ(static_cast(expected), m.Call()); } } TEST(RunTruncateFloat64ToWord32SignExtension) { BufferedRawMachineAssemblerTester r; r.Return(r.Int32Sub(r.TruncateFloat64ToWord32(r.Float64Constant(-1.0)), r.Int32Constant(0))); CHECK_EQ(-1, r.Call()); } TEST(RunChangeFloat32ToFloat64) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast(i), m.Call(i)); } } TEST(RunFloat32Constant) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m; m.Return(m.Float32Constant(i)); CHECK_FLOAT_EQ(i, m.Call()); } } TEST(RunFloat64ExtractLowWord32) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64ExtractLowWord32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { uint32_t expected = static_cast(bit_cast(i)); CHECK_EQ(expected, m.Call(i)); } } TEST(RunFloat64ExtractHighWord32) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64ExtractHighWord32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { uint32_t expected = static_cast(bit_cast(i) >> 32); CHECK_EQ(expected, m.Call(i)); } } TEST(RunFloat64InsertLowWord32) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Int32()); m.Return(m.Float64InsertLowWord32(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_INT32_INPUTS(j) { double expected = bit_cast((bit_cast(i) & ~(uint64_t{0xFFFFFFFF})) | (static_cast(bit_cast(j)))); CHECK_DOUBLE_EQ(expected, m.Call(i, j)); } } } TEST(RunFloat64InsertHighWord32) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Uint32()); m.Return(m.Float64InsertHighWord32(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint64_t expected = (bit_cast(i) & 0xFFFFFFFF) | (static_cast(j) << 32); CHECK_DOUBLE_EQ(bit_cast(expected), m.Call(i, j)); } } } TEST(RunFloat32Abs) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.Float32Abs(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(std::abs(i), m.Call(i)); } } TEST(RunFloat64Abs) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Abs(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(std::abs(i), m.Call(i)); } } TEST(RunFloat64Acos) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Acos(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::acos(i), m.Call(i)); } } TEST(RunFloat64Acosh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Acosh(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::acosh(i), m.Call(i)); } } TEST(RunFloat64Asin) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Asin(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::asin(i), m.Call(i)); } } TEST(RunFloat64Asinh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Asinh(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::asinh(i), m.Call(i)); } } TEST(RunFloat64Atan) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Atan(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0)); CHECK_DOUBLE_EQ(0.0, m.Call(0.0)); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::atan(i), m.Call(i)); } } TEST(RunFloat64Atanh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Atanh(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(1.0)); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-1.0)); CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0)); CHECK_DOUBLE_EQ(0.0, m.Call(0.0)); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::atanh(i), m.Call(i)); } } TEST(RunFloat64Atan2) { BufferedRawMachineAssemblerTester m(MachineType::Float64(), MachineType::Float64()); m.Return(m.Float64Atan2(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(base::ieee754::atan2(i, j), m.Call(i, j)); } } } TEST(RunFloat64Cos) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Cos(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cos(i), m.Call(i)); } } TEST(RunFloat64Cosh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Cosh(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cosh(i), m.Call(i)); } } TEST(RunFloat64Exp) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Exp(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK_EQ(0.0, m.Call(-std::numeric_limits::infinity())); CHECK_DOUBLE_EQ(1.0, m.Call(-0.0)); CHECK_DOUBLE_EQ(1.0, m.Call(0.0)); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::exp(i), m.Call(i)); } } TEST(RunFloat64Expm1) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Expm1(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK_EQ(-1.0, m.Call(-std::numeric_limits::infinity())); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::expm1(i), m.Call(i)); } } TEST(RunFloat64Log) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Log(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK(std::isnan(m.Call(-std::numeric_limits::infinity()))); CHECK(std::isnan(m.Call(-1.0))); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-0.0)); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(0.0)); CHECK_DOUBLE_EQ(0.0, m.Call(1.0)); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log(i), m.Call(i)); } } TEST(RunFloat64Log1p) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Log1p(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK(std::isnan(m.Call(-std::numeric_limits::infinity()))); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-1.0)); CHECK_DOUBLE_EQ(0.0, m.Call(0.0)); CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0)); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log1p(i), m.Call(i)); } } TEST(RunFloat64Log2) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Log2(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK(std::isnan(m.Call(-std::numeric_limits::infinity()))); CHECK(std::isnan(m.Call(-1.0))); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-0.0)); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(0.0)); CHECK_DOUBLE_EQ(0.0, m.Call(1.0)); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log2(i), m.Call(i)); } } TEST(RunFloat64Log10) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Log10(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK(std::isnan(m.Call(-std::numeric_limits::infinity()))); CHECK(std::isnan(m.Call(-1.0))); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-0.0)); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(0.0)); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log10(i), m.Call(i)); } } TEST(RunFloat64Cbrt) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Cbrt(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); CHECK_DOUBLE_EQ(std::numeric_limits::infinity(), m.Call(std::numeric_limits::infinity())); CHECK_DOUBLE_EQ(-std::numeric_limits::infinity(), m.Call(-std::numeric_limits::infinity())); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cbrt(i), m.Call(i)); } } TEST(RunFloat64Sin) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Sin(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::sin(i), m.Call(i)); } } TEST(RunFloat64Sinh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Sinh(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::sinh(i), m.Call(i)); } } TEST(RunFloat64Tan) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Tan(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::tan(i), m.Call(i)); } } TEST(RunFloat64Tanh) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.Float64Tanh(m.Parameter(0))); CHECK(std::isnan(m.Call(std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(m.Call(std::numeric_limits::signaling_NaN()))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::tanh(i), m.Call(i)); } } static double two_30 = 1 << 30; // 2^30 is a smi boundary. static double two_52 = two_30 * (1 << 22); // 2^52 is a precision boundary. static double kValues[] = {0.1, 0.2, 0.49999999999999994, 0.5, 0.7, 1.0 - std::numeric_limits::epsilon(), -0.1, -0.49999999999999994, -0.5, -0.7, 1.1, 1.0 + std::numeric_limits::epsilon(), 1.5, 1.7, -1, -1 + std::numeric_limits::epsilon(), -1 - std::numeric_limits::epsilon(), -1.1, -1.5, -1.7, std::numeric_limits::min(), -std::numeric_limits::min(), std::numeric_limits::max(), -std::numeric_limits::max(), std::numeric_limits::infinity(), -std::numeric_limits::infinity(), two_30, two_30 + 0.1, two_30 + 0.5, two_30 + 0.7, two_30 - 1, two_30 - 1 + 0.1, two_30 - 1 + 0.5, two_30 - 1 + 0.7, -two_30, -two_30 + 0.1, -two_30 + 0.5, -two_30 + 0.7, -two_30 + 1, -two_30 + 1 + 0.1, -two_30 + 1 + 0.5, -two_30 + 1 + 0.7, two_52, two_52 + 0.1, two_52 + 0.5, two_52 + 0.5, two_52 + 0.7, two_52 + 0.7, two_52 - 1, two_52 - 1 + 0.1, two_52 - 1 + 0.5, two_52 - 1 + 0.7, -two_52, -two_52 + 0.1, -two_52 + 0.5, -two_52 + 0.7, -two_52 + 1, -two_52 + 1 + 0.1, -two_52 + 1 + 0.5, -two_52 + 1 + 0.7, two_30, two_30 - 0.1, two_30 - 0.5, two_30 - 0.7, two_30 - 1, two_30 - 1 - 0.1, two_30 - 1 - 0.5, two_30 - 1 - 0.7, -two_30, -two_30 - 0.1, -two_30 - 0.5, -two_30 - 0.7, -two_30 + 1, -two_30 + 1 - 0.1, -two_30 + 1 - 0.5, -two_30 + 1 - 0.7, two_52, two_52 - 0.1, two_52 - 0.5, two_52 - 0.5, two_52 - 0.7, two_52 - 0.7, two_52 - 1, two_52 - 1 - 0.1, two_52 - 1 - 0.5, two_52 - 1 - 0.7, -two_52, -two_52 - 0.1, -two_52 - 0.5, -two_52 - 0.7, -two_52 + 1, -two_52 + 1 - 0.1, -two_52 + 1 - 0.5, -two_52 + 1 - 0.7}; TEST(RunFloat32RoundDown) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); if (!m.machine()->Float32RoundDown().IsSupported()) return; m.Return(m.Float32RoundDown(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(i), m.Call(i)); } } TEST(RunFloat64RoundDown1) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundDown().IsSupported()) return; m.Return(m.Float64RoundDown(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(i), m.Call(i)); } } TEST(RunFloat64RoundDown2) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundDown().IsSupported()) return; m.Return(m.Float64Sub(m.Float64Constant(-0.0), m.Float64RoundDown(m.Float64Sub(m.Float64Constant(-0.0), m.Parameter(0))))); for (size_t i = 0; i < arraysize(kValues); ++i) { CHECK_EQ(ceil(kValues[i]), m.Call(kValues[i])); } } TEST(RunFloat32RoundUp) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); if (!m.machine()->Float32RoundUp().IsSupported()) return; m.Return(m.Float32RoundUp(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(i), m.Call(i)); } } TEST(RunFloat64RoundUp) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundUp().IsSupported()) return; m.Return(m.Float64RoundUp(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(i), m.Call(i)); } } TEST(RunFloat32RoundTiesEven) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); if (!m.machine()->Float32RoundTiesEven().IsSupported()) return; m.Return(m.Float32RoundTiesEven(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyint(i), m.Call(i)); } } TEST(RunFloat64RoundTiesEven) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundTiesEven().IsSupported()) return; m.Return(m.Float64RoundTiesEven(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(i), m.Call(i)); } } TEST(RunFloat32RoundTruncate) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); if (!m.machine()->Float32RoundTruncate().IsSupported()) return; m.Return(m.Float32RoundTruncate(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(i), m.Call(i)); } } TEST(RunFloat64RoundTruncate) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundTruncate().IsSupported()) return; m.Return(m.Float64RoundTruncate(m.Parameter(0))); for (size_t i = 0; i < arraysize(kValues); ++i) { CHECK_EQ(trunc(kValues[i]), m.Call(kValues[i])); } } TEST(RunFloat64RoundTiesAway) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); if (!m.machine()->Float64RoundTiesAway().IsSupported()) return; m.Return(m.Float64RoundTiesAway(m.Parameter(0))); for (size_t i = 0; i < arraysize(kValues); ++i) { CHECK_EQ(round(kValues[i]), m.Call(kValues[i])); } } #if !USE_SIMULATOR namespace { int32_t const kMagicFoo0 = 0xDEADBEEF; int32_t foo0() { return kMagicFoo0; } int32_t foo1(int32_t x) { return x; } int32_t foo2(int32_t x, int32_t y) { return base::SubWithWraparound(x, y); } uint32_t foo8(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f, uint32_t g, uint32_t h) { return a + b + c + d + e + f + g + h; } uint32_t foo9(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f, uint32_t g, uint32_t h, uint32_t i) { return a + b + c + d + e + f + g + h + i; } } // namespace TEST(RunCallCFunction0) { auto* foo0_ptr = &foo0; RawMachineAssemblerTester m; Node* function = m.LoadFromPointer(&foo0_ptr, MachineType::Pointer()); m.Return(m.CallCFunction(function, MachineType::Int32())); CHECK_EQ(kMagicFoo0, m.Call()); } TEST(RunCallCFunction1) { auto* foo1_ptr = &foo1; RawMachineAssemblerTester m(MachineType::Int32()); Node* function = m.LoadFromPointer(&foo1_ptr, MachineType::Pointer()); m.Return( m.CallCFunction(function, MachineType::Int32(), std::make_pair(MachineType::Int32(), m.Parameter(0)))); FOR_INT32_INPUTS(i) { int32_t const expected = i; CHECK_EQ(expected, m.Call(expected)); } } TEST(RunCallCFunction2) { auto* foo2_ptr = &foo2; RawMachineAssemblerTester m(MachineType::Int32(), MachineType::Int32()); Node* function = m.LoadFromPointer(&foo2_ptr, MachineType::Pointer()); m.Return( m.CallCFunction(function, MachineType::Int32(), std::make_pair(MachineType::Int32(), m.Parameter(0)), std::make_pair(MachineType::Int32(), m.Parameter(1)))); FOR_INT32_INPUTS(i) { int32_t const x = i; FOR_INT32_INPUTS(j) { int32_t const y = j; CHECK_EQ(base::SubWithWraparound(x, y), m.Call(x, y)); } } } TEST(RunCallCFunction8) { auto* foo8_ptr = &foo8; RawMachineAssemblerTester m(MachineType::Int32()); Node* function = m.LoadFromPointer(&foo8_ptr, MachineType::Pointer()); Node* param = m.Parameter(0); m.Return(m.CallCFunction(function, MachineType::Int32(), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), param))); FOR_INT32_INPUTS(i) { int32_t const x = i; CHECK_EQ(base::MulWithWraparound(x, 8), m.Call(x)); } } TEST(RunCallCFunction9) { auto* foo9_ptr = &foo9; RawMachineAssemblerTester m(MachineType::Int32()); Node* function = m.LoadFromPointer(&foo9_ptr, MachineType::Pointer()); Node* param = m.Parameter(0); m.Return( m.CallCFunction(function, MachineType::Int32(), std::make_pair(MachineType::Int32(), param), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(1))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(2))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(3))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(4))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(5))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(6))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(7))), std::make_pair(MachineType::Int32(), m.Int32Add(param, m.Int32Constant(8))))); FOR_INT32_INPUTS(i) { int32_t const x = i; CHECK_EQ(base::AddWithWraparound(base::MulWithWraparound(x, 9), 36), m.Call(x)); } } #endif // USE_SIMULATOR #if V8_TARGET_ARCH_64_BIT // TODO(titzer): run int64 tests on all platforms when supported. TEST(RunChangeFloat64ToInt64) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.ChangeFloat64ToInt64(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { if (base::IsValueInRangeForNumericType(i)) { CHECK_EQ(static_cast(i), m.Call(i)); } } } TEST(RunChangeInt64ToFloat64) { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.ChangeInt64ToFloat64(m.Parameter(0))); FOR_INT64_INPUTS(i) { double output = static_cast(i); CHECK_EQ(output, m.Call(i)); } } TEST(RunBitcastInt64ToFloat64) { int64_t input = 1; Float64 output; RawMachineAssemblerTester m; m.StoreToPointer( output.get_bits_address(), MachineRepresentation::kFloat64, m.BitcastInt64ToFloat64(m.LoadFromPointer(&input, MachineType::Int64()))); m.Return(m.Int32Constant(11)); FOR_INT64_INPUTS(i) { input = i; CHECK_EQ(11, m.Call()); Float64 expected = Float64::FromBits(input); CHECK_EQ(expected.get_bits(), output.get_bits()); } } TEST(RunBitcastFloat64ToInt64) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.BitcastFloat64ToInt64(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CHECK_EQ(bit_cast(i), m.Call(i)); } } TEST(RunTryTruncateFloat32ToInt64WithoutCheck) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TryTruncateFloat32ToInt64(m.Parameter(0))); FOR_INT64_INPUTS(i) { float input = static_cast(i); if (input < static_cast(INT64_MAX) && input >= static_cast(INT64_MIN)) { CHECK_EQ(static_cast(input), m.Call(input)); } } } TEST(RunTryTruncateFloat32ToInt64WithCheck) { int64_t success = 0; BufferedRawMachineAssemblerTester m(MachineType::Float32()); Node* trunc = m.TryTruncateFloat32ToInt64(m.Parameter(0)); Node* val = m.Projection(0, trunc); Node* check = m.Projection(1, trunc); m.StoreToPointer(&success, MachineRepresentation::kWord64, check); m.Return(val); FOR_FLOAT32_INPUTS(i) { if (i < static_cast(INT64_MAX) && i >= static_cast(INT64_MIN)) { CHECK_EQ(static_cast(i), m.Call(i)); CHECK_NE(0, success); } else { m.Call(i); CHECK_EQ(0, success); } } } TEST(RunTryTruncateFloat64ToInt64WithoutCheck) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.TryTruncateFloat64ToInt64(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { if (base::IsValueInRangeForNumericType(i)) { double input = static_cast(i); CHECK_EQ(static_cast(input), m.Call(input)); } } } TEST(RunTryTruncateFloat64ToInt64WithCheck) { int64_t success = 0; BufferedRawMachineAssemblerTester m(MachineType::Float64()); Node* trunc = m.TryTruncateFloat64ToInt64(m.Parameter(0)); Node* val = m.Projection(0, trunc); Node* check = m.Projection(1, trunc); m.StoreToPointer(&success, MachineRepresentation::kWord64, check); m.Return(val); FOR_FLOAT64_INPUTS(i) { if (i < static_cast(INT64_MAX) && i >= static_cast(INT64_MIN)) { // Conversions within this range should succeed. CHECK_EQ(static_cast(i), m.Call(i)); CHECK_NE(0, success); } else { m.Call(i); CHECK_EQ(0, success); } } } TEST(RunTryTruncateFloat32ToUint64WithoutCheck) { BufferedRawMachineAssemblerTester m(MachineType::Float32()); m.Return(m.TryTruncateFloat32ToUint64(m.Parameter(0))); FOR_UINT64_INPUTS(i) { float input = static_cast(i); // This condition on 'input' is required because // static_cast(UINT64_MAX) results in a value outside uint64 range. if (input < static_cast(UINT64_MAX)) { CHECK_EQ(static_cast(input), m.Call(input)); } } } TEST(RunTryTruncateFloat32ToUint64WithCheck) { int64_t success = 0; BufferedRawMachineAssemblerTester m(MachineType::Float32()); Node* trunc = m.TryTruncateFloat32ToUint64(m.Parameter(0)); Node* val = m.Projection(0, trunc); Node* check = m.Projection(1, trunc); m.StoreToPointer(&success, MachineRepresentation::kWord64, check); m.Return(val); FOR_FLOAT32_INPUTS(i) { if (i < static_cast(UINT64_MAX) && i > -1.0) { // Conversions within this range should succeed. CHECK_EQ(static_cast(i), m.Call(i)); CHECK_NE(0, success); } else { m.Call(i); CHECK_EQ(0, success); } } } TEST(RunTryTruncateFloat64ToUint64WithoutCheck) { BufferedRawMachineAssemblerTester m(MachineType::Float64()); m.Return(m.TryTruncateFloat64ToUint64(m.Parameter(0))); FOR_UINT64_INPUTS(j) { double input = static_cast(j); if (input < static_cast(UINT64_MAX)) { CHECK_EQ(static_cast(input), m.Call(input)); } } } TEST(RunTryTruncateFloat64ToUint64WithCheck) { int64_t success = 0; BufferedRawMachineAssemblerTester m(MachineType::Float64()); Node* trunc = m.TryTruncateFloat64ToUint64(m.Parameter(0)); Node* val = m.Projection(0, trunc); Node* check = m.Projection(1, trunc); m.StoreToPointer(&success, MachineRepresentation::kWord64, check); m.Return(val); FOR_FLOAT64_INPUTS(i) { if (i < 18446744073709551616.0 && i > -1) { // Conversions within this range should succeed. CHECK_EQ(static_cast(i), static_cast(m.Call(i))); CHECK_NE(0, success); } else { m.Call(i); CHECK_EQ(0, success); } } } TEST(RunRoundInt64ToFloat32) { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.RoundInt64ToFloat32(m.Parameter(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast(i), m.Call(i)); } } TEST(RunRoundInt64ToFloat64) { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.RoundInt64ToFloat64(m.Parameter(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast(i), m.Call(i)); } } TEST(RunRoundUint64ToFloat64) { struct { uint64_t input; uint64_t expected; } values[] = {{0x0, 0x0}, {0x1, 0x3FF0000000000000}, {0xFFFFFFFF, 0x41EFFFFFFFE00000}, {0x1B09788B, 0x41BB09788B000000}, {0x4C5FCE8, 0x419317F3A0000000}, {0xCC0DE5BF, 0x41E981BCB7E00000}, {0x2, 0x4000000000000000}, {0x3, 0x4008000000000000}, {0x4, 0x4010000000000000}, {0x5, 0x4014000000000000}, {0x8, 0x4020000000000000}, {0x9, 0x4022000000000000}, {0xFFFFFFFFFFFFFFFF, 0x43F0000000000000}, {0xFFFFFFFFFFFFFFFE, 0x43F0000000000000}, {0xFFFFFFFFFFFFFFFD, 0x43F0000000000000}, {0x100000000, 0x41F0000000000000}, {0xFFFFFFFF00000000, 0x43EFFFFFFFE00000}, {0x1B09788B00000000, 0x43BB09788B000000}, {0x4C5FCE800000000, 0x439317F3A0000000}, {0xCC0DE5BF00000000, 0x43E981BCB7E00000}, {0x200000000, 0x4200000000000000}, {0x300000000, 0x4208000000000000}, {0x400000000, 0x4210000000000000}, {0x500000000, 0x4214000000000000}, {0x800000000, 0x4220000000000000}, {0x900000000, 0x4222000000000000}, {0x273A798E187937A3, 0x43C39D3CC70C3C9C}, {0xECE3AF835495A16B, 0x43ED9C75F06A92B4}, {0xB668ECC11223344, 0x43A6CD1D98224467}, {0x9E, 0x4063C00000000000}, {0x43, 0x4050C00000000000}, {0xAF73, 0x40E5EE6000000000}, {0x116B, 0x40B16B0000000000}, {0x658ECC, 0x415963B300000000}, {0x2B3B4C, 0x41459DA600000000}, {0x88776655, 0x41E10EECCAA00000}, {0x70000000, 0x41DC000000000000}, {0x7200000, 0x419C800000000000}, {0x7FFFFFFF, 0x41DFFFFFFFC00000}, {0x56123761, 0x41D5848DD8400000}, {0x7FFFFF00, 0x41DFFFFFC0000000}, {0x761C4761EEEEEEEE, 0x43DD8711D87BBBBC}, {0x80000000EEEEEEEE, 0x43E00000001DDDDE}, {0x88888888DDDDDDDD, 0x43E11111111BBBBC}, {0xA0000000DDDDDDDD, 0x43E40000001BBBBC}, {0xDDDDDDDDAAAAAAAA, 0x43EBBBBBBBB55555}, {0xE0000000AAAAAAAA, 0x43EC000000155555}, {0xEEEEEEEEEEEEEEEE, 0x43EDDDDDDDDDDDDE}, {0xFFFFFFFDEEEEEEEE, 0x43EFFFFFFFBDDDDE}, {0xF0000000DDDDDDDD, 0x43EE0000001BBBBC}, {0x7FFFFFDDDDDDDD, 0x435FFFFFF7777777}, {0x3FFFFFAAAAAAAA, 0x434FFFFFD5555555}, {0x1FFFFFAAAAAAAA, 0x433FFFFFAAAAAAAA}, {0xFFFFF, 0x412FFFFE00000000}, {0x7FFFF, 0x411FFFFC00000000}, {0x3FFFF, 0x410FFFF800000000}, {0x1FFFF, 0x40FFFFF000000000}, {0xFFFF, 0x40EFFFE000000000}, {0x7FFF, 0x40DFFFC000000000}, {0x3FFF, 0x40CFFF8000000000}, {0x1FFF, 0x40BFFF0000000000}, {0xFFF, 0x40AFFE0000000000}, {0x7FF, 0x409FFC0000000000}, {0x3FF, 0x408FF80000000000}, {0x1FF, 0x407FF00000000000}, {0x3FFFFFFFFFFF, 0x42CFFFFFFFFFFF80}, {0x1FFFFFFFFFFF, 0x42BFFFFFFFFFFF00}, {0xFFFFFFFFFFF, 0x42AFFFFFFFFFFE00}, {0x7FFFFFFFFFF, 0x429FFFFFFFFFFC00}, {0x3FFFFFFFFFF, 0x428FFFFFFFFFF800}, {0x1FFFFFFFFFF, 0x427FFFFFFFFFF000}, {0x8000008000000000, 0x43E0000010000000}, {0x8000008000000001, 0x43E0000010000000}, {0x8000000000000400, 0x43E0000000000000}, {0x8000000000000401, 0x43E0000000000001}}; BufferedRawMachineAssemblerTester m(MachineType::Uint64()); m.Return(m.RoundUint64ToFloat64(m.Parameter(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(bit_cast(values[i].expected), m.Call(values[i].input)); } } TEST(RunRoundUint64ToFloat32) { struct { uint64_t input; uint32_t expected; } values[] = {{0x0, 0x0}, {0x1, 0x3F800000}, {0xFFFFFFFF, 0x4F800000}, {0x1B09788B, 0x4DD84BC4}, {0x4C5FCE8, 0x4C98BF9D}, {0xCC0DE5BF, 0x4F4C0DE6}, {0x2, 0x40000000}, {0x3, 0x40400000}, {0x4, 0x40800000}, {0x5, 0x40A00000}, {0x8, 0x41000000}, {0x9, 0x41100000}, {0xFFFFFFFFFFFFFFFF, 0x5F800000}, {0xFFFFFFFFFFFFFFFE, 0x5F800000}, {0xFFFFFFFFFFFFFFFD, 0x5F800000}, {0x0, 0x0}, {0x100000000, 0x4F800000}, {0xFFFFFFFF00000000, 0x5F800000}, {0x1B09788B00000000, 0x5DD84BC4}, {0x4C5FCE800000000, 0x5C98BF9D}, {0xCC0DE5BF00000000, 0x5F4C0DE6}, {0x200000000, 0x50000000}, {0x300000000, 0x50400000}, {0x400000000, 0x50800000}, {0x500000000, 0x50A00000}, {0x800000000, 0x51000000}, {0x900000000, 0x51100000}, {0x273A798E187937A3, 0x5E1CE9E6}, {0xECE3AF835495A16B, 0x5F6CE3B0}, {0xB668ECC11223344, 0x5D3668ED}, {0x9E, 0x431E0000}, {0x43, 0x42860000}, {0xAF73, 0x472F7300}, {0x116B, 0x458B5800}, {0x658ECC, 0x4ACB1D98}, {0x2B3B4C, 0x4A2CED30}, {0x88776655, 0x4F087766}, {0x70000000, 0x4EE00000}, {0x7200000, 0x4CE40000}, {0x7FFFFFFF, 0x4F000000}, {0x56123761, 0x4EAC246F}, {0x7FFFFF00, 0x4EFFFFFE}, {0x761C4761EEEEEEEE, 0x5EEC388F}, {0x80000000EEEEEEEE, 0x5F000000}, {0x88888888DDDDDDDD, 0x5F088889}, {0xA0000000DDDDDDDD, 0x5F200000}, {0xDDDDDDDDAAAAAAAA, 0x5F5DDDDE}, {0xE0000000AAAAAAAA, 0x5F600000}, {0xEEEEEEEEEEEEEEEE, 0x5F6EEEEF}, {0xFFFFFFFDEEEEEEEE, 0x5F800000}, {0xF0000000DDDDDDDD, 0x5F700000}, {0x7FFFFFDDDDDDDD, 0x5B000000}, {0x3FFFFFAAAAAAAA, 0x5A7FFFFF}, {0x1FFFFFAAAAAAAA, 0x59FFFFFD}, {0xFFFFF, 0x497FFFF0}, {0x7FFFF, 0x48FFFFE0}, {0x3FFFF, 0x487FFFC0}, {0x1FFFF, 0x47FFFF80}, {0xFFFF, 0x477FFF00}, {0x7FFF, 0x46FFFE00}, {0x3FFF, 0x467FFC00}, {0x1FFF, 0x45FFF800}, {0xFFF, 0x457FF000}, {0x7FF, 0x44FFE000}, {0x3FF, 0x447FC000}, {0x1FF, 0x43FF8000}, {0x3FFFFFFFFFFF, 0x56800000}, {0x1FFFFFFFFFFF, 0x56000000}, {0xFFFFFFFFFFF, 0x55800000}, {0x7FFFFFFFFFF, 0x55000000}, {0x3FFFFFFFFFF, 0x54800000}, {0x1FFFFFFFFFF, 0x54000000}, {0x8000008000000000, 0x5F000000}, {0x8000008000000001, 0x5F000001}, {0x8000000000000400, 0x5F000000}, {0x8000000000000401, 0x5F000000}}; BufferedRawMachineAssemblerTester m(MachineType::Uint64()); m.Return(m.RoundUint64ToFloat32(m.Parameter(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(bit_cast(values[i].expected), m.Call(values[i].input)); } } #endif TEST(RunBitcastFloat32ToInt32) { float input = 32.25; RawMachineAssemblerTester m; m.Return(m.BitcastFloat32ToInt32( m.LoadFromPointer(&input, MachineType::Float32()))); FOR_FLOAT32_INPUTS(i) { input = i; int32_t expected = bit_cast(input); CHECK_EQ(expected, m.Call()); } } TEST(RunRoundInt32ToFloat32) { BufferedRawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.RoundInt32ToFloat32(m.Parameter(0))); FOR_INT32_INPUTS(i) { volatile float expected = static_cast(i); CHECK_EQ(expected, m.Call(i)); } } TEST(RunRoundUint32ToFloat32) { BufferedRawMachineAssemblerTester m(MachineType::Uint32()); m.Return(m.RoundUint32ToFloat32(m.Parameter(0))); FOR_UINT32_INPUTS(i) { volatile float expected = static_cast(i); CHECK_EQ(expected, m.Call(i)); } } TEST(RunBitcastInt32ToFloat32) { int32_t input = 1; Float32 output; RawMachineAssemblerTester m; m.StoreToPointer( output.get_bits_address(), MachineRepresentation::kFloat32, m.BitcastInt32ToFloat32(m.LoadFromPointer(&input, MachineType::Int32()))); m.Return(m.Int32Constant(11)); FOR_INT32_INPUTS(i) { input = i; CHECK_EQ(11, m.Call()); Float32 expected = Float32::FromBits(input); CHECK_EQ(expected.get_bits(), output.get_bits()); } } TEST(RunComputedCodeObject) { RawMachineAssemblerTester a; a.Return(a.Int32Constant(33)); CHECK_EQ(33, a.Call()); RawMachineAssemblerTester b; b.Return(b.Int32Constant(44)); CHECK_EQ(44, b.Call()); RawMachineAssemblerTester r(MachineType::Int32()); RawMachineLabel tlabel; RawMachineLabel flabel; RawMachineLabel merge; r.Branch(r.Parameter(0), &tlabel, &flabel); r.Bind(&tlabel); Node* fa = r.HeapConstant(a.GetCode()); r.Goto(&merge); r.Bind(&flabel); Node* fb = r.HeapConstant(b.GetCode()); r.Goto(&merge); r.Bind(&merge); Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb); // TODO(titzer): all this descriptor hackery is just to call the above // functions as code objects instead of direct addresses. CSignatureOf sig; CallDescriptor* c = Linkage::GetSimplifiedCDescriptor(r.zone(), &sig); LinkageLocation ret[] = {c->GetReturnLocation(0)}; Signature loc(1, 0, ret); auto call_descriptor = r.zone()->New( // -- CallDescriptor::kCallCodeObject, // kind MachineType::AnyTagged(), // target_type c->GetInputLocation(0), // target_loc &loc, // location_sig 0, // stack count Operator::kNoProperties, // properties c->CalleeSavedRegisters(), // callee saved c->CalleeSavedFPRegisters(), // callee saved FP CallDescriptor::kNoFlags, // flags "c-call-as-code"); Node* call = r.AddNode(r.common()->Call(call_descriptor), phi); r.Return(call); CHECK_EQ(33, r.Call(1)); CHECK_EQ(44, r.Call(0)); } TEST(ParentFramePointer) { RawMachineAssemblerTester r(MachineType::Int32()); RawMachineLabel tlabel; RawMachineLabel flabel; RawMachineLabel merge; Node* frame = r.LoadFramePointer(); Node* parent_frame = r.LoadParentFramePointer(); frame = r.Load(MachineType::IntPtr(), frame); r.Branch(r.WordEqual(frame, parent_frame), &tlabel, &flabel); r.Bind(&tlabel); Node* fa = r.Int32Constant(1); r.Goto(&merge); r.Bind(&flabel); Node* fb = r.Int32Constant(0); r.Goto(&merge); r.Bind(&merge); Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb); r.Return(phi); CHECK_EQ(1, r.Call(1)); } #if V8_TARGET_ARCH_64_BIT TEST(Regression5923) { { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.Int64Add( m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888)), m.Parameter(0))); int64_t input = 16; m.Call(input); } { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.Int64Add( m.Parameter(0), m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888)))); int64_t input = 16; m.Call(input); } } TEST(Regression5951) { BufferedRawMachineAssemblerTester m(MachineType::Int64()); m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(0)), m.Int64Constant(0xFFFFFFFFFFFFFFFFl))); int64_t input = 1234; CHECK_EQ(input, m.Call(input)); } TEST(Regression6046a) { BufferedRawMachineAssemblerTester m; m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(0), m.Int64Constant(0)), m.Int64Constant(64))); CHECK_EQ(0, m.Call()); } TEST(Regression6122) { BufferedRawMachineAssemblerTester m; m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(59), m.Int64Constant(-1)), m.Int64Constant(0))); CHECK_EQ(59, m.Call()); } #endif // V8_TARGET_ARCH_64_BIT TEST(Regression6046b) { BufferedRawMachineAssemblerTester m; m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(0), m.Int32Constant(0)), m.Int32Constant(32))); CHECK_EQ(0, m.Call()); } TEST(Regression6122b) { BufferedRawMachineAssemblerTester m; m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(59), m.Int32Constant(-1)), m.Int32Constant(0))); CHECK_EQ(59, m.Call()); } TEST(Regression6028) { BufferedRawMachineAssemblerTester m; m.Return(m.Word32Equal( m.Word32And(m.Int32Constant(0x23), m.Word32Sar(m.Int32Constant(1), m.Int32Constant(18))), m.Int32Constant(0))); CHECK_EQ(1, m.Call()); } TEST(Regression5951_32bit) { BufferedRawMachineAssemblerTester m(MachineType::Int32()); m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(0)), m.Int32Constant(0xFFFFFFFF))); int32_t input = 1234; CHECK_EQ(input, m.Call(input)); } TEST(Regression738952) { RawMachineAssemblerTester m; int32_t sentinel = 1234; // The index can be any value where the lower bits are 0 and the upper bits // are not 0; int64_t index = 3224; index <<= 32; double d = static_cast(index); m.Return(m.Load(MachineType::Int32(), m.PointerConstant(&sentinel), m.TruncateFloat64ToWord32(m.Float64Constant(d)))); CHECK_EQ(sentinel, m.Call()); } } // namespace compiler } // namespace internal } // namespace v8