// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/objects-inl.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" #include "test/common/wasm/test-signatures.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { namespace test_run_wasm_64 { WASM_EXEC_TEST(I64Const) { WasmRunner r(execution_tier); const int64_t kExpectedValue = 0x1122334455667788LL; // return(kExpectedValue) BUILD(r, WASM_I64V_9(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } WASM_EXEC_TEST(I64Const_many) { int cntr = 0; FOR_INT32_INPUTS(i) { WasmRunner r(execution_tier); const int64_t kExpectedValue = (static_cast(*i) << 32) | cntr; // return(kExpectedValue) BUILD(r, WASM_I64V(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); cntr++; } } WASM_EXEC_TEST(Return_I64) { WasmRunner r(execution_tier); BUILD(r, WASM_RETURN1(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } WASM_EXEC_TEST(I64Add) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j, r.Call(*i, *j)); } } } // The i64 add and subtract regression tests need a 64-bit value with a non-zero // upper half. This upper half was clobbering eax, leading to the function // returning 1 rather than 0. const int64_t kHasBit33On = 0x100000000; WASM_EXEC_TEST(Regress5800_Add) { WasmRunner r(execution_tier); BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_I64_EQZ(WASM_I64_ADD( WASM_I64V(0), WASM_I64V(kHasBit33On)))), WASM_RETURN1(WASM_I32V(0))), WASM_I32V(0)); CHECK_EQ(0, r.Call()); } WASM_EXEC_TEST(I64Sub) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i - *j, r.Call(*i, *j)); } } } WASM_EXEC_TEST(Regress5800_Sub) { WasmRunner r(execution_tier); BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_I64_EQZ(WASM_I64_SUB( WASM_I64V(0), WASM_I64V(kHasBit33On)))), WASM_RETURN1(WASM_I32V(0))), WASM_I32V(0)); CHECK_EQ(0, r.Call()); } WASM_EXEC_TEST(I64AddUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(static_cast(*i + *j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64SubUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(static_cast(*i - *j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64MulUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(static_cast(*i * *j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64ShlUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int32_t expected = static_cast((*i) << (*j & 0x3F)); CHECK_EQ(expected, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64ShrUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { int32_t expected = static_cast((*i) >> (*j & 0x3F)); CHECK_EQ(expected, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64SarUseOnlyLowWord) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64( WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int32_t expected = static_cast((*i) >> (*j & 0x3F)); CHECK_EQ(expected, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64DivS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { if (*j == 0) { CHECK_TRAP64(r.Call(*i, *j)); } else if (*j == -1 && *i == std::numeric_limits::min()) { CHECK_TRAP64(r.Call(*i, *j)); } else { CHECK_EQ(*i / *j, r.Call(*i, *j)); } } } } WASM_EXEC_TEST(I64DivS_Trap) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(int64_t{0}, int64_t{100})); CHECK_TRAP64(r.Call(int64_t{100}, int64_t{0})); CHECK_TRAP64(r.Call(int64_t{-1001}, int64_t{0})); CHECK_TRAP64(r.Call(std::numeric_limits::min(), int64_t{-1})); CHECK_TRAP64(r.Call(std::numeric_limits::min(), int64_t{0})); } WASM_EXEC_TEST(I64DivS_Byzero_Const) { for (int8_t denom = -2; denom < 8; denom++) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(denom))); for (int64_t val = -7; val < 8; val++) { if (denom == 0) { CHECK_TRAP64(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } WASM_EXEC_TEST(I64DivU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { if (*j == 0) { CHECK_TRAP64(r.Call(*i, *j)); } else { CHECK_EQ(*i / *j, r.Call(*i, *j)); } } } } WASM_EXEC_TEST(I64DivU_Trap) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(0, r.Call(uint64_t{0}, uint64_t{100})); CHECK_TRAP64(r.Call(uint64_t{100}, uint64_t{0})); CHECK_TRAP64(r.Call(uint64_t{1001}, uint64_t{0})); CHECK_TRAP64(r.Call(std::numeric_limits::max(), uint64_t{0})); } WASM_EXEC_TEST(I64DivU_Byzero_Const) { for (uint64_t denom = 0xFFFFFFFFFFFFFFFE; denom < 8; denom++) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(denom))); for (uint64_t val = 0xFFFFFFFFFFFFFFF0; val < 8; val++) { if (denom == 0) { CHECK_TRAP64(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } WASM_EXEC_TEST(I64RemS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { if (*j == 0) { CHECK_TRAP64(r.Call(*i, *j)); } else { CHECK_EQ(*i % *j, r.Call(*i, *j)); } } } } WASM_EXEC_TEST(I64RemS_Trap) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(33, r.Call(int64_t{133}, int64_t{100})); CHECK_EQ(0, r.Call(std::numeric_limits::min(), int64_t{-1})); CHECK_TRAP64(r.Call(int64_t{100}, int64_t{0})); CHECK_TRAP64(r.Call(int64_t{-1001}, int64_t{0})); CHECK_TRAP64(r.Call(std::numeric_limits::min(), int64_t{0})); } WASM_EXEC_TEST(I64RemU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { if (*j == 0) { CHECK_TRAP64(r.Call(*i, *j)); } else { CHECK_EQ(*i % *j, r.Call(*i, *j)); } } } } WASM_EXEC_TEST(I64RemU_Trap) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(17, r.Call(uint64_t{217}, uint64_t{100})); CHECK_TRAP64(r.Call(uint64_t{100}, uint64_t{0})); CHECK_TRAP64(r.Call(uint64_t{1001}, uint64_t{0})); CHECK_TRAP64(r.Call(std::numeric_limits::max(), uint64_t{0})); } WASM_EXEC_TEST(I64And) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ((*i) & (*j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64Ior) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ((*i) | (*j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64Xor) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ((*i) ^ (*j), r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64Shl) { { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { uint64_t expected = (*i) << (*j & 0x3F); CHECK_EQ(expected, r.Call(*i, *j)); } } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(0))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 0, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(32))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 32, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(20))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 20, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(40))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 40, r.Call(*i)); } } } WASM_EXEC_TEST(I64ShrU) { { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { uint64_t expected = (*i) >> (*j & 0x3F); CHECK_EQ(expected, r.Call(*i, *j)); } } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(0))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 0, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(32))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 32, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(20))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 20, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(40))); FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 40, r.Call(*i)); } } } WASM_EXEC_TEST(I64ShrS) { { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { int64_t expected = (*i) >> (*j & 0x3F); CHECK_EQ(expected, r.Call(*i, *j)); } } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 0, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(32))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 32, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(20))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 20, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(40))); FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 40, r.Call(*i)); } } } WASM_EXEC_TEST(I64Eq) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i == *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64Ne) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_NE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i != *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64LtS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i < *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64LeS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_LES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i <= *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64LtU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ(*i < *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64LeU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ(*i <= *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64GtS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i > *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64GeS) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_GES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i >= *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64GtU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ(*i > *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64GeU) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { CHECK_EQ(*i >= *j ? 1 : 0, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I32ConvertI64) { FOR_INT64_INPUTS(i) { WasmRunner r(execution_tier); BUILD(r, WASM_I32_CONVERT_I64(WASM_I64V(*i))); CHECK_EQ(static_cast(*i), r.Call()); } } WASM_EXEC_TEST(I64SConvertI32) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } WASM_EXEC_TEST(I64UConvertI32) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(0))); FOR_UINT32_INPUTS(i) { CHECK_EQ(static_cast(*i), r.Call(*i)); } } WASM_EXEC_TEST(I64Popcnt) { struct { int64_t expected; uint64_t input; } values[] = {{64, 0xFFFFFFFFFFFFFFFF}, {0, 0x0000000000000000}, {2, 0x0000080000008000}, {26, 0x1123456782345678}, {38, 0xFFEDCBA09EDCBA09}}; WasmRunner r(execution_tier); BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } WASM_EXEC_TEST(F32SConvertI64) { WasmRunner r(execution_tier); BUILD(r, WASM_F32_SCONVERT_I64(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_FLOAT_EQ(static_cast(*i), r.Call(*i)); } } WASM_EXEC_TEST(F32UConvertI64) { struct { uint64_t input; uint32_t expected; } values[] = {{0x0, 0x0}, {0x1, 0x3F800000}, {0xFFFFFFFF, 0x4F800000}, {0x1B09788B, 0x4DD84BC4}, {0x4C5FCE8, 0x4C98BF9D}, {0xCC0DE5BF, 0x4F4C0DE6}, {0x2, 0x40000000}, {0x3, 0x40400000}, {0x4, 0x40800000}, {0x5, 0x40A00000}, {0x8, 0x41000000}, {0x9, 0x41100000}, {0xFFFFFFFFFFFFFFFF, 0x5F800000}, {0xFFFFFFFFFFFFFFFE, 0x5F800000}, {0xFFFFFFFFFFFFFFFD, 0x5F800000}, {0x0, 0x0}, {0x100000000, 0x4F800000}, {0xFFFFFFFF00000000, 0x5F800000}, {0x1B09788B00000000, 0x5DD84BC4}, {0x4C5FCE800000000, 0x5C98BF9D}, {0xCC0DE5BF00000000, 0x5F4C0DE6}, {0x200000000, 0x50000000}, {0x300000000, 0x50400000}, {0x400000000, 0x50800000}, {0x500000000, 0x50A00000}, {0x800000000, 0x51000000}, {0x900000000, 0x51100000}, {0x273A798E187937A3, 0x5E1CE9E6}, {0xECE3AF835495A16B, 0x5F6CE3B0}, {0xB668ECC11223344, 0x5D3668ED}, {0x9E, 0x431E0000}, {0x43, 0x42860000}, {0xAF73, 0x472F7300}, {0x116B, 0x458B5800}, {0x658ECC, 0x4ACB1D98}, {0x2B3B4C, 0x4A2CED30}, {0x88776655, 0x4F087766}, {0x70000000, 0x4EE00000}, {0x7200000, 0x4CE40000}, {0x7FFFFFFF, 0x4F000000}, {0x56123761, 0x4EAC246F}, {0x7FFFFF00, 0x4EFFFFFE}, {0x761C4761EEEEEEEE, 0x5EEC388F}, {0x80000000EEEEEEEE, 0x5F000000}, {0x88888888DDDDDDDD, 0x5F088889}, {0xA0000000DDDDDDDD, 0x5F200000}, {0xDDDDDDDDAAAAAAAA, 0x5F5DDDDE}, {0xE0000000AAAAAAAA, 0x5F600000}, {0xEEEEEEEEEEEEEEEE, 0x5F6EEEEF}, {0xFFFFFFFDEEEEEEEE, 0x5F800000}, {0xF0000000DDDDDDDD, 0x5F700000}, {0x7FFFFFDDDDDDDD, 0x5B000000}, {0x3FFFFFAAAAAAAA, 0x5A7FFFFF}, {0x1FFFFFAAAAAAAA, 0x59FFFFFD}, {0xFFFFF, 0x497FFFF0}, {0x7FFFF, 0x48FFFFE0}, {0x3FFFF, 0x487FFFC0}, {0x1FFFF, 0x47FFFF80}, {0xFFFF, 0x477FFF00}, {0x7FFF, 0x46FFFE00}, {0x3FFF, 0x467FFC00}, {0x1FFF, 0x45FFF800}, {0xFFF, 0x457FF000}, {0x7FF, 0x44FFE000}, {0x3FF, 0x447FC000}, {0x1FF, 0x43FF8000}, {0x3FFFFFFFFFFF, 0x56800000}, {0x1FFFFFFFFFFF, 0x56000000}, {0xFFFFFFFFFFF, 0x55800000}, {0x7FFFFFFFFFF, 0x55000000}, {0x3FFFFFFFFFF, 0x54800000}, {0x1FFFFFFFFFF, 0x54000000}, {0x8000008000000000, 0x5F000000}, {0x8000008000000001, 0x5F000001}, {0x8000000000000400, 0x5F000000}, {0x8000000000000401, 0x5F000000}}; WasmRunner r(execution_tier); BUILD(r, WASM_F32_UCONVERT_I64(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(bit_cast(values[i].expected), r.Call(values[i].input)); } } WASM_EXEC_TEST(F64SConvertI64) { WasmRunner r(execution_tier); BUILD(r, WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast(*i), r.Call(*i)); } } WASM_EXEC_TEST(F64UConvertI64) { struct { uint64_t input; uint64_t expected; } values[] = {{0x0, 0x0}, {0x1, 0x3FF0000000000000}, {0xFFFFFFFF, 0x41EFFFFFFFE00000}, {0x1B09788B, 0x41BB09788B000000}, {0x4C5FCE8, 0x419317F3A0000000}, {0xCC0DE5BF, 0x41E981BCB7E00000}, {0x2, 0x4000000000000000}, {0x3, 0x4008000000000000}, {0x4, 0x4010000000000000}, {0x5, 0x4014000000000000}, {0x8, 0x4020000000000000}, {0x9, 0x4022000000000000}, {0xFFFFFFFFFFFFFFFF, 0x43F0000000000000}, {0xFFFFFFFFFFFFFFFE, 0x43F0000000000000}, {0xFFFFFFFFFFFFFFFD, 0x43F0000000000000}, {0x100000000, 0x41F0000000000000}, {0xFFFFFFFF00000000, 0x43EFFFFFFFE00000}, {0x1B09788B00000000, 0x43BB09788B000000}, {0x4C5FCE800000000, 0x439317F3A0000000}, {0xCC0DE5BF00000000, 0x43E981BCB7E00000}, {0x200000000, 0x4200000000000000}, {0x300000000, 0x4208000000000000}, {0x400000000, 0x4210000000000000}, {0x500000000, 0x4214000000000000}, {0x800000000, 0x4220000000000000}, {0x900000000, 0x4222000000000000}, {0x273A798E187937A3, 0x43C39D3CC70C3C9C}, {0xECE3AF835495A16B, 0x43ED9C75F06A92B4}, {0xB668ECC11223344, 0x43A6CD1D98224467}, {0x9E, 0x4063C00000000000}, {0x43, 0x4050C00000000000}, {0xAF73, 0x40E5EE6000000000}, {0x116B, 0x40B16B0000000000}, {0x658ECC, 0x415963B300000000}, {0x2B3B4C, 0x41459DA600000000}, {0x88776655, 0x41E10EECCAA00000}, {0x70000000, 0x41DC000000000000}, {0x7200000, 0x419C800000000000}, {0x7FFFFFFF, 0x41DFFFFFFFC00000}, {0x56123761, 0x41D5848DD8400000}, {0x7FFFFF00, 0x41DFFFFFC0000000}, {0x761C4761EEEEEEEE, 0x43DD8711D87BBBBC}, {0x80000000EEEEEEEE, 0x43E00000001DDDDE}, {0x88888888DDDDDDDD, 0x43E11111111BBBBC}, {0xA0000000DDDDDDDD, 0x43E40000001BBBBC}, {0xDDDDDDDDAAAAAAAA, 0x43EBBBBBBBB55555}, {0xE0000000AAAAAAAA, 0x43EC000000155555}, {0xEEEEEEEEEEEEEEEE, 0x43EDDDDDDDDDDDDE}, {0xFFFFFFFDEEEEEEEE, 0x43EFFFFFFFBDDDDE}, {0xF0000000DDDDDDDD, 0x43EE0000001BBBBC}, {0x7FFFFFDDDDDDDD, 0x435FFFFFF7777777}, {0x3FFFFFAAAAAAAA, 0x434FFFFFD5555555}, {0x1FFFFFAAAAAAAA, 0x433FFFFFAAAAAAAA}, {0xFFFFF, 0x412FFFFE00000000}, {0x7FFFF, 0x411FFFFC00000000}, {0x3FFFF, 0x410FFFF800000000}, {0x1FFFF, 0x40FFFFF000000000}, {0xFFFF, 0x40EFFFE000000000}, {0x7FFF, 0x40DFFFC000000000}, {0x3FFF, 0x40CFFF8000000000}, {0x1FFF, 0x40BFFF0000000000}, {0xFFF, 0x40AFFE0000000000}, {0x7FF, 0x409FFC0000000000}, {0x3FF, 0x408FF80000000000}, {0x1FF, 0x407FF00000000000}, {0x3FFFFFFFFFFF, 0x42CFFFFFFFFFFF80}, {0x1FFFFFFFFFFF, 0x42BFFFFFFFFFFF00}, {0xFFFFFFFFFFF, 0x42AFFFFFFFFFFE00}, {0x7FFFFFFFFFF, 0x429FFFFFFFFFFC00}, {0x3FFFFFFFFFF, 0x428FFFFFFFFFF800}, {0x1FFFFFFFFFF, 0x427FFFFFFFFFF000}, {0x8000008000000000, 0x43E0000010000000}, {0x8000008000000001, 0x43E0000010000000}, {0x8000000000000400, 0x43E0000000000000}, {0x8000000000000401, 0x43E0000000000001}}; WasmRunner r(execution_tier); BUILD(r, WASM_F64_UCONVERT_I64(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(bit_cast(values[i].expected), r.Call(values[i].input)); } } WASM_EXEC_TEST(I64SConvertF32) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(std::numeric_limits::max()) && *i >= static_cast(std::numeric_limits::min())) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } WASM_EXEC_TEST(I64SConvertSatF32) { EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); WasmRunner r(execution_tier); BUILD(r, WASM_I64_SCONVERT_SAT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { int64_t expected; if (*i < static_cast(std::numeric_limits::max()) && *i >= static_cast(std::numeric_limits::min())) { expected = static_cast(*i); } else if (std::isnan(*i)) { expected = static_cast(0); } else if (*i < 0.0) { expected = std::numeric_limits::min(); } else { expected = std::numeric_limits::max(); } int64_t found = r.Call(*i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I64SConvertF64) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(std::numeric_limits::max()) && *i >= static_cast(std::numeric_limits::min())) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } WASM_EXEC_TEST(I64SConvertSatF64) { EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); WasmRunner r(execution_tier); BUILD(r, WASM_I64_SCONVERT_SAT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { int64_t expected; if (*i < static_cast(std::numeric_limits::max()) && *i >= static_cast(std::numeric_limits::min())) { expected = static_cast(*i); } else if (std::isnan(*i)) { expected = static_cast(0); } else if (*i < 0.0) { expected = std::numeric_limits::min(); } else { expected = std::numeric_limits::max(); } int64_t found = r.Call(*i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I64UConvertF32) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(std::numeric_limits::max()) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } WASM_EXEC_TEST(I64UConvertSatF32) { EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); WasmRunner r(execution_tier); BUILD(r, WASM_I64_UCONVERT_SAT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { uint64_t expected; if (*i < static_cast(std::numeric_limits::max()) && *i > -1) { expected = static_cast(*i); } else if (std::isnan(*i)) { expected = static_cast(0); } else if (*i < 0.0) { expected = std::numeric_limits::min(); } else { expected = std::numeric_limits::max(); } uint64_t found = r.Call(*i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(I64UConvertF64) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < static_cast(std::numeric_limits::max()) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP64(r.Call(*i)); } } } WASM_EXEC_TEST(I64UConvertSatF64) { EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions); WasmRunner r(execution_tier); BUILD(r, WASM_I64_UCONVERT_SAT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { int64_t expected; if (*i < static_cast(std::numeric_limits::max()) && *i > -1) { expected = static_cast(*i); } else if (std::isnan(*i)) { expected = static_cast(0); } else if (*i < 0.0) { expected = std::numeric_limits::min(); } else { expected = std::numeric_limits::max(); } int64_t found = r.Call(*i); CHECK_EQ(expected, found); } } WASM_EXEC_TEST(CallI64Parameter) { ValueType param_types[20]; for (int i = 0; i < 20; i++) param_types[i] = kWasmI64; param_types[3] = kWasmI32; param_types[4] = kWasmI32; FunctionSig sig(1, 19, param_types); for (int i = 0; i < 19; i++) { if (i == 2 || i == 3) continue; WasmRunner r(execution_tier); // Build the target function. WasmFunctionCompiler& t = r.NewFunction(&sig); BUILD(t, WASM_GET_LOCAL(i)); // Build the calling function. BUILD( r, WASM_I32_CONVERT_I64(WASM_CALL_FUNCTION( t.function_index(), WASM_I64V_9(0xBCD12340000000B), WASM_I64V_9(0xBCD12340000000C), WASM_I32V_1(0xD), WASM_I32_CONVERT_I64(WASM_I64V_9(0xBCD12340000000E)), WASM_I64V_9(0xBCD12340000000F), WASM_I64V_10(0xBCD1234000000010), WASM_I64V_10(0xBCD1234000000011), WASM_I64V_10(0xBCD1234000000012), WASM_I64V_10(0xBCD1234000000013), WASM_I64V_10(0xBCD1234000000014), WASM_I64V_10(0xBCD1234000000015), WASM_I64V_10(0xBCD1234000000016), WASM_I64V_10(0xBCD1234000000017), WASM_I64V_10(0xBCD1234000000018), WASM_I64V_10(0xBCD1234000000019), WASM_I64V_10(0xBCD123400000001A), WASM_I64V_10(0xBCD123400000001B), WASM_I64V_10(0xBCD123400000001C), WASM_I64V_10(0xBCD123400000001D)))); CHECK_EQ(i + 0xB, r.Call()); } } WASM_EXEC_TEST(CallI64Return) { ValueType return_types[3]; // TODO(rossberg): support more in the future for (int i = 0; i < 3; i++) return_types[i] = kWasmI64; return_types[1] = kWasmI32; FunctionSig sig(2, 1, return_types); WasmRunner r(execution_tier); // Build the target function. WasmFunctionCompiler& t = r.NewFunction(&sig); BUILD(t, WASM_GET_LOCAL(0), WASM_I32V(7)); // Build the first calling function. BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_I64V(0xBCD12340000000B)), WASM_DROP); CHECK_EQ(0xBCD12340000000B, r.Call()); } void TestI64Binop(ExecutionTier execution_tier, WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) { { WasmRunner r(execution_tier); // return K op K BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(execution_tier); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestI64Cmp(ExecutionTier execution_tier, WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) { { WasmRunner r(execution_tier); // return K op K BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(execution_tier); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } WASM_EXEC_TEST(I64Binops) { TestI64Binop(execution_tier, kExprI64Add, -5586332274295447011, 0x501B72EBABC26847, 0x625DE9793D8F79D6); TestI64Binop(execution_tier, kExprI64Sub, 9001903251710731490, 0xF24FE6474640002E, 0x7562B6F711991B4C); TestI64Binop(execution_tier, kExprI64Mul, -4569547818546064176, 0x231A263C2CBC6451, 0xEAD44DE6BD3E23D0); TestI64Binop(execution_tier, kExprI64Mul, -25963122347507043, 0x4DA1FA47C9352B73, 0x91FE82317AA035AF); TestI64Binop(execution_tier, kExprI64Mul, 7640290486138131960, 0x185731ABE8EEA47C, 0x714EC59F1380D4C2); TestI64Binop(execution_tier, kExprI64DivS, -91517, 0x93B1190A34DE56A0, 0x00004D8F68863948); TestI64Binop(execution_tier, kExprI64DivU, 149016, 0xE15B3727E8A2080A, 0x0000631BFA72DB8B); TestI64Binop(execution_tier, kExprI64RemS, -664128064149968, 0x9A78B4E4FE708692, 0x0003E0B6B3BE7609); TestI64Binop(execution_tier, kExprI64RemU, 1742040017332765, 0x0CE84708C6258C81, 0x000A6FDE82016697); TestI64Binop(execution_tier, kExprI64And, 2531040582801836054, 0xAF257D1602644A16, 0x33B290A91A10D997); TestI64Binop(execution_tier, kExprI64Ior, 8556201506536114940, 0x169D9BE7BD3F0A5C, 0x66BCA28D77AF40E8); TestI64Binop(execution_tier, kExprI64Xor, -4605655183785456377, 0xB6EA20A5D48E85B8, 0x76FF4DA6C80688BF); TestI64Binop(execution_tier, kExprI64Shl, -7240704056088331264, 0xEF4DC1ED030E8FFE, 9); TestI64Binop(execution_tier, kExprI64ShrU, 12500673744059159, 0xB1A52FA7DEEC5D14, 10); TestI64Binop(execution_tier, kExprI64ShrS, 1725103446999874, 0x3107C791461A112B, 11); TestI64Binop(execution_tier, kExprI64Ror, -8960135652432576946, 0x73418D1717E4E83A, 12); TestI64Binop(execution_tier, kExprI64Ror, 7617662827409989779, 0xEBFF67CF0C126D36, 13); TestI64Binop(execution_tier, kExprI64Rol, -2097714064174346012, 0x43938B8DB0B0F230, 14); TestI64Binop(execution_tier, kExprI64Rol, 8728493013947314237, 0xE07AF243AC4D219D, 15); } WASM_EXEC_TEST(I64Compare) { TestI64Cmp(execution_tier, kExprI64Eq, 0, 0xB915D8FA494064F0, 0x04D700B2536019A3); TestI64Cmp(execution_tier, kExprI64Ne, 1, 0xC2FAFAAAB0446CDC, 0x52A3328F780C97A3); TestI64Cmp(execution_tier, kExprI64LtS, 0, 0x673636E6306B0578, 0x028EC9ECA78F7227); TestI64Cmp(execution_tier, kExprI64LeS, 1, 0xAE5214114B86A0FA, 0x7C1D21DA3DFD0CCF); TestI64Cmp(execution_tier, kExprI64LtU, 0, 0x7D52166381EC1CE0, 0x59F4A6A9E78CD3D8); TestI64Cmp(execution_tier, kExprI64LeU, 1, 0xE4169A385C7EA0E0, 0xFBDBED2C8781E5BC); TestI64Cmp(execution_tier, kExprI64GtS, 0, 0x9D08FF8FB5F42E81, 0xD4E5C9D7FE09F621); TestI64Cmp(execution_tier, kExprI64GeS, 1, 0x78DA3B2F73264E0F, 0x6FE5E2A67C501CBE); TestI64Cmp(execution_tier, kExprI64GtU, 0, 0x8F691284E44F7DA9, 0xD5EA9BC1EE149192); TestI64Cmp(execution_tier, kExprI64GeU, 0, 0x0886A0C58C7AA224, 0x5DDBE5A81FD7EE47); } WASM_EXEC_TEST(I64Clz) { struct { int64_t expected; uint64_t input; } values[] = {{0, 0x8000100000000000}, {1, 0x4000050000000000}, {2, 0x2000030000000000}, {3, 0x1000000300000000}, {4, 0x0805000000000000}, {5, 0x0400600000000000}, {6, 0x0200000000000000}, {7, 0x010000A000000000}, {8, 0x00800C0000000000}, {9, 0x0040000000000000}, {10, 0x0020000D00000000}, {11, 0x00100F0000000000}, {12, 0x0008000000000000}, {13, 0x0004100000000000}, {14, 0x0002002000000000}, {15, 0x0001030000000000}, {16, 0x0000804000000000}, {17, 0x0000400500000000}, {18, 0x0000205000000000}, {19, 0x0000170000000000}, {20, 0x0000087000000000}, {21, 0x0000040500000000}, {22, 0x0000020300000000}, {23, 0x0000010100000000}, {24, 0x0000008900000000}, {25, 0x0000004100000000}, {26, 0x0000002200000000}, {27, 0x0000001300000000}, {28, 0x0000000800000000}, {29, 0x0000000400000000}, {30, 0x0000000200000000}, {31, 0x0000000100000000}, {32, 0x0000000080001000}, {33, 0x0000000040000500}, {34, 0x0000000020000300}, {35, 0x0000000010000003}, {36, 0x0000000008050000}, {37, 0x0000000004006000}, {38, 0x0000000002000000}, {39, 0x00000000010000A0}, {40, 0x0000000000800C00}, {41, 0x0000000000400000}, {42, 0x000000000020000D}, {43, 0x0000000000100F00}, {44, 0x0000000000080000}, {45, 0x0000000000041000}, {46, 0x0000000000020020}, {47, 0x0000000000010300}, {48, 0x0000000000008040}, {49, 0x0000000000004005}, {50, 0x0000000000002050}, {51, 0x0000000000001700}, {52, 0x0000000000000870}, {53, 0x0000000000000405}, {54, 0x0000000000000203}, {55, 0x0000000000000101}, {56, 0x0000000000000089}, {57, 0x0000000000000041}, {58, 0x0000000000000022}, {59, 0x0000000000000013}, {60, 0x0000000000000008}, {61, 0x0000000000000004}, {62, 0x0000000000000002}, {63, 0x0000000000000001}, {64, 0x0000000000000000}}; WasmRunner r(execution_tier); BUILD(r, WASM_I64_CLZ(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } WASM_EXEC_TEST(I64Ctz) { struct { int64_t expected; uint64_t input; } values[] = {{64, 0x0000000000000000}, {63, 0x8000000000000000}, {62, 0x4000000000000000}, {61, 0x2000000000000000}, {60, 0x1000000000000000}, {59, 0xA800000000000000}, {58, 0xF400000000000000}, {57, 0x6200000000000000}, {56, 0x9100000000000000}, {55, 0xCD80000000000000}, {54, 0x0940000000000000}, {53, 0xAF20000000000000}, {52, 0xAC10000000000000}, {51, 0xE0B8000000000000}, {50, 0x9CE4000000000000}, {49, 0xC792000000000000}, {48, 0xB8F1000000000000}, {47, 0x3B9F800000000000}, {46, 0xDB4C400000000000}, {45, 0xE9A3200000000000}, {44, 0xFCA6100000000000}, {43, 0x6C8A780000000000}, {42, 0x8CE5A40000000000}, {41, 0xCB7D020000000000}, {40, 0xCB4DC10000000000}, {39, 0xDFBEC58000000000}, {38, 0x27A9DB4000000000}, {37, 0xDE3BCB2000000000}, {36, 0xD7E8A61000000000}, {35, 0x9AFDBC8800000000}, {34, 0x9AFDBC8400000000}, {33, 0x9AFDBC8200000000}, {32, 0x9AFDBC8100000000}, {31, 0x0000000080000000}, {30, 0x0000000040000000}, {29, 0x0000000020000000}, {28, 0x0000000010000000}, {27, 0x00000000A8000000}, {26, 0x00000000F4000000}, {25, 0x0000000062000000}, {24, 0x0000000091000000}, {23, 0x00000000CD800000}, {22, 0x0000000009400000}, {21, 0x00000000AF200000}, {20, 0x00000000AC100000}, {19, 0x00000000E0B80000}, {18, 0x000000009CE40000}, {17, 0x00000000C7920000}, {16, 0x00000000B8F10000}, {15, 0x000000003B9F8000}, {14, 0x00000000DB4C4000}, {13, 0x00000000E9A32000}, {12, 0x00000000FCA61000}, {11, 0x000000006C8A7800}, {10, 0x000000008CE5A400}, {9, 0x00000000CB7D0200}, {8, 0x00000000CB4DC100}, {7, 0x00000000DFBEC580}, {6, 0x0000000027A9DB40}, {5, 0x00000000DE3BCB20}, {4, 0x00000000D7E8A610}, {3, 0x000000009AFDBC88}, {2, 0x000000009AFDBC84}, {1, 0x000000009AFDBC82}, {0, 0x000000009AFDBC81}}; WasmRunner r(execution_tier); BUILD(r, WASM_I64_CTZ(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } WASM_EXEC_TEST(I64Popcnt2) { struct { int64_t expected; uint64_t input; } values[] = {{64, 0xFFFFFFFFFFFFFFFF}, {0, 0x0000000000000000}, {2, 0x0000080000008000}, {26, 0x1123456782345678}, {38, 0xFFEDCBA09EDCBA09}}; WasmRunner r(execution_tier); BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0))); for (size_t i = 0; i < arraysize(values); i++) { CHECK_EQ(values[i].expected, r.Call(values[i].input)); } } // Test the WasmRunner with an Int64 return value and different numbers of // Int64 parameters. WASM_EXEC_TEST(I64WasmRunner) { {FOR_INT64_INPUTS(i){WasmRunner r(execution_tier); BUILD(r, WASM_I64V(*i)); CHECK_EQ(*i, r.Call()); } } { WasmRunner r(execution_tier); BUILD(r, WASM_GET_LOCAL(0)); FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i ^ *j, r.Call(*i, *j)); } } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64_XOR(WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i ^ *j ^ *j, r.Call(*i, *j, *j)); CHECK_EQ(*j ^ *i ^ *j, r.Call(*j, *i, *j)); CHECK_EQ(*j ^ *j ^ *i, r.Call(*j, *j, *i)); } } } { WasmRunner r(execution_tier); BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64_XOR(WASM_GET_LOCAL(1), WASM_I64_XOR(WASM_GET_LOCAL(2), WASM_GET_LOCAL(3))))); FOR_INT64_INPUTS(i) { FOR_INT64_INPUTS(j) { CHECK_EQ(*i ^ *j ^ *j ^ *j, r.Call(*i, *j, *j, *j)); CHECK_EQ(*j ^ *i ^ *j ^ *j, r.Call(*j, *i, *j, *j)); CHECK_EQ(*j ^ *j ^ *i ^ *j, r.Call(*j, *j, *i, *j)); CHECK_EQ(*j ^ *j ^ *j ^ *i, r.Call(*j, *j, *j, *i)); } } } } WASM_EXEC_TEST(Call_Int64Sub) { WasmRunner r(execution_tier); // Build the target function. TestSignatures sigs; WasmFunctionCompiler& t = r.NewFunction(sigs.l_ll()); BUILD(t, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); // Build the caller function. BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int64_t a = static_cast(*i) << 32 | (static_cast(*j) | 0xFFFFFFFF); int64_t b = static_cast(*j) << 32 | (static_cast(*i) | 0xFFFFFFFF); int64_t expected = static_cast(static_cast(a) - static_cast(b)); CHECK_EQ(expected, r.Call(a, b)); } } } WASM_EXEC_TEST(LoadStoreI64_sx) { byte loads[] = {kExprI64LoadMem8S, kExprI64LoadMem16S, kExprI64LoadMem32S, kExprI64LoadMem}; for (size_t m = 0; m < arraysize(loads); m++) { WasmRunner r(execution_tier); byte* memory = r.builder().AddMemoryElems(kWasmPageSize); byte code[] = { kExprI32Const, 8, // -- kExprI32Const, 0, // -- loads[m], // -- ZERO_ALIGNMENT, // -- ZERO_OFFSET, // -- kExprI64StoreMem, // -- ZERO_ALIGNMENT, // -- ZERO_OFFSET, // -- kExprI32Const, 0, // -- loads[m], // -- ZERO_ALIGNMENT, // -- ZERO_OFFSET, // -- }; r.Build(code, code + arraysize(code)); // Try a bunch of different negative values. for (int i = -1; i >= -128; i -= 11) { int size = 1 << m; r.builder().BlankMemory(); memory[size - 1] = static_cast(i); // set the high order byte. int64_t expected = static_cast(i) << ((size - 1) * 8); CHECK_EQ(expected, r.Call()); CHECK_EQ(static_cast(i), memory[8 + size - 1]); for (int j = size; j < 8; j++) { CHECK_EQ(255, memory[8 + j]); } } } } WASM_EXEC_TEST(I64ReinterpretF64) { WasmRunner r(execution_tier); int64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, WASM_I64_REINTERPRET_F64( WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int64_t expected = static_cast(*i) * 0x300010001; r.builder().WriteMemory(&memory[0], expected); CHECK_EQ(expected, r.Call()); } } WASM_EXEC_TEST(SignallingNanSurvivesI64ReinterpretF64) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_REINTERPRET_F64(WASM_SEQ(kExprF64Const, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF4, 0x7F))); // This is a signalling nan. CHECK_EQ(0x7FF4000000000000, r.Call()); } WASM_EXEC_TEST(F64ReinterpretI64) { WasmRunner r(execution_tier); int64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, WASM_STORE_MEM(MachineType::Float64(), WASM_ZERO, WASM_F64_REINTERPRET_I64(WASM_GET_LOCAL(0))), WASM_GET_LOCAL(0)); FOR_INT32_INPUTS(i) { int64_t expected = static_cast(*i) * 0x300010001; CHECK_EQ(expected, r.Call(expected)); CHECK_EQ(expected, r.builder().ReadMemory(&memory[0])); } } WASM_EXEC_TEST(LoadMemI64) { WasmRunner r(execution_tier); int64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM(MachineType::Int64(), WASM_ZERO)); r.builder().WriteMemory(&memory[0], 0x1ABBCCDD00112233LL); CHECK_EQ(0x1ABBCCDD00112233LL, r.Call()); r.builder().WriteMemory(&memory[0], 0x33AABBCCDD001122LL); CHECK_EQ(0x33AABBCCDD001122LL, r.Call()); r.builder().WriteMemory(&memory[0], 77777777); CHECK_EQ(77777777, r.Call()); } WASM_EXEC_TEST(LoadMemI64_alignment) { for (byte alignment = 0; alignment <= 3; alignment++) { WasmRunner r(execution_tier); int64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); r.builder().RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int64(), WASM_ZERO, alignment)); r.builder().WriteMemory(&memory[0], 0x1ABBCCDD00112233LL); CHECK_EQ(0x1ABBCCDD00112233LL, r.Call()); r.builder().WriteMemory(&memory[0], 0x33AABBCCDD001122LL); CHECK_EQ(0x33AABBCCDD001122LL, r.Call()); r.builder().WriteMemory(&memory[0], 77777777); CHECK_EQ(77777777, r.Call()); } } WASM_EXEC_TEST(MemI64_Sum) { const int kNumElems = 20; WasmRunner r(execution_tier); uint64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(uint64_t)); const byte kSum = r.AllocateLocal(kWasmI64); BUILD(r, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( WASM_SET_LOCAL( kSum, WASM_I64_ADD(WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Int64(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(8))))), WASM_GET_LOCAL(1)); // Run 4 trials. for (int i = 0; i < 3; i++) { r.builder().RandomizeMemory(i * 33); uint64_t expected = 0; for (size_t j = kNumElems - 1; j > 0; j--) { expected += r.builder().ReadMemory(&memory[j]); } uint64_t result = r.Call(8 * (kNumElems - 1)); CHECK_EQ(expected, result); } } WASM_EXEC_TEST(StoreMemI64_alignment) { const int64_t kWritten = 0x12345678ABCD0011ll; for (byte i = 0; i <= 3; i++) { WasmRunner r(execution_tier); int64_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int64(), WASM_ZERO, i, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(0)); r.builder().RandomizeMemory(1111); r.builder().WriteMemory(&memory[0], 0); CHECK_EQ(kWritten, r.Call(kWritten)); CHECK_EQ(kWritten, r.builder().ReadMemory(&memory[0])); } } WASM_EXEC_TEST(I64Global) { WasmRunner r(execution_tier); int64_t* global = r.builder().AddGlobal(); // global = global + p0 BUILD(r, WASM_SET_GLOBAL( 0, WASM_I64_AND(WASM_GET_GLOBAL(0), WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO); r.builder().WriteMemory(global, 0xFFFFFFFFFFFFFFFFLL); for (int i = 9; i < 444444; i += 111111) { int64_t expected = ReadLittleEndianValue(global) & i; r.Call(i); CHECK_EQ(expected, ReadLittleEndianValue(global)); } } WASM_EXEC_TEST(I64Eqz) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_EQZ(WASM_GET_LOCAL(0))); FOR_INT64_INPUTS(i) { int32_t result = *i == 0 ? 1 : 0; CHECK_EQ(result, r.Call(*i)); } } WASM_EXEC_TEST(I64Ror) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { int64_t expected = base::bits::RotateRight64(*i, *j & 0x3F); CHECK_EQ(expected, r.Call(*i, *j)); } } } WASM_EXEC_TEST(I64Rol) { WasmRunner r(execution_tier); BUILD(r, WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { int64_t expected = base::bits::RotateLeft64(*i, *j & 0x3F); CHECK_EQ(expected, r.Call(*i, *j)); } } } WASM_EXEC_TEST(StoreMem_offset_oob_i64) { static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; constexpr size_t num_bytes = kWasmPageSize; for (size_t m = 0; m < arraysize(machineTypes); m++) { WasmRunner r(execution_tier); byte* memory = r.builder().AddMemoryElems(num_bytes); r.builder().RandomizeMemory(1119 + static_cast(m)); BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0), WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)), WASM_ZERO); byte memsize = ValueTypes::MemSize(machineTypes[m]); uint32_t boundary = num_bytes - 8 - memsize; CHECK_EQ(0, r.Call(boundary)); // in bounds. CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize)); for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) { CHECK_TRAP32(r.Call(offset)); // out of bounds. } } } WASM_EXEC_TEST(Store_i64_narrowed) { constexpr byte kOpcodes[] = {kExprI64StoreMem8, kExprI64StoreMem16, kExprI64StoreMem32, kExprI64StoreMem}; int stored_size_in_bytes = 0; for (auto opcode : kOpcodes) { stored_size_in_bytes = std::max(1, stored_size_in_bytes * 2); constexpr int kBytes = 24; uint8_t expected_memory[kBytes] = {0}; WasmRunner r(execution_tier); uint8_t* memory = r.builder().AddMemoryElems(kWasmPageSize); constexpr uint64_t kPattern = 0x0123456789abcdef; BUILD(r, WASM_GET_LOCAL(0), // index WASM_GET_LOCAL(1), // value opcode, ZERO_ALIGNMENT, ZERO_OFFSET, // store WASM_ZERO); // return value for (int i = 0; i <= kBytes - stored_size_in_bytes; ++i) { uint64_t pattern = base::bits::RotateLeft64(kPattern, i % 64); r.Call(i, pattern); for (int b = 0; b < stored_size_in_bytes; ++b) { expected_memory[i + b] = static_cast(pattern >> (b * 8)); } for (int w = 0; w < kBytes; ++w) { CHECK_EQ(expected_memory[w], memory[w]); } } } } WASM_EXEC_TEST(UnalignedInt64Load) { WasmRunner r(execution_tier); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int64(), WASM_ONE, 3)); r.Call(); } WASM_EXEC_TEST(UnalignedInt64Store) { WasmRunner r(execution_tier); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Int64(), WASM_ONE, 3, WASM_I64V_1(1)), WASM_I32V_1(12))); r.Call(); } #define ADD_CODE(vec, ...) \ do { \ byte __buf[] = {__VA_ARGS__}; \ for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \ } while (false) static void CompileCallIndirectMany(ExecutionTier tier, ValueType param) { // Make sure we don't run out of registers when compiling indirect calls // with many many parameters. TestSignatures sigs; for (byte num_params = 0; num_params < 40; num_params++) { WasmRunner r(tier); FunctionSig* sig = sigs.many(r.zone(), kWasmStmt, param, num_params); r.builder().AddSignature(sig); r.builder().AddSignature(sig); r.builder().AddIndirectFunctionTable(nullptr, 0); WasmFunctionCompiler& t = r.NewFunction(sig); std::vector code; for (byte p = 0; p < num_params; p++) { ADD_CODE(code, kExprGetLocal, p); } ADD_CODE(code, kExprI32Const, 0); ADD_CODE(code, kExprCallIndirect, 1, TABLE_ZERO); t.Build(&code[0], &code[0] + code.size()); } } WASM_EXEC_TEST(Compile_Wasm_CallIndirect_Many_i64) { CompileCallIndirectMany(execution_tier, kWasmI64); } static void Run_WasmMixedCall_N(ExecutionTier execution_tier, int start) { const int kExpected = 6333; const int kElemSize = 8; TestSignatures sigs; static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Int64(), MachineType::Float64(), MachineType::Float32(), MachineType::Int64(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int64(), MachineType::Int32(), MachineType::Int32()}; int num_params = static_cast(arraysize(mixed)) - start; for (int which = 0; which < num_params; which++) { v8::internal::AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); WasmRunner r(execution_tier); r.builder().AddMemory(kWasmPageSize); MachineType* memtypes = &mixed[start]; MachineType result = memtypes[which]; // ========================================================================= // Build the selector function. // ========================================================================= FunctionSig::Builder b(&zone, 1, num_params); b.AddReturn(ValueTypes::ValueTypeFor(result)); for (int i = 0; i < num_params; i++) { b.AddParam(ValueTypes::ValueTypeFor(memtypes[i])); } WasmFunctionCompiler& t = r.NewFunction(b.Build()); BUILD(t, WASM_GET_LOCAL(which)); // ========================================================================= // Build the calling function. // ========================================================================= std::vector code; // Load the arguments. for (int i = 0; i < num_params; i++) { int offset = (i + 1) * kElemSize; ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I32V_2(offset))); } // Call the selector function. ADD_CODE(code, WASM_CALL_FUNCTION0(t.function_index())); // Store the result in a local. byte local_index = r.AllocateLocal(ValueTypes::ValueTypeFor(result)); ADD_CODE(code, kExprSetLocal, local_index); // Store the result in memory. ADD_CODE(code, WASM_STORE_MEM(result, WASM_ZERO, WASM_GET_LOCAL(local_index))); // Return the expected value. ADD_CODE(code, WASM_I32V_2(kExpected)); r.Build(&code[0], &code[0] + code.size()); // Run the code. for (int t = 0; t < 10; t++) { r.builder().RandomizeMemory(); CHECK_EQ(kExpected, r.Call()); int size = ValueTypes::MemSize(result); for (int i = 0; i < size; i++) { int base = (which + 1) * kElemSize; byte expected = r.builder().raw_mem_at(base + i); byte result = r.builder().raw_mem_at(i); CHECK_EQ(expected, result); } } } } WASM_EXEC_TEST(MixedCall_i64_0) { Run_WasmMixedCall_N(execution_tier, 0); } WASM_EXEC_TEST(MixedCall_i64_1) { Run_WasmMixedCall_N(execution_tier, 1); } WASM_EXEC_TEST(MixedCall_i64_2) { Run_WasmMixedCall_N(execution_tier, 2); } WASM_EXEC_TEST(MixedCall_i64_3) { Run_WasmMixedCall_N(execution_tier, 3); } WASM_EXEC_TEST(Regress5874) { WasmRunner r(execution_tier); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int64_t)); BUILD(r, kExprI64Const, 0x00, // -- kExprI32ConvertI64, // -- kExprI64Const, 0x00, // -- kExprI64StoreMem, 0x03, 0x00, // -- kExprI32Const, 0x00); // -- r.Call(); } WASM_EXEC_TEST(Regression_6858) { // WasmRunner with 5 params and returns, which is the maximum. WasmRunner r(execution_tier); BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); int64_t dividend = 15; int64_t divisor = 0; int64_t filler = 34; CHECK_TRAP64(r.Call(dividend, divisor, filler, filler)); } #undef ADD_CODE // clang-format gets confused about these closing parentheses (wants to change // the first comment to "// namespace v8". Disable it. // clang-format off } // namespace test_run_wasm_64 } // namespace wasm } // namespace internal } // namespace v8 // clang-format on