// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "v8.h" #include "api.h" #include "arguments.h" #include "bootstrapper.h" #include "builtins.h" #include "cpu-profiler.h" #include "gdb-jit.h" #include "ic-inl.h" #include "heap-profiler.h" #include "mark-compact.h" #include "stub-cache.h" #include "vm-state-inl.h" namespace v8 { namespace internal { namespace { // Arguments object passed to C++ builtins. template class BuiltinArguments : public Arguments { public: BuiltinArguments(int length, Object** arguments) : Arguments(length, arguments) { } Object*& operator[] (int index) { ASSERT(index < length()); return Arguments::operator[](index); } template Handle at(int index) { ASSERT(index < length()); return Arguments::at(index); } Handle receiver() { return Arguments::at(0); } Handle called_function() { STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION); return Arguments::at(Arguments::length() - 1); } // Gets the total number of arguments including the receiver (but // excluding extra arguments). int length() const { STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS); return Arguments::length(); } #ifdef DEBUG void Verify() { // Check we have at least the receiver. ASSERT(Arguments::length() >= 1); } #endif }; // Specialize BuiltinArguments for the called function extra argument. template <> int BuiltinArguments::length() const { return Arguments::length() - 1; } #ifdef DEBUG template <> void BuiltinArguments::Verify() { // Check we have at least the receiver and the called function. ASSERT(Arguments::length() >= 2); // Make sure cast to JSFunction succeeds. called_function(); } #endif #define DEF_ARG_TYPE(name, spec) \ typedef BuiltinArguments name##ArgumentsType; BUILTIN_LIST_C(DEF_ARG_TYPE) #undef DEF_ARG_TYPE } // namespace // ---------------------------------------------------------------------------- // Support macro for defining builtins in C++. // ---------------------------------------------------------------------------- // // A builtin function is defined by writing: // // BUILTIN(name) { // ... // } // // In the body of the builtin function the arguments can be accessed // through the BuiltinArguments object args. #ifdef DEBUG #define BUILTIN(name) \ MUST_USE_RESULT static Object* Builtin_Impl_##name( \ name##ArgumentsType args, Isolate* isolate); \ MUST_USE_RESULT static Object* Builtin_##name( \ int args_length, Object** args_object, Isolate* isolate) { \ name##ArgumentsType args(args_length, args_object); \ args.Verify(); \ return Builtin_Impl_##name(args, isolate); \ } \ MUST_USE_RESULT static Object* Builtin_Impl_##name( \ name##ArgumentsType args, Isolate* isolate) #else // For release mode. #define BUILTIN(name) \ static Object* Builtin_impl##name( \ name##ArgumentsType args, Isolate* isolate); \ static Object* Builtin_##name( \ int args_length, Object** args_object, Isolate* isolate) { \ name##ArgumentsType args(args_length, args_object); \ return Builtin_impl##name(args, isolate); \ } \ static Object* Builtin_impl##name( \ name##ArgumentsType args, Isolate* isolate) #endif #ifdef DEBUG static inline bool CalledAsConstructor(Isolate* isolate) { // Calculate the result using a full stack frame iterator and check // that the state of the stack is as we assume it to be in the // code below. StackFrameIterator it(isolate); ASSERT(it.frame()->is_exit()); it.Advance(); StackFrame* frame = it.frame(); bool reference_result = frame->is_construct(); Address fp = Isolate::c_entry_fp(isolate->thread_local_top()); // Because we know fp points to an exit frame we can use the relevant // part of ExitFrame::ComputeCallerState directly. const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; Address caller_fp = Memory::Address_at(fp + kCallerOffset); // This inlines the part of StackFrame::ComputeType that grabs the // type of the current frame. Note that StackFrame::ComputeType // has been specialized for each architecture so if any one of them // changes this code has to be changed as well. const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); bool result = (marker == kConstructMarker); ASSERT_EQ(result, reference_result); return result; } #endif // ---------------------------------------------------------------------------- BUILTIN(Illegal) { UNREACHABLE(); return isolate->heap()->undefined_value(); // Make compiler happy. } BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); } static void MoveDoubleElements(FixedDoubleArray* dst, int dst_index, FixedDoubleArray* src, int src_index, int len) { if (len == 0) return; OS::MemMove(dst->data_start() + dst_index, src->data_start() + src_index, len * kDoubleSize); } static FixedArrayBase* LeftTrimFixedArray(Heap* heap, FixedArrayBase* elms, int to_trim) { ASSERT(heap->CanMoveObjectStart(elms)); Map* map = elms->map(); int entry_size; if (elms->IsFixedArray()) { entry_size = kPointerSize; } else { entry_size = kDoubleSize; } ASSERT(elms->map() != heap->fixed_cow_array_map()); // For now this trick is only applied to fixed arrays in new and paged space. // In large object space the object's start must coincide with chunk // and thus the trick is just not applicable. ASSERT(!heap->lo_space()->Contains(elms)); STATIC_ASSERT(FixedArrayBase::kMapOffset == 0); STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize); STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); Object** former_start = HeapObject::RawField(elms, 0); const int len = elms->length(); if (to_trim * entry_size > FixedArrayBase::kHeaderSize && elms->IsFixedArray() && !heap->new_space()->Contains(elms)) { // If we are doing a big trim in old space then we zap the space that was // formerly part of the array so that the GC (aided by the card-based // remembered set) won't find pointers to new-space there. Object** zap = reinterpret_cast(elms->address()); zap++; // Header of filler must be at least one word so skip that. for (int i = 1; i < to_trim; i++) { *zap++ = Smi::FromInt(0); } } // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // Since left trimming is only performed on pages which are not concurrently // swept creating a filler object does not require synchronization. heap->CreateFillerObjectAt(elms->address(), to_trim * entry_size); int new_start_index = to_trim * (entry_size / kPointerSize); former_start[new_start_index] = map; former_start[new_start_index + 1] = Smi::FromInt(len - to_trim); // Maintain marking consistency for HeapObjectIterator and // IncrementalMarking. int size_delta = to_trim * entry_size; Address new_start = elms->address() + size_delta; heap->marking()->TransferMark(elms->address(), new_start); heap->AdjustLiveBytes(new_start, -size_delta, Heap::FROM_MUTATOR); FixedArrayBase* new_elms = FixedArrayBase::cast(HeapObject::FromAddress(new_start)); HeapProfiler* profiler = heap->isolate()->heap_profiler(); if (profiler->is_tracking_object_moves()) { profiler->ObjectMoveEvent(elms->address(), new_elms->address(), new_elms->Size()); } return new_elms; } static bool ArrayPrototypeHasNoElements(Heap* heap, Context* native_context, JSObject* array_proto) { DisallowHeapAllocation no_gc; // This method depends on non writability of Object and Array prototype // fields. if (array_proto->elements() != heap->empty_fixed_array()) return false; // Object.prototype Object* proto = array_proto->GetPrototype(); if (proto == heap->null_value()) return false; array_proto = JSObject::cast(proto); if (array_proto != native_context->initial_object_prototype()) return false; if (array_proto->elements() != heap->empty_fixed_array()) return false; return array_proto->GetPrototype()->IsNull(); } // Returns empty handle if not applicable. MUST_USE_RESULT static inline MaybeHandle EnsureJSArrayWithWritableFastElements( Isolate* isolate, Handle receiver, Arguments* args, int first_added_arg) { if (!receiver->IsJSArray()) return MaybeHandle(); Handle array = Handle::cast(receiver); // If there may be elements accessors in the prototype chain, the fast path // cannot be used if there arguments to add to the array. if (args != NULL && array->map()->DictionaryElementsInPrototypeChainOnly()) { return MaybeHandle(); } if (array->map()->is_observed()) return MaybeHandle(); if (!array->map()->is_extensible()) return MaybeHandle(); Handle elms(array->elements(), isolate); Heap* heap = isolate->heap(); Map* map = elms->map(); if (map == heap->fixed_array_map()) { if (args == NULL || array->HasFastObjectElements()) return elms; } else if (map == heap->fixed_cow_array_map()) { elms = JSObject::EnsureWritableFastElements(array); if (args == NULL || array->HasFastObjectElements()) return elms; } else if (map == heap->fixed_double_array_map()) { if (args == NULL) return elms; } else { return MaybeHandle(); } // Need to ensure that the arguments passed in args can be contained in // the array. int args_length = args->length(); if (first_added_arg >= args_length) return handle(array->elements(), isolate); ElementsKind origin_kind = array->map()->elements_kind(); ASSERT(!IsFastObjectElementsKind(origin_kind)); ElementsKind target_kind = origin_kind; { DisallowHeapAllocation no_gc; int arg_count = args->length() - first_added_arg; Object** arguments = args->arguments() - first_added_arg - (arg_count - 1); for (int i = 0; i < arg_count; i++) { Object* arg = arguments[i]; if (arg->IsHeapObject()) { if (arg->IsHeapNumber()) { target_kind = FAST_DOUBLE_ELEMENTS; } else { target_kind = FAST_ELEMENTS; break; } } } } if (target_kind != origin_kind) { JSObject::TransitionElementsKind(array, target_kind); return handle(array->elements(), isolate); } return elms; } static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap, JSArray* receiver) { if (!FLAG_clever_optimizations) return false; DisallowHeapAllocation no_gc; Context* native_context = heap->isolate()->context()->native_context(); JSObject* array_proto = JSObject::cast(native_context->array_function()->prototype()); return receiver->GetPrototype() == array_proto && ArrayPrototypeHasNoElements(heap, native_context, array_proto); } MUST_USE_RESULT static Object* CallJsBuiltin( Isolate* isolate, const char* name, BuiltinArguments args) { HandleScope handleScope(isolate); Handle js_builtin = Object::GetProperty( isolate, handle(isolate->native_context()->builtins(), isolate), name).ToHandleChecked(); Handle function = Handle::cast(js_builtin); int argc = args.length() - 1; ScopedVector > argv(argc); for (int i = 0; i < argc; ++i) { argv[i] = args.at(i + 1); } Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Execution::Call(isolate, function, args.receiver(), argc, argv.start())); return *result; } BUILTIN(ArrayPush) { HandleScope scope(isolate); Handle receiver = args.receiver(); MaybeHandle maybe_elms_obj = EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1); Handle elms_obj; if (!maybe_elms_obj.ToHandle(&elms_obj)) { return CallJsBuiltin(isolate, "ArrayPush", args); } Handle array = Handle::cast(receiver); ASSERT(!array->map()->is_observed()); ElementsKind kind = array->GetElementsKind(); if (IsFastSmiOrObjectElementsKind(kind)) { Handle elms = Handle::cast(elms_obj); int len = Smi::cast(array->length())->value(); int to_add = args.length() - 1; if (to_add == 0) { return Smi::FromInt(len); } // Currently fixed arrays cannot grow too big, so // we should never hit this case. ASSERT(to_add <= (Smi::kMaxValue - len)); int new_length = len + to_add; if (new_length > elms->length()) { // New backing storage is needed. int capacity = new_length + (new_length >> 1) + 16; Handle new_elms = isolate->factory()->NewUninitializedFixedArray(capacity); ElementsAccessor* accessor = array->GetElementsAccessor(); accessor->CopyElements( elms_obj, 0, kind, new_elms, 0, ElementsAccessor::kCopyToEndAndInitializeToHole); elms = new_elms; } // Add the provided values. DisallowHeapAllocation no_gc; WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); for (int index = 0; index < to_add; index++) { elms->set(index + len, args[index + 1], mode); } if (*elms != array->elements()) { array->set_elements(*elms); } // Set the length. array->set_length(Smi::FromInt(new_length)); return Smi::FromInt(new_length); } else { int len = Smi::cast(array->length())->value(); int elms_len = elms_obj->length(); int to_add = args.length() - 1; if (to_add == 0) { return Smi::FromInt(len); } // Currently fixed arrays cannot grow too big, so // we should never hit this case. ASSERT(to_add <= (Smi::kMaxValue - len)); int new_length = len + to_add; Handle new_elms; if (new_length > elms_len) { // New backing storage is needed. int capacity = new_length + (new_length >> 1) + 16; // Create new backing store; since capacity > 0, we can // safely cast to FixedDoubleArray. new_elms = Handle::cast( isolate->factory()->NewFixedDoubleArray(capacity)); ElementsAccessor* accessor = array->GetElementsAccessor(); accessor->CopyElements( elms_obj, 0, kind, new_elms, 0, ElementsAccessor::kCopyToEndAndInitializeToHole); } else { // to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the // empty_fixed_array. new_elms = Handle::cast(elms_obj); } // Add the provided values. DisallowHeapAllocation no_gc; int index; for (index = 0; index < to_add; index++) { Object* arg = args[index + 1]; new_elms->set(index + len, arg->Number()); } if (*new_elms != array->elements()) { array->set_elements(*new_elms); } // Set the length. array->set_length(Smi::FromInt(new_length)); return Smi::FromInt(new_length); } } BUILTIN(ArrayPop) { HandleScope scope(isolate); Handle receiver = args.receiver(); MaybeHandle maybe_elms_obj = EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0); Handle elms_obj; if (!maybe_elms_obj.ToHandle(&elms_obj)) { return CallJsBuiltin(isolate, "ArrayPop", args); } Handle array = Handle::cast(receiver); ASSERT(!array->map()->is_observed()); int len = Smi::cast(array->length())->value(); if (len == 0) return isolate->heap()->undefined_value(); ElementsAccessor* accessor = array->GetElementsAccessor(); int new_length = len - 1; Handle element = accessor->Get(array, array, new_length, elms_obj).ToHandleChecked(); if (element->IsTheHole()) { return CallJsBuiltin(isolate, "ArrayPop", args); } RETURN_FAILURE_ON_EXCEPTION( isolate, accessor->SetLength(array, handle(Smi::FromInt(new_length), isolate))); return *element; } BUILTIN(ArrayShift) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); MaybeHandle maybe_elms_obj = EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0); Handle elms_obj; if (!maybe_elms_obj.ToHandle(&elms_obj) || !IsJSArrayFastElementMovingAllowed(heap, *Handle::cast(receiver))) { return CallJsBuiltin(isolate, "ArrayShift", args); } Handle array = Handle::cast(receiver); ASSERT(!array->map()->is_observed()); int len = Smi::cast(array->length())->value(); if (len == 0) return heap->undefined_value(); // Get first element ElementsAccessor* accessor = array->GetElementsAccessor(); Handle first = accessor->Get(array, array, 0, elms_obj).ToHandleChecked(); if (first->IsTheHole()) { return CallJsBuiltin(isolate, "ArrayShift", args); } if (heap->CanMoveObjectStart(*elms_obj)) { array->set_elements(LeftTrimFixedArray(heap, *elms_obj, 1)); } else { // Shift the elements. if (elms_obj->IsFixedArray()) { Handle elms = Handle::cast(elms_obj); DisallowHeapAllocation no_gc; heap->MoveElements(*elms, 0, 1, len - 1); elms->set(len - 1, heap->the_hole_value()); } else { Handle elms = Handle::cast(elms_obj); MoveDoubleElements(*elms, 0, *elms, 1, len - 1); elms->set_the_hole(len - 1); } } // Set the length. array->set_length(Smi::FromInt(len - 1)); return *first; } BUILTIN(ArrayUnshift) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); MaybeHandle maybe_elms_obj = EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0); Handle elms_obj; if (!maybe_elms_obj.ToHandle(&elms_obj) || !IsJSArrayFastElementMovingAllowed(heap, *Handle::cast(receiver))) { return CallJsBuiltin(isolate, "ArrayUnshift", args); } Handle array = Handle::cast(receiver); ASSERT(!array->map()->is_observed()); if (!array->HasFastSmiOrObjectElements()) { return CallJsBuiltin(isolate, "ArrayUnshift", args); } Handle elms = Handle::cast(elms_obj); int len = Smi::cast(array->length())->value(); int to_add = args.length() - 1; int new_length = len + to_add; // Currently fixed arrays cannot grow too big, so // we should never hit this case. ASSERT(to_add <= (Smi::kMaxValue - len)); JSObject::EnsureCanContainElements(array, &args, 1, to_add, DONT_ALLOW_DOUBLE_ELEMENTS); if (new_length > elms->length()) { // New backing storage is needed. int capacity = new_length + (new_length >> 1) + 16; Handle new_elms = isolate->factory()->NewUninitializedFixedArray(capacity); ElementsKind kind = array->GetElementsKind(); ElementsAccessor* accessor = array->GetElementsAccessor(); accessor->CopyElements( elms, 0, kind, new_elms, to_add, ElementsAccessor::kCopyToEndAndInitializeToHole); elms = new_elms; array->set_elements(*elms); } else { DisallowHeapAllocation no_gc; heap->MoveElements(*elms, to_add, 0, len); } // Add the provided values. DisallowHeapAllocation no_gc; WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); for (int i = 0; i < to_add; i++) { elms->set(i, args[i + 1], mode); } // Set the length. array->set_length(Smi::FromInt(new_length)); return Smi::FromInt(new_length); } BUILTIN(ArraySlice) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); int len = -1; int relative_start = 0; int relative_end = 0; { DisallowHeapAllocation no_gc; if (receiver->IsJSArray()) { JSArray* array = JSArray::cast(*receiver); if (!IsJSArrayFastElementMovingAllowed(heap, array)) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } if (!array->HasFastElements()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } len = Smi::cast(array->length())->value(); } else { // Array.slice(arguments, ...) is quite a common idiom (notably more // than 50% of invocations in Web apps). Treat it in C++ as well. Map* arguments_map = isolate->context()->native_context()-> sloppy_arguments_boilerplate()->map(); bool is_arguments_object_with_fast_elements = receiver->IsJSObject() && JSObject::cast(*receiver)->map() == arguments_map; if (!is_arguments_object_with_fast_elements) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } JSObject* object = JSObject::cast(*receiver); if (!object->HasFastElements()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex); if (!len_obj->IsSmi()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } len = Smi::cast(len_obj)->value(); if (len > object->elements()->length()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } } ASSERT(len >= 0); int n_arguments = args.length() - 1; // Note carefully choosen defaults---if argument is missing, // it's undefined which gets converted to 0 for relative_start // and to len for relative_end. relative_start = 0; relative_end = len; if (n_arguments > 0) { Object* arg1 = args[1]; if (arg1->IsSmi()) { relative_start = Smi::cast(arg1)->value(); } else if (arg1->IsHeapNumber()) { double start = HeapNumber::cast(arg1)->value(); if (start < kMinInt || start > kMaxInt) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } relative_start = std::isnan(start) ? 0 : static_cast(start); } else if (!arg1->IsUndefined()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } if (n_arguments > 1) { Object* arg2 = args[2]; if (arg2->IsSmi()) { relative_end = Smi::cast(arg2)->value(); } else if (arg2->IsHeapNumber()) { double end = HeapNumber::cast(arg2)->value(); if (end < kMinInt || end > kMaxInt) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } relative_end = std::isnan(end) ? 0 : static_cast(end); } else if (!arg2->IsUndefined()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } } } } // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. int k = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. int final = (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); // Calculate the length of result array. int result_len = Max(final - k, 0); Handle object = Handle::cast(receiver); Handle elms(object->elements(), isolate); ElementsKind kind = object->GetElementsKind(); if (IsHoleyElementsKind(kind)) { DisallowHeapAllocation no_gc; bool packed = true; ElementsAccessor* accessor = ElementsAccessor::ForKind(kind); for (int i = k; i < final; i++) { if (!accessor->HasElement(object, object, i, elms)) { packed = false; break; } } if (packed) { kind = GetPackedElementsKind(kind); } else if (!receiver->IsJSArray()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySlice", args); } } Handle result_array = isolate->factory()->NewJSArray(kind, result_len, result_len); DisallowHeapAllocation no_gc; if (result_len == 0) return *result_array; ElementsAccessor* accessor = object->GetElementsAccessor(); accessor->CopyElements( elms, k, kind, handle(result_array->elements(), isolate), 0, result_len); return *result_array; } BUILTIN(ArraySplice) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); MaybeHandle maybe_elms_obj = EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3); Handle elms_obj; if (!maybe_elms_obj.ToHandle(&elms_obj) || !IsJSArrayFastElementMovingAllowed(heap, *Handle::cast(receiver))) { return CallJsBuiltin(isolate, "ArraySplice", args); } Handle array = Handle::cast(receiver); ASSERT(!array->map()->is_observed()); int len = Smi::cast(array->length())->value(); int n_arguments = args.length() - 1; int relative_start = 0; if (n_arguments > 0) { DisallowHeapAllocation no_gc; Object* arg1 = args[1]; if (arg1->IsSmi()) { relative_start = Smi::cast(arg1)->value(); } else if (arg1->IsHeapNumber()) { double start = HeapNumber::cast(arg1)->value(); if (start < kMinInt || start > kMaxInt) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySplice", args); } relative_start = std::isnan(start) ? 0 : static_cast(start); } else if (!arg1->IsUndefined()) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySplice", args); } } int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is // given as a request to delete all the elements from the start. // And it differs from the case of undefined delete count. // This does not follow ECMA-262, but we do the same for // compatibility. int actual_delete_count; if (n_arguments == 1) { ASSERT(len - actual_start >= 0); actual_delete_count = len - actual_start; } else { int value = 0; // ToInteger(undefined) == 0 if (n_arguments > 1) { DisallowHeapAllocation no_gc; Object* arg2 = args[2]; if (arg2->IsSmi()) { value = Smi::cast(arg2)->value(); } else { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArraySplice", args); } } actual_delete_count = Min(Max(value, 0), len - actual_start); } ElementsKind elements_kind = array->GetElementsKind(); int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; int new_length = len - actual_delete_count + item_count; // For double mode we do not support changing the length. if (new_length > len && IsFastDoubleElementsKind(elements_kind)) { return CallJsBuiltin(isolate, "ArraySplice", args); } if (new_length == 0) { Handle result = isolate->factory()->NewJSArrayWithElements( elms_obj, elements_kind, actual_delete_count); array->set_elements(heap->empty_fixed_array()); array->set_length(Smi::FromInt(0)); return *result; } Handle result_array = isolate->factory()->NewJSArray(elements_kind, actual_delete_count, actual_delete_count); if (actual_delete_count > 0) { DisallowHeapAllocation no_gc; ElementsAccessor* accessor = array->GetElementsAccessor(); accessor->CopyElements( elms_obj, actual_start, elements_kind, handle(result_array->elements(), isolate), 0, actual_delete_count); } bool elms_changed = false; if (item_count < actual_delete_count) { // Shrink the array. const bool trim_array = !heap->lo_space()->Contains(*elms_obj) && ((actual_start + item_count) < (len - actual_delete_count - actual_start)); if (trim_array) { const int delta = actual_delete_count - item_count; if (elms_obj->IsFixedDoubleArray()) { Handle elms = Handle::cast(elms_obj); MoveDoubleElements(*elms, delta, *elms, 0, actual_start); } else { Handle elms = Handle::cast(elms_obj); DisallowHeapAllocation no_gc; heap->MoveElements(*elms, delta, 0, actual_start); } if (heap->CanMoveObjectStart(*elms_obj)) { // On the fast path we move the start of the object in memory. elms_obj = handle(LeftTrimFixedArray(heap, *elms_obj, delta), isolate); } else { // This is the slow path. We are going to move the elements to the left // by copying them. For trimmed values we store the hole. if (elms_obj->IsFixedDoubleArray()) { Handle elms = Handle::cast(elms_obj); MoveDoubleElements(*elms, 0, *elms, delta, len - delta); elms->FillWithHoles(len - delta, len); } else { Handle elms = Handle::cast(elms_obj); DisallowHeapAllocation no_gc; heap->MoveElements(*elms, 0, delta, len - delta); elms->FillWithHoles(len - delta, len); } } elms_changed = true; } else { if (elms_obj->IsFixedDoubleArray()) { Handle elms = Handle::cast(elms_obj); MoveDoubleElements(*elms, actual_start + item_count, *elms, actual_start + actual_delete_count, (len - actual_delete_count - actual_start)); elms->FillWithHoles(new_length, len); } else { Handle elms = Handle::cast(elms_obj); DisallowHeapAllocation no_gc; heap->MoveElements(*elms, actual_start + item_count, actual_start + actual_delete_count, (len - actual_delete_count - actual_start)); elms->FillWithHoles(new_length, len); } } } else if (item_count > actual_delete_count) { Handle elms = Handle::cast(elms_obj); // Currently fixed arrays cannot grow too big, so // we should never hit this case. ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); // Check if array need to grow. if (new_length > elms->length()) { // New backing storage is needed. int capacity = new_length + (new_length >> 1) + 16; Handle new_elms = isolate->factory()->NewUninitializedFixedArray(capacity); DisallowHeapAllocation no_gc; ElementsKind kind = array->GetElementsKind(); ElementsAccessor* accessor = array->GetElementsAccessor(); if (actual_start > 0) { // Copy the part before actual_start as is. accessor->CopyElements( elms, 0, kind, new_elms, 0, actual_start); } accessor->CopyElements( elms, actual_start + actual_delete_count, kind, new_elms, actual_start + item_count, ElementsAccessor::kCopyToEndAndInitializeToHole); elms_obj = new_elms; elms_changed = true; } else { DisallowHeapAllocation no_gc; heap->MoveElements(*elms, actual_start + item_count, actual_start + actual_delete_count, (len - actual_delete_count - actual_start)); } } if (IsFastDoubleElementsKind(elements_kind)) { Handle elms = Handle::cast(elms_obj); for (int k = actual_start; k < actual_start + item_count; k++) { Object* arg = args[3 + k - actual_start]; if (arg->IsSmi()) { elms->set(k, Smi::cast(arg)->value()); } else { elms->set(k, HeapNumber::cast(arg)->value()); } } } else { Handle elms = Handle::cast(elms_obj); DisallowHeapAllocation no_gc; WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); for (int k = actual_start; k < actual_start + item_count; k++) { elms->set(k, args[3 + k - actual_start], mode); } } if (elms_changed) { array->set_elements(*elms_obj); } // Set the length. array->set_length(Smi::FromInt(new_length)); return *result_array; } BUILTIN(ArrayConcat) { HandleScope scope(isolate); int n_arguments = args.length(); int result_len = 0; ElementsKind elements_kind = GetInitialFastElementsKind(); bool has_double = false; { DisallowHeapAllocation no_gc; Heap* heap = isolate->heap(); Context* native_context = isolate->context()->native_context(); JSObject* array_proto = JSObject::cast(native_context->array_function()->prototype()); if (!ArrayPrototypeHasNoElements(heap, native_context, array_proto)) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArrayConcat", args); } // Iterate through all the arguments performing checks // and calculating total length. bool is_holey = false; for (int i = 0; i < n_arguments; i++) { Object* arg = args[i]; if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() || JSArray::cast(arg)->GetPrototype() != array_proto) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArrayConcat", args); } int len = Smi::cast(JSArray::cast(arg)->length())->value(); // We shouldn't overflow when adding another len. const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); USE(kHalfOfMaxInt); result_len += len; ASSERT(result_len >= 0); if (result_len > FixedDoubleArray::kMaxLength) { AllowHeapAllocation allow_allocation; return CallJsBuiltin(isolate, "ArrayConcat", args); } ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind(); has_double = has_double || IsFastDoubleElementsKind(arg_kind); is_holey = is_holey || IsFastHoleyElementsKind(arg_kind); if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) { elements_kind = arg_kind; } } if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind); } // If a double array is concatted into a fast elements array, the fast // elements array needs to be initialized to contain proper holes, since // boxing doubles may cause incremental marking. ArrayStorageAllocationMode mode = has_double && IsFastObjectElementsKind(elements_kind) ? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS; Handle result_array = isolate->factory()->NewJSArray(elements_kind, result_len, result_len, mode); if (result_len == 0) return *result_array; int j = 0; Handle storage(result_array->elements(), isolate); ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind); for (int i = 0; i < n_arguments; i++) { // TODO(ishell): It is crucial to keep |array| as a raw pointer to avoid // performance degradation. Revisit this later. JSArray* array = JSArray::cast(args[i]); int len = Smi::cast(array->length())->value(); ElementsKind from_kind = array->GetElementsKind(); if (len > 0) { accessor->CopyElements(array, 0, from_kind, storage, j, len); j += len; } } ASSERT(j == result_len); return *result_array; } // ----------------------------------------------------------------------------- // Strict mode poison pills BUILTIN(StrictModePoisonPill) { HandleScope scope(isolate); return isolate->Throw(*isolate->factory()->NewTypeError( "strict_poison_pill", HandleVector(NULL, 0))); } // ----------------------------------------------------------------------------- // // Searches the hidden prototype chain of the given object for the first // object that is an instance of the given type. If no such object can // be found then Heap::null_value() is returned. static inline Object* FindHidden(Heap* heap, Object* object, FunctionTemplateInfo* type) { if (type->IsTemplateFor(object)) return object; Object* proto = object->GetPrototype(heap->isolate()); if (proto->IsJSObject() && JSObject::cast(proto)->map()->is_hidden_prototype()) { return FindHidden(heap, proto, type); } return heap->null_value(); } // Returns the holder JSObject if the function can legally be called // with this receiver. Returns Heap::null_value() if the call is // illegal. Any arguments that don't fit the expected type is // overwritten with undefined. Note that holder and the arguments are // implicitly rewritten with the first object in the hidden prototype // chain that actually has the expected type. static inline Object* TypeCheck(Heap* heap, int argc, Object** argv, FunctionTemplateInfo* info) { Object* recv = argv[0]; // API calls are only supported with JSObject receivers. if (!recv->IsJSObject()) return heap->null_value(); Object* sig_obj = info->signature(); if (sig_obj->IsUndefined()) return recv; SignatureInfo* sig = SignatureInfo::cast(sig_obj); // If necessary, check the receiver Object* recv_type = sig->receiver(); Object* holder = recv; if (!recv_type->IsUndefined()) { holder = FindHidden(heap, holder, FunctionTemplateInfo::cast(recv_type)); if (holder == heap->null_value()) return heap->null_value(); } Object* args_obj = sig->args(); // If there is no argument signature we're done if (args_obj->IsUndefined()) return holder; FixedArray* args = FixedArray::cast(args_obj); int length = args->length(); if (argc <= length) length = argc - 1; for (int i = 0; i < length; i++) { Object* argtype = args->get(i); if (argtype->IsUndefined()) continue; Object** arg = &argv[-1 - i]; Object* current = *arg; current = FindHidden(heap, current, FunctionTemplateInfo::cast(argtype)); if (current == heap->null_value()) current = heap->undefined_value(); *arg = current; } return holder; } template MUST_USE_RESULT static Object* HandleApiCallHelper( BuiltinArguments args, Isolate* isolate) { ASSERT(is_construct == CalledAsConstructor(isolate)); Heap* heap = isolate->heap(); HandleScope scope(isolate); Handle function = args.called_function(); ASSERT(function->shared()->IsApiFunction()); Handle fun_data( function->shared()->get_api_func_data(), isolate); if (is_construct) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fun_data, isolate->factory()->ConfigureInstance( fun_data, Handle::cast(args.receiver()))); } SharedFunctionInfo* shared = function->shared(); if (shared->strict_mode() == SLOPPY && !shared->native()) { Object* recv = args[0]; ASSERT(!recv->IsNull()); if (recv->IsUndefined()) { args[0] = function->context()->global_object()->global_receiver(); } } Object* raw_holder = TypeCheck(heap, args.length(), &args[0], *fun_data); if (raw_holder->IsNull()) { // This function cannot be called with the given receiver. Abort! Handle obj = isolate->factory()->NewTypeError( "illegal_invocation", HandleVector(&function, 1)); return isolate->Throw(*obj); } Object* raw_call_data = fun_data->call_code(); if (!raw_call_data->IsUndefined()) { CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); Object* callback_obj = call_data->callback(); v8::FunctionCallback callback = v8::ToCData(callback_obj); Object* data_obj = call_data->data(); Object* result; LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver()))); ASSERT(raw_holder->IsJSObject()); FunctionCallbackArguments custom(isolate, data_obj, *function, raw_holder, &args[0] - 1, args.length() - 1, is_construct); v8::Handle value = custom.Call(callback); if (value.IsEmpty()) { result = heap->undefined_value(); } else { result = *reinterpret_cast(*value); result->VerifyApiCallResultType(); } RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!is_construct || result->IsJSObject()) return result; } return *args.receiver(); } BUILTIN(HandleApiCall) { return HandleApiCallHelper(args, isolate); } BUILTIN(HandleApiCallConstruct) { return HandleApiCallHelper(args, isolate); } // Helper function to handle calls to non-function objects created through the // API. The object can be called as either a constructor (using new) or just as // a function (without new). MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor( Isolate* isolate, bool is_construct_call, BuiltinArguments args) { // Non-functions are never called as constructors. Even if this is an object // called as a constructor the delegate call is not a construct call. ASSERT(!CalledAsConstructor(isolate)); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); // Get the object called. JSObject* obj = JSObject::cast(*receiver); // Get the invocation callback from the function descriptor that was // used to create the called object. ASSERT(obj->map()->has_instance_call_handler()); JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); ASSERT(constructor->shared()->IsApiFunction()); Object* handler = constructor->shared()->get_api_func_data()->instance_call_handler(); ASSERT(!handler->IsUndefined()); CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); Object* callback_obj = call_data->callback(); v8::FunctionCallback callback = v8::ToCData(callback_obj); // Get the data for the call and perform the callback. Object* result; { HandleScope scope(isolate); LOG(isolate, ApiObjectAccess("call non-function", obj)); FunctionCallbackArguments custom(isolate, call_data->data(), constructor, obj, &args[0] - 1, args.length() - 1, is_construct_call); v8::Handle value = custom.Call(callback); if (value.IsEmpty()) { result = heap->undefined_value(); } else { result = *reinterpret_cast(*value); result->VerifyApiCallResultType(); } } // Check for exceptions and return result. RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return result; } // Handle calls to non-function objects created through the API. This delegate // function is used when the call is a normal function call. BUILTIN(HandleApiCallAsFunction) { return HandleApiCallAsFunctionOrConstructor(isolate, false, args); } // Handle calls to non-function objects created through the API. This delegate // function is used when the call is a construct call. BUILTIN(HandleApiCallAsConstructor) { return HandleApiCallAsFunctionOrConstructor(isolate, true, args); } static void Generate_LoadIC_Miss(MacroAssembler* masm) { LoadIC::GenerateMiss(masm); } static void Generate_LoadIC_Normal(MacroAssembler* masm) { LoadIC::GenerateNormal(masm); } static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) { LoadStubCompiler::GenerateLoadViaGetterForDeopt(masm); } static void Generate_LoadIC_Slow(MacroAssembler* masm) { LoadIC::GenerateRuntimeGetProperty(masm); } static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) { KeyedLoadIC::GenerateInitialize(masm); } static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) { KeyedLoadIC::GenerateRuntimeGetProperty(masm); } static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) { KeyedLoadIC::GenerateMiss(masm); } static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) { KeyedLoadIC::GenerateGeneric(masm); } static void Generate_KeyedLoadIC_String(MacroAssembler* masm) { KeyedLoadIC::GenerateString(masm); } static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) { KeyedLoadIC::GeneratePreMonomorphic(masm); } static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) { KeyedLoadIC::GenerateIndexedInterceptor(masm); } static void Generate_KeyedLoadIC_SloppyArguments(MacroAssembler* masm) { KeyedLoadIC::GenerateSloppyArguments(masm); } static void Generate_StoreIC_Slow(MacroAssembler* masm) { StoreIC::GenerateSlow(masm); } static void Generate_StoreIC_Miss(MacroAssembler* masm) { StoreIC::GenerateMiss(masm); } static void Generate_StoreIC_Normal(MacroAssembler* masm) { StoreIC::GenerateNormal(masm); } static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) { StoreStubCompiler::GenerateStoreViaSetterForDeopt(masm); } static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) { KeyedStoreIC::GenerateGeneric(masm, SLOPPY); } static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) { KeyedStoreIC::GenerateGeneric(masm, STRICT); } static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) { KeyedStoreIC::GenerateMiss(masm); } static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) { KeyedStoreIC::GenerateSlow(masm); } static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) { KeyedStoreIC::GenerateInitialize(masm); } static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) { KeyedStoreIC::GenerateInitialize(masm); } static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) { KeyedStoreIC::GeneratePreMonomorphic(masm); } static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) { KeyedStoreIC::GeneratePreMonomorphic(masm); } static void Generate_KeyedStoreIC_SloppyArguments(MacroAssembler* masm) { KeyedStoreIC::GenerateSloppyArguments(masm); } static void Generate_CallICStub_DebugBreak(MacroAssembler* masm) { Debug::GenerateCallICStubDebugBreak(masm); } static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) { Debug::GenerateLoadICDebugBreak(masm); } static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) { Debug::GenerateStoreICDebugBreak(masm); } static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) { Debug::GenerateKeyedLoadICDebugBreak(masm); } static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) { Debug::GenerateKeyedStoreICDebugBreak(masm); } static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) { Debug::GenerateCompareNilICDebugBreak(masm); } static void Generate_Return_DebugBreak(MacroAssembler* masm) { Debug::GenerateReturnDebugBreak(masm); } static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) { Debug::GenerateCallFunctionStubDebugBreak(masm); } static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) { Debug::GenerateCallConstructStubDebugBreak(masm); } static void Generate_CallConstructStub_Recording_DebugBreak( MacroAssembler* masm) { Debug::GenerateCallConstructStubRecordDebugBreak(masm); } static void Generate_Slot_DebugBreak(MacroAssembler* masm) { Debug::GenerateSlotDebugBreak(masm); } static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { Debug::GeneratePlainReturnLiveEdit(masm); } static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { Debug::GenerateFrameDropperLiveEdit(masm); } Builtins::Builtins() : initialized_(false) { memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); memset(names_, 0, sizeof(names_[0]) * builtin_count); } Builtins::~Builtins() { } #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), Address const Builtins::c_functions_[cfunction_count] = { BUILTIN_LIST_C(DEF_ENUM_C) }; #undef DEF_ENUM_C #define DEF_JS_NAME(name, ignore) #name, #define DEF_JS_ARGC(ignore, argc) argc, const char* const Builtins::javascript_names_[id_count] = { BUILTINS_LIST_JS(DEF_JS_NAME) }; int const Builtins::javascript_argc_[id_count] = { BUILTINS_LIST_JS(DEF_JS_ARGC) }; #undef DEF_JS_NAME #undef DEF_JS_ARGC struct BuiltinDesc { byte* generator; byte* c_code; const char* s_name; // name is only used for generating log information. int name; Code::Flags flags; BuiltinExtraArguments extra_args; }; #define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} } class BuiltinFunctionTable { public: BuiltinDesc* functions() { CallOnce(&once_, &Builtins::InitBuiltinFunctionTable); return functions_; } OnceType once_; BuiltinDesc functions_[Builtins::builtin_count + 1]; friend class Builtins; }; static BuiltinFunctionTable builtin_function_table = BUILTIN_FUNCTION_TABLE_INIT; // Define array of pointers to generators and C builtin functions. // We do this in a sort of roundabout way so that we can do the initialization // within the lexical scope of Builtins:: and within a context where // Code::Flags names a non-abstract type. void Builtins::InitBuiltinFunctionTable() { BuiltinDesc* functions = builtin_function_table.functions_; functions[builtin_count].generator = NULL; functions[builtin_count].c_code = NULL; functions[builtin_count].s_name = NULL; functions[builtin_count].name = builtin_count; functions[builtin_count].flags = static_cast(0); functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS; #define DEF_FUNCTION_PTR_C(aname, aextra_args) \ functions->generator = FUNCTION_ADDR(Generate_Adaptor); \ functions->c_code = FUNCTION_ADDR(Builtin_##aname); \ functions->s_name = #aname; \ functions->name = c_##aname; \ functions->flags = Code::ComputeFlags(Code::BUILTIN); \ functions->extra_args = aextra_args; \ ++functions; #define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \ functions->generator = FUNCTION_ADDR(Generate_##aname); \ functions->c_code = NULL; \ functions->s_name = #aname; \ functions->name = k##aname; \ functions->flags = Code::ComputeFlags(Code::kind, \ state, \ extra); \ functions->extra_args = NO_EXTRA_ARGUMENTS; \ ++functions; #define DEF_FUNCTION_PTR_H(aname, kind) \ functions->generator = FUNCTION_ADDR(Generate_##aname); \ functions->c_code = NULL; \ functions->s_name = #aname; \ functions->name = k##aname; \ functions->flags = Code::ComputeHandlerFlags(Code::kind); \ functions->extra_args = NO_EXTRA_ARGUMENTS; \ ++functions; BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) BUILTIN_LIST_H(DEF_FUNCTION_PTR_H) BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) #undef DEF_FUNCTION_PTR_C #undef DEF_FUNCTION_PTR_A } void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) { ASSERT(!initialized_); // Create a scope for the handles in the builtins. HandleScope scope(isolate); const BuiltinDesc* functions = builtin_function_table.functions(); // For now we generate builtin adaptor code into a stack-allocated // buffer, before copying it into individual code objects. Be careful // with alignment, some platforms don't like unaligned code. // TODO(jbramley): I had to increase the size of this buffer from 8KB because // we can generate a lot of debug code on ARM64. union { int force_alignment; byte buffer[16*KB]; } u; // Traverse the list of builtins and generate an adaptor in a // separate code object for each one. for (int i = 0; i < builtin_count; i++) { if (create_heap_objects) { MacroAssembler masm(isolate, u.buffer, sizeof u.buffer); // Generate the code/adaptor. typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); Generator g = FUNCTION_CAST(functions[i].generator); // We pass all arguments to the generator, but it may not use all of // them. This works because the first arguments are on top of the // stack. ASSERT(!masm.has_frame()); g(&masm, functions[i].name, functions[i].extra_args); // Move the code into the object heap. CodeDesc desc; masm.GetCode(&desc); Code::Flags flags = functions[i].flags; Handle code = isolate->factory()->NewCode(desc, flags, masm.CodeObject()); // Log the event and add the code to the builtins array. PROFILE(isolate, CodeCreateEvent(Logger::BUILTIN_TAG, *code, functions[i].s_name)); GDBJIT(AddCode(GDBJITInterface::BUILTIN, functions[i].s_name, *code)); builtins_[i] = *code; #ifdef ENABLE_DISASSEMBLER if (FLAG_print_builtin_code) { CodeTracer::Scope trace_scope(isolate->GetCodeTracer()); PrintF(trace_scope.file(), "Builtin: %s\n", functions[i].s_name); code->Disassemble(functions[i].s_name, trace_scope.file()); PrintF(trace_scope.file(), "\n"); } #endif } else { // Deserializing. The values will be filled in during IterateBuiltins. builtins_[i] = NULL; } names_[i] = functions[i].s_name; } // Mark as initialized. initialized_ = true; } void Builtins::TearDown() { initialized_ = false; } void Builtins::IterateBuiltins(ObjectVisitor* v) { v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); } const char* Builtins::Lookup(byte* pc) { // may be called during initialization (disassembler!) if (initialized_) { for (int i = 0; i < builtin_count; i++) { Code* entry = Code::cast(builtins_[i]); if (entry->contains(pc)) { return names_[i]; } } } return NULL; } void Builtins::Generate_InterruptCheck(MacroAssembler* masm) { masm->TailCallRuntime(Runtime::kHiddenInterrupt, 0, 1); } void Builtins::Generate_StackCheck(MacroAssembler* masm) { masm->TailCallRuntime(Runtime::kHiddenStackGuard, 0, 1); } #define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \ Handle Builtins::name() { \ Code** code_address = \ reinterpret_cast(builtin_address(k##name)); \ return Handle(code_address); \ } #define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \ Handle Builtins::name() { \ Code** code_address = \ reinterpret_cast(builtin_address(k##name)); \ return Handle(code_address); \ } #define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \ Handle Builtins::name() { \ Code** code_address = \ reinterpret_cast(builtin_address(k##name)); \ return Handle(code_address); \ } BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C) BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A) BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H) BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A) #undef DEFINE_BUILTIN_ACCESSOR_C #undef DEFINE_BUILTIN_ACCESSOR_A } } // namespace v8::internal