// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stub-assembler.h" #include "src/code-factory.h" #include "src/frames-inl.h" #include "src/frames.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { using compiler::Node; CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone, const CallInterfaceDescriptor& descriptor, Code::Flags flags, const char* name, size_t result_size) : compiler::CodeAssembler(isolate, zone, descriptor, flags, name, result_size) {} CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone, int parameter_count, Code::Flags flags, const char* name) : compiler::CodeAssembler(isolate, zone, parameter_count, flags, name) {} void CodeStubAssembler::Assert(Node* condition) { #if defined(DEBUG) Label ok(this); Comment("[ Assert"); GotoIf(condition, &ok); DebugBreak(); Goto(&ok); Bind(&ok); Comment("] Assert"); #endif } Node* CodeStubAssembler::BooleanMapConstant() { return HeapConstant(isolate()->factory()->boolean_map()); } Node* CodeStubAssembler::EmptyStringConstant() { return LoadRoot(Heap::kempty_stringRootIndex); } Node* CodeStubAssembler::HeapNumberMapConstant() { return HeapConstant(isolate()->factory()->heap_number_map()); } Node* CodeStubAssembler::NoContextConstant() { return SmiConstant(Smi::FromInt(0)); } Node* CodeStubAssembler::MinusZeroConstant() { return LoadRoot(Heap::kMinusZeroValueRootIndex); } Node* CodeStubAssembler::NanConstant() { return LoadRoot(Heap::kNanValueRootIndex); } Node* CodeStubAssembler::NullConstant() { return LoadRoot(Heap::kNullValueRootIndex); } Node* CodeStubAssembler::UndefinedConstant() { return LoadRoot(Heap::kUndefinedValueRootIndex); } Node* CodeStubAssembler::TheHoleConstant() { return LoadRoot(Heap::kTheHoleValueRootIndex); } Node* CodeStubAssembler::HashSeed() { return SmiToWord32(LoadRoot(Heap::kHashSeedRootIndex)); } Node* CodeStubAssembler::StaleRegisterConstant() { return LoadRoot(Heap::kStaleRegisterRootIndex); } Node* CodeStubAssembler::Float64Round(Node* x) { Node* one = Float64Constant(1.0); Node* one_half = Float64Constant(0.5); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this); // Round up {x} towards Infinity. var_x.Bind(Float64Ceil(x)); GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Ceil(Node* x) { if (IsFloat64RoundUpSupported()) { return Float64RoundUp(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64LessThan(var_x.value(), x), &return_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Floor(Node* x) { if (IsFloat64RoundDownSupported()) { return Float64RoundDown(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Trunc(Node* x) { if (IsFloat64RoundTruncateSupported()) { return Float64RoundTruncate(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than 0. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { if (IsFloat64RoundDownSupported()) { var_x.Bind(Float64RoundDown(x)); } else { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); } Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { if (IsFloat64RoundUpSupported()) { var_x.Bind(Float64RoundUp(x)); Goto(&return_x); } else { // Just return {x} unless its in the range ]-2^52,0[. GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::SmiFromWord32(Node* value) { value = ChangeInt32ToIntPtr(value); return WordShl(value, SmiShiftBitsConstant()); } Node* CodeStubAssembler::SmiTag(Node* value) { int32_t constant_value; if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) { return SmiConstant(Smi::FromInt(constant_value)); } return WordShl(value, SmiShiftBitsConstant()); } Node* CodeStubAssembler::SmiUntag(Node* value) { return WordSar(value, SmiShiftBitsConstant()); } Node* CodeStubAssembler::SmiToWord32(Node* value) { Node* result = WordSar(value, SmiShiftBitsConstant()); if (Is64()) { result = TruncateInt64ToInt32(result); } return result; } Node* CodeStubAssembler::SmiToFloat64(Node* value) { return ChangeInt32ToFloat64(SmiToWord32(value)); } Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return IntPtrAdd(a, b); } Node* CodeStubAssembler::SmiAddWithOverflow(Node* a, Node* b) { return IntPtrAddWithOverflow(a, b); } Node* CodeStubAssembler::SmiSub(Node* a, Node* b) { return IntPtrSub(a, b); } Node* CodeStubAssembler::SmiSubWithOverflow(Node* a, Node* b) { return IntPtrSubWithOverflow(a, b); } Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(a, b); } Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) { return UintPtrGreaterThanOrEqual(a, b); } Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) { return IntPtrLessThan(a, b); } Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) { return IntPtrLessThanOrEqual(a, b); } Node* CodeStubAssembler::SmiMin(Node* a, Node* b) { // TODO(bmeurer): Consider using Select once available. Variable min(this, MachineRepresentation::kTagged); Label if_a(this), if_b(this), join(this); BranchIfSmiLessThan(a, b, &if_a, &if_b); Bind(&if_a); min.Bind(a); Goto(&join); Bind(&if_b); min.Bind(b); Goto(&join); Bind(&join); return min.value(); } Node* CodeStubAssembler::SmiMod(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Label return_result(this, &var_result), return_minuszero(this, Label::kDeferred), return_nan(this, Label::kDeferred); // Untag {a} and {b}. a = SmiToWord32(a); b = SmiToWord32(b); // Return NaN if {b} is zero. GotoIf(Word32Equal(b, Int32Constant(0)), &return_nan); // Check if {a} is non-negative. Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred); Branch(Int32LessThanOrEqual(Int32Constant(0), a), &if_aisnotnegative, &if_aisnegative); Bind(&if_aisnotnegative); { // Fast case, don't need to check any other edge cases. Node* r = Int32Mod(a, b); var_result.Bind(SmiFromWord32(r)); Goto(&return_result); } Bind(&if_aisnegative); { if (SmiValuesAre32Bits()) { // Check if {a} is kMinInt and {b} is -1 (only relevant if the // kMinInt is actually representable as a Smi). Label join(this); GotoUnless(Word32Equal(a, Int32Constant(kMinInt)), &join); GotoIf(Word32Equal(b, Int32Constant(-1)), &return_minuszero); Goto(&join); Bind(&join); } // Perform the integer modulus operation. Node* r = Int32Mod(a, b); // Check if {r} is zero, and if so return -0, because we have to // take the sign of the left hand side {a}, which is negative. GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero); // The remainder {r} can be outside the valid Smi range on 32bit // architectures, so we cannot just say SmiFromWord32(r) here. var_result.Bind(ChangeInt32ToTagged(r)); Goto(&return_result); } Bind(&return_minuszero); var_result.Bind(MinusZeroConstant()); Goto(&return_result); Bind(&return_nan); var_result.Bind(NanConstant()); Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::SmiMul(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Variable var_lhs_float64(this, MachineRepresentation::kFloat64), var_rhs_float64(this, MachineRepresentation::kFloat64); Label return_result(this, &var_result); // Both {a} and {b} are Smis. Convert them to integers and multiply. Node* lhs32 = SmiToWord32(a); Node* rhs32 = SmiToWord32(b); Node* pair = Int32MulWithOverflow(lhs32, rhs32); Node* overflow = Projection(1, pair); // Check if the multiplication overflowed. Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); { // If the answer is zero, we may need to return -0.0, depending on the // input. Label answer_zero(this), answer_not_zero(this); Node* answer = Projection(0, pair); Node* zero = Int32Constant(0); Branch(WordEqual(answer, zero), &answer_zero, &answer_not_zero); Bind(&answer_not_zero); { var_result.Bind(ChangeInt32ToTagged(answer)); Goto(&return_result); } Bind(&answer_zero); { Node* or_result = Word32Or(lhs32, rhs32); Label if_should_be_negative_zero(this), if_should_be_zero(this); Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero, &if_should_be_zero); Bind(&if_should_be_negative_zero); { var_result.Bind(MinusZeroConstant()); Goto(&return_result); } Bind(&if_should_be_zero); { var_result.Bind(zero); Goto(&return_result); } } } Bind(&if_overflow); { var_lhs_float64.Bind(SmiToFloat64(a)); var_rhs_float64.Bind(SmiToFloat64(b)); Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); Node* result = ChangeFloat64ToTagged(value); var_result.Bind(result); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::WordIsSmi(Node* a) { return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) { return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)), IntPtrConstant(0)); } void CodeStubAssembler::BranchIfSameValueZero(Node* a, Node* b, Node* context, Label* if_true, Label* if_false) { Node* number_map = HeapNumberMapConstant(); Label a_isnumber(this), a_isnotnumber(this), b_isnumber(this), a_isnan(this), float_not_equal(this); // If register A and register B are identical, goto `if_true` GotoIf(WordEqual(a, b), if_true); // If either register A or B are Smis, goto `if_false` GotoIf(Word32Or(WordIsSmi(a), WordIsSmi(b)), if_false); // GotoIf(WordIsSmi(b), if_false); Node* a_map = LoadMap(a); Node* b_map = LoadMap(b); Branch(WordEqual(a_map, number_map), &a_isnumber, &a_isnotnumber); // If both register A and B are HeapNumbers, return true if they are equal, // or if both are NaN Bind(&a_isnumber); { Branch(WordEqual(b_map, number_map), &b_isnumber, if_false); Bind(&b_isnumber); Node* a_value = LoadHeapNumberValue(a); Node* b_value = LoadHeapNumberValue(b); BranchIfFloat64Equal(a_value, b_value, if_true, &float_not_equal); Bind(&float_not_equal); BranchIfFloat64IsNaN(a_value, &a_isnan, if_false); Bind(&a_isnan); BranchIfFloat64IsNaN(a_value, if_true, if_false); } Bind(&a_isnotnumber); { Label a_isstring(this), a_isnotstring(this); Node* a_instance_type = LoadMapInstanceType(a_map); Branch(Int32LessThan(a_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)), &a_isstring, &a_isnotstring); Bind(&a_isstring); { Label b_isstring(this), b_isnotstring(this); Node* b_instance_type = LoadInstanceType(b_map); Branch( Int32LessThan(b_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)), &b_isstring, if_false); Bind(&b_isstring); { Callable callable = CodeFactory::StringEqual(isolate()); Node* result = CallStub(callable, context, a, b); Branch(WordEqual(BooleanConstant(true), result), if_true, if_false); } } Bind(&a_isnotstring); { // Check if {lhs} is a Simd128Value. Label a_issimd128value(this); Branch(Word32Equal(a_instance_type, Int32Constant(SIMD128_VALUE_TYPE)), &a_issimd128value, if_false); Bind(&a_issimd128value); { // Load the map of {rhs}. BranchIfSimd128Equal(a, a_map, b, b_map, if_true, if_false); } } } } void CodeStubAssembler::BranchIfSimd128Equal(Node* lhs, Node* lhs_map, Node* rhs, Node* rhs_map, Label* if_equal, Label* if_notequal) { Label if_mapsame(this), if_mapnotsame(this); Branch(WordEqual(lhs_map, rhs_map), &if_mapsame, &if_mapnotsame); Bind(&if_mapsame); { // Both {lhs} and {rhs} are Simd128Values with the same map, need special // handling for Float32x4 because of NaN comparisons. Label if_float32x4(this), if_notfloat32x4(this); Node* float32x4_map = HeapConstant(factory()->float32x4_map()); Branch(WordEqual(lhs_map, float32x4_map), &if_float32x4, &if_notfloat32x4); Bind(&if_float32x4); { // Both {lhs} and {rhs} are Float32x4, compare the lanes individually // using a floating point comparison. for (int offset = Float32x4::kValueOffset - kHeapObjectTag; offset < Float32x4::kSize - kHeapObjectTag; offset += sizeof(float)) { // Load the floating point values for {lhs} and {rhs}. Node* lhs_value = Load(MachineType::Float32(), lhs, IntPtrConstant(offset)); Node* rhs_value = Load(MachineType::Float32(), rhs, IntPtrConstant(offset)); // Perform a floating point comparison. Label if_valueequal(this), if_valuenotequal(this); Branch(Float32Equal(lhs_value, rhs_value), &if_valueequal, &if_valuenotequal); Bind(&if_valuenotequal); Goto(if_notequal); Bind(&if_valueequal); } // All 4 lanes match, {lhs} and {rhs} considered equal. Goto(if_equal); } Bind(&if_notfloat32x4); { // For other Simd128Values we just perform a bitwise comparison. for (int offset = Simd128Value::kValueOffset - kHeapObjectTag; offset < Simd128Value::kSize - kHeapObjectTag; offset += kPointerSize) { // Load the word values for {lhs} and {rhs}. Node* lhs_value = Load(MachineType::Pointer(), lhs, IntPtrConstant(offset)); Node* rhs_value = Load(MachineType::Pointer(), rhs, IntPtrConstant(offset)); // Perform a bitwise word-comparison. Label if_valueequal(this), if_valuenotequal(this); Branch(WordEqual(lhs_value, rhs_value), &if_valueequal, &if_valuenotequal); Bind(&if_valuenotequal); Goto(if_notequal); Bind(&if_valueequal); } // Bitwise comparison succeeded, {lhs} and {rhs} considered equal. Goto(if_equal); } } Bind(&if_mapnotsame); Goto(if_notequal); } void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context, Label* if_true, Label* if_false) { Node* int32_zero = Int32Constant(0); Node* int32_one = Int32Constant(1); Node* empty_elements = LoadRoot(Heap::kEmptyFixedArrayRootIndex); Variable last_map(this, MachineRepresentation::kTagged); Label check_prototype(this); // Bailout if Smi GotoIf(WordIsSmi(object), if_false); Node* map = LoadMap(object); last_map.Bind(map); // Bailout if instance type is not JS_ARRAY_TYPE GotoIf(WordNotEqual(LoadMapInstanceType(map), Int32Constant(JS_ARRAY_TYPE)), if_false); Node* bit_field2 = LoadMapBitField2(map); Node* elements_kind = BitFieldDecode(bit_field2); // Bailout if slow receiver elements GotoIf( Int32GreaterThan(elements_kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)), if_false); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == (FAST_SMI_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == (FAST_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == (FAST_DOUBLE_ELEMENTS | 1)); // Check prototype chain if receiver does not have packed elements Node* holey_elements = Word32And(elements_kind, int32_one); Branch(Word32Equal(holey_elements, int32_zero), if_true, &check_prototype); Bind(&check_prototype); { Label loop_body(this, &last_map); Goto(&loop_body); Bind(&loop_body); Node* current_map = last_map.value(); Node* proto = LoadObjectField(current_map, Map::kPrototypeOffset); // End loop GotoIf(WordEqual(proto, NullConstant()), if_true); // ASSERT: proto->IsHeapObject() Node* proto_map = LoadMap(proto); // Bailout if a Proxy, API Object, or JSValue wrapper found in prototype // Because of this bailout, it's not necessary to check for interceptors or // access checks on the prototype chain. GotoIf(Int32LessThanOrEqual(LoadMapInstanceType(proto_map), Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)), if_false); // Bailout if prototype contains non-empty elements GotoUnless(WordEqual(LoadElements(proto), empty_elements), if_false); last_map.Bind(proto_map); Goto(&loop_body); } } Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); // If there's not enough space, call the runtime. Variable result(this, MachineRepresentation::kTagged); Label runtime_call(this, Label::kDeferred), no_runtime_call(this); Label merge_runtime(this, &result); Node* new_top = IntPtrAdd(top, size_in_bytes); Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call, &no_runtime_call); Bind(&runtime_call); // AllocateInTargetSpace does not use the context. Node* context = SmiConstant(Smi::FromInt(0)); Node* runtime_result; if (flags & kPretenured) { Node* runtime_flags = SmiConstant( Smi::FromInt(AllocateDoubleAlignFlag::encode(false) | AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE))); runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, context, SmiTag(size_in_bytes), runtime_flags); } else { runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, context, SmiTag(size_in_bytes)); } result.Bind(runtime_result); Goto(&merge_runtime); // When there is enough space, return `top' and bump it up. Bind(&no_runtime_call); Node* no_runtime_result = top; StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, new_top); no_runtime_result = BitcastWordToTagged( IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag))); result.Bind(no_runtime_result); Goto(&merge_runtime); Bind(&merge_runtime); return result.value(); } Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); Variable adjusted_size(this, MachineType::PointerRepresentation()); adjusted_size.Bind(size_in_bytes); if (flags & kDoubleAlignment) { // TODO(epertoso): Simd128 alignment. Label aligned(this), not_aligned(this), merge(this, &adjusted_size); Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), ¬_aligned, &aligned); Bind(¬_aligned); Node* not_aligned_size = IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize)); adjusted_size.Bind(not_aligned_size); Goto(&merge); Bind(&aligned); Goto(&merge); Bind(&merge); } Variable address(this, MachineRepresentation::kTagged); address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit)); Label needs_filler(this), doesnt_need_filler(this), merge_address(this, &address); Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler, &needs_filler); Bind(&needs_filler); // Store a filler and increase the address by kPointerSize. // TODO(epertoso): this code assumes that we only align to kDoubleSize. Change // it when Simd128 alignment is supported. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top, LoadRoot(Heap::kOnePointerFillerMapRootIndex)); address.Bind(BitcastWordToTagged( IntPtrAdd(address.value(), IntPtrConstant(kPointerSize)))); Goto(&merge_address); Bind(&doesnt_need_filler); Goto(&merge_address); Bind(&merge_address); // Update the top. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, IntPtrAdd(top, adjusted_size.value())); return address.value(); } Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) { bool const new_space = !(flags & kPretenured); Node* top_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_top_address(isolate()) : ExternalReference::old_space_allocation_top_address(isolate())); Node* limit_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_limit_address(isolate()) : ExternalReference::old_space_allocation_limit_address(isolate())); #ifdef V8_HOST_ARCH_32_BIT if (flags & kDoubleAlignment) { return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address); } #endif return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address); } Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) { return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); } Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) { return BitcastWordToTagged(IntPtrAdd(previous, offset)); } Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) { return InnerAllocate(previous, IntPtrConstant(offset)); } void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false) { Label if_valueissmi(this), if_valueisnotsmi(this), if_valueisstring(this), if_valueisheapnumber(this), if_valueisother(this); // Fast check for Boolean {value}s (common case). GotoIf(WordEqual(value, BooleanConstant(true)), if_true); GotoIf(WordEqual(value, BooleanConstant(false)), if_false); // Check if {value} is a Smi or a HeapObject. Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // The {value} is a Smi, only need to check against zero. BranchIfSmiEqual(value, SmiConstant(0), if_false, if_true); } Bind(&if_valueisnotsmi); { // The {value} is a HeapObject, load its map. Node* value_map = LoadMap(value); // Load the {value}s instance type. Node* value_instance_type = LoadMapInstanceType(value_map); // Dispatch based on the instance type; we distinguish all String instance // types, the HeapNumber type and everything else. GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &if_valueisheapnumber); Branch( Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)), &if_valueisstring, &if_valueisother); Bind(&if_valueisstring); { // Load the string length field of the {value}. Node* value_length = LoadObjectField(value, String::kLengthOffset); // Check if the {value} is the empty string. BranchIfSmiEqual(value_length, SmiConstant(0), if_false, if_true); } Bind(&if_valueisheapnumber); { // Load the floating point value of {value}. Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset, MachineType::Float64()); // Check if the floating point {value} is neither 0.0, -0.0 nor NaN. Node* zero = Float64Constant(0.0); GotoIf(Float64LessThan(zero, value_value), if_true); BranchIfFloat64LessThan(value_value, zero, if_true, if_false); } Bind(&if_valueisother); { // Load the bit field from the {value}s map. The {value} is now either // Null or Undefined, which have the undetectable bit set (so we always // return false for those), or a Symbol or Simd128Value, whose maps never // have the undetectable bit set (so we always return true for those), or // a JSReceiver, which may or may not have the undetectable bit set. Node* value_map_bitfield = LoadMapBitField(value_map); Node* value_map_undetectable = Word32And( value_map_bitfield, Int32Constant(1 << Map::kIsUndetectable)); // Check if the {value} is undetectable. BranchIfWord32Equal(value_map_undetectable, Int32Constant(0), if_true, if_false); } } } compiler::Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) { Node* frame_pointer = LoadFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } compiler::Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType rep) { Node* frame_pointer = LoadParentFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset, MachineType rep) { return Load(rep, buffer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadObjectField(Node* object, int offset, MachineType rep) { return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag)); } Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset, MachineType rep) { return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))); } Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) { return LoadObjectField(object, HeapNumber::kValueOffset, MachineType::Float64()); } Node* CodeStubAssembler::LoadMap(Node* object) { return LoadObjectField(object, HeapObject::kMapOffset); } Node* CodeStubAssembler::LoadInstanceType(Node* object) { return LoadMapInstanceType(LoadMap(object)); } void CodeStubAssembler::AssertInstanceType(Node* object, InstanceType instance_type) { Assert(Word32Equal(LoadInstanceType(object), Int32Constant(instance_type))); } Node* CodeStubAssembler::LoadProperties(Node* object) { return LoadObjectField(object, JSObject::kPropertiesOffset); } Node* CodeStubAssembler::LoadElements(Node* object) { return LoadObjectField(object, JSObject::kElementsOffset); } Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) { return LoadObjectField(array, FixedArrayBase::kLengthOffset); } Node* CodeStubAssembler::LoadMapBitField(Node* map) { return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField2(Node* map) { return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField3(Node* map) { return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadMapInstanceType(Node* map) { return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapDescriptors(Node* map) { return LoadObjectField(map, Map::kDescriptorsOffset); } Node* CodeStubAssembler::LoadMapPrototype(Node* map) { return LoadObjectField(map, Map::kPrototypeOffset); } Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) { return LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) { // See Map::GetInObjectProperties() for details. STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); Assert(Int32GreaterThanOrEqual(LoadMapInstanceType(map), Int32Constant(FIRST_JS_OBJECT_TYPE))); return LoadObjectField( map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapConstructor(Node* map) { Variable result(this, MachineRepresentation::kTagged); result.Bind(LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); Label done(this), loop(this, &result); Goto(&loop); Bind(&loop); { GotoIf(WordIsSmi(result.value()), &done); Node* is_map_type = Word32Equal(LoadInstanceType(result.value()), Int32Constant(MAP_TYPE)); GotoUnless(is_map_type, &done); result.Bind( LoadObjectField(result.value(), Map::kConstructorOrBackPointerOffset)); Goto(&loop); } Bind(&done); return result.value(); } Node* CodeStubAssembler::LoadNameHashField(Node* name) { return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) { Node* hash_field = LoadNameHashField(name); if (if_hash_not_computed != nullptr) { GotoIf(WordEqual( Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)), Int32Constant(0)), if_hash_not_computed); } return Word32Shr(hash_field, Int32Constant(Name::kHashShift)); } Node* CodeStubAssembler::LoadStringLength(Node* object) { return LoadObjectField(object, String::kLengthOffset); } Node* CodeStubAssembler::LoadJSValueValue(Node* object) { return LoadObjectField(object, JSValue::kValueOffset); } Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) { Node* value = LoadObjectField(weak_cell, WeakCell::kValueOffset); if (if_cleared != nullptr) { GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared); } return value; } Node* CodeStubAssembler::AllocateUninitializedFixedArray(Node* length) { Node* header_size = IntPtrConstant(FixedArray::kHeaderSize); Node* data_size = WordShl(length, IntPtrConstant(kPointerSizeLog2)); Node* total_size = IntPtrAdd(data_size, header_size); Node* result = Allocate(total_size, kNone); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kFixedArrayMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset, SmiTag(length)); return result; } Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); return Load(MachineType::AnyTagged(), object, offset); } Node* CodeStubAssembler::LoadFixedDoubleArrayElement( Node* object, Node* index_node, MachineType machine_type, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size); return Load(machine_type, object, offset); } Node* CodeStubAssembler::LoadNativeContext(Node* context) { return LoadFixedArrayElement(context, Int32Constant(Context::NATIVE_CONTEXT_INDEX)); } Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind, Node* native_context) { return LoadFixedArrayElement(native_context, Int32Constant(Context::ArrayMapIndex(kind))); } Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) { return StoreNoWriteBarrier( MachineRepresentation::kFloat64, object, IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectField( Node* object, int offset, Node* value) { return Store(MachineRepresentation::kTagged, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, int offset, Node* value, MachineRepresentation rep) { return StoreNoWriteBarrier(rep, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) { return StoreNoWriteBarrier( MachineRepresentation::kTagged, object, IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset, Heap::RootListIndex root_index) { if (Heap::RootIsImmortalImmovable(root_index)) { return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index)); } else { return StoreObjectField(object, offset, LoadRoot(root_index)); } } Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode, ParameterMode parameter_mode) { DCHECK(barrier_mode == SKIP_WRITE_BARRIER || barrier_mode == UPDATE_WRITE_BARRIER); Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); MachineRepresentation rep = MachineRepresentation::kTagged; if (barrier_mode == SKIP_WRITE_BARRIER) { return StoreNoWriteBarrier(rep, object, offset, value); } else { return Store(rep, object, offset, value); } } Node* CodeStubAssembler::StoreFixedDoubleArrayElement( Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) { Node* offset = ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); MachineRepresentation rep = MachineRepresentation::kFloat64; return StoreNoWriteBarrier(rep, object, offset, value); } Node* CodeStubAssembler::AllocateHeapNumber() { Node* result = Allocate(HeapNumber::kSize, kNone); StoreMapNoWriteBarrier(result, HeapNumberMapConstant()); return result; } Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value) { Node* result = AllocateHeapNumber(); StoreHeapNumberValue(result, value); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(int length) { Node* result = Allocate(SeqOneByteString::SizeFor(length)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length) { Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqOneByteString size and check if it fits into new space. Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); Node* size = WordAnd( IntPtrAdd( IntPtrAdd(length, IntPtrConstant(SeqOneByteString::kHeaderSize)), IntPtrConstant(kObjectAlignmentMask)), IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(Page::kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqOneByteString in new space. Node* result = Allocate(size); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, SmiFromWord(length)); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context, SmiFromWord(length)); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateSeqTwoByteString(int length) { Node* result = Allocate(SeqTwoByteString::SizeFor(length)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); return result; } Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length) { Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqTwoByteString size and check if it fits into new space. Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); Node* size = WordAnd( IntPtrAdd(IntPtrAdd(WordShl(length, 1), IntPtrConstant(SeqTwoByteString::kHeaderSize)), IntPtrConstant(kObjectAlignmentMask)), IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(Page::kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqTwoByteString in new space. Node* result = Allocate(size); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, SmiFromWord(length)); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context, SmiFromWord(length)); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity_node, Node* length_node, compiler::Node* allocation_site, ParameterMode mode) { bool is_double = IsFastDoubleElementsKind(kind); int base_size = JSArray::kSize + FixedArray::kHeaderSize; int elements_offset = JSArray::kSize; Comment("begin allocation of JSArray"); if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; elements_offset += AllocationMemento::kSize; } int32_t capacity; bool constant_capacity = ToInt32Constant(capacity_node, capacity); Node* total_size = ElementOffsetFromIndex(capacity_node, kind, mode, base_size); // Allocate both array and elements object, and initialize the JSArray. Heap* heap = isolate()->heap(); Node* array = Allocate(total_size); StoreMapNoWriteBarrier(array, array_map); Node* empty_properties = LoadRoot(Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldNoWriteBarrier(array, JSArray::kPropertiesOffset, empty_properties); StoreObjectFieldNoWriteBarrier( array, JSArray::kLengthOffset, mode == SMI_PARAMETERS ? length_node : SmiTag(length_node)); if (allocation_site != nullptr) { InitializeAllocationMemento(array, JSArray::kSize, allocation_site); } // Setup elements object. Node* elements = InnerAllocate(array, elements_offset); StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements); Handle elements_map(is_double ? heap->fixed_double_array_map() : heap->fixed_array_map()); StoreMapNoWriteBarrier(elements, HeapConstant(elements_map)); StoreObjectFieldNoWriteBarrier( elements, FixedArray::kLengthOffset, mode == SMI_PARAMETERS ? capacity_node : SmiTag(capacity_node)); int const first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; Node* hole = HeapConstant(Handle(heap->the_hole_value())); Node* double_hole = Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32); DCHECK_EQ(kHoleNanLower32, kHoleNanUpper32); if (constant_capacity && capacity <= kElementLoopUnrollThreshold) { for (int i = 0; i < capacity; ++i) { if (is_double) { Node* offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode, first_element_offset); // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, elements, offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset, double_hole); offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode, first_element_offset + kPointerSize); StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset, double_hole); } } else { StoreFixedArrayElement(elements, Int32Constant(i), hole, SKIP_WRITE_BARRIER); } } } else { Variable current(this, MachineRepresentation::kTagged); Label test(this); Label decrement(this, ¤t); Label done(this); Node* limit = IntPtrAdd(elements, IntPtrConstant(first_element_offset)); current.Bind( IntPtrAdd(limit, ElementOffsetFromIndex(capacity_node, kind, mode, 0))); Branch(WordEqual(current.value(), limit), &done, &decrement); Bind(&decrement); current.Bind(IntPtrSub( current.value(), Int32Constant(IsFastDoubleElementsKind(kind) ? kDoubleSize : kPointerSize))); if (is_double) { // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, current.value(), double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, current.value(), double_hole); StoreNoWriteBarrier( MachineRepresentation::kWord32, IntPtrAdd(current.value(), Int32Constant(kPointerSize)), double_hole); } } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, current.value(), hole); } Node* compare = WordNotEqual(current.value(), limit); Branch(compare, &decrement, &done); Bind(&done); } return array; } void CodeStubAssembler::InitializeAllocationMemento( compiler::Node* base_allocation, int base_allocation_size, compiler::Node* allocation_site) { StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kMapOffset + base_allocation_size, HeapConstant(Handle(isolate()->heap()->allocation_memento_map()))); StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kAllocationSiteOffset + base_allocation_size, allocation_site); if (FLAG_allocation_site_pretenuring) { Node* count = LoadObjectField(allocation_site, AllocationSite::kPretenureCreateCountOffset); Node* incremented_count = IntPtrAdd(count, SmiConstant(Smi::FromInt(1))); StoreObjectFieldNoWriteBarrier(allocation_site, AllocationSite::kPretenureCreateCountOffset, incremented_count); } } Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kFloat64); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToFloat64(value)); Goto(&done_loop); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this), if_valueisnotheapnumber(this, Label::kDeferred); Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()), &if_valueisheapnumber, &if_valueisnotheapnumber); Bind(&if_valueisheapnumber); { // Load the floating point value. var_result.Bind(LoadHeapNumberValue(value)); Goto(&done_loop); } Bind(&if_valueisnotheapnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kWord32); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this), if_valueisnotheapnumber(this, Label::kDeferred); Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()), &if_valueisheapnumber, &if_valueisnotheapnumber); Bind(&if_valueisheapnumber); { // Truncate the floating point value. var_result.Bind(TruncateHeapNumberValueToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotheapnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) { Node* value = LoadHeapNumberValue(object); return TruncateFloat64ToWord32(value); } Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) { Node* value32 = RoundFloat64ToInt32(value); Node* value64 = ChangeInt32ToFloat64(value32); Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this); Label if_valueisequal(this), if_valueisnotequal(this); Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal); Bind(&if_valueisequal); { GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32); BranchIfInt32LessThan(Float64ExtractHighWord32(value), Int32Constant(0), &if_valueisheapnumber, &if_valueisint32); } Bind(&if_valueisnotequal); Goto(&if_valueisheapnumber); Variable var_result(this, MachineRepresentation::kTagged); Bind(&if_valueisint32); { if (Is64()) { Node* result = SmiTag(ChangeInt32ToInt64(value32)); var_result.Bind(result); Goto(&if_join); } else { Node* pair = Int32AddWithOverflow(value32, value32); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); Goto(&if_valueisheapnumber); Bind(&if_notoverflow); { Node* result = Projection(0, pair); var_result.Bind(result); Goto(&if_join); } } } Bind(&if_valueisheapnumber); { Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) { if (Is64()) { return SmiTag(ChangeInt32ToInt64(value)); } Variable var_result(this, MachineRepresentation::kTagged); Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this), if_join(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); { Node* value64 = ChangeInt32ToFloat64(value); Node* result = AllocateHeapNumberWithValue(value64); var_result.Bind(result); } Goto(&if_join); Bind(&if_notoverflow); { Node* result = Projection(0, pair); var_result.Bind(result); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) { Label if_overflow(this, Label::kDeferred), if_not_overflow(this), if_join(this); Variable var_result(this, MachineRepresentation::kTagged); // If {value} > 2^31 - 1, we need to store it in a HeapNumber. Branch(Int32LessThan(value, Int32Constant(0)), &if_overflow, &if_not_overflow); Bind(&if_not_overflow); { if (Is64()) { var_result.Bind(SmiTag(ChangeUint32ToUint64(value))); } else { // If tagging {value} results in an overflow, we need to use a HeapNumber // to represent it. Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); GotoIf(overflow, &if_overflow); Node* result = Projection(0, pair); var_result.Bind(result); } } Goto(&if_join); Bind(&if_overflow); { Node* float64_value = ChangeUint32ToFloat64(value); var_result.Bind(AllocateHeapNumberWithValue(float64_value)); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ToThisString(Node* context, Node* value, char const* method_name) { Variable var_value(this, MachineRepresentation::kTagged); var_value.Bind(value); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this), if_valueisstring(this); Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueisnotsmi); { // Load the instance type of the {value}. Node* value_instance_type = LoadInstanceType(value); // Check if the {value} is already String. Label if_valueisnotstring(this, Label::kDeferred); Branch( Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)), &if_valueisstring, &if_valueisnotstring); Bind(&if_valueisnotstring); { // Check if the {value} is null. Label if_valueisnullorundefined(this, Label::kDeferred), if_valueisnotnullorundefined(this, Label::kDeferred), if_valueisnotnull(this, Label::kDeferred); Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined, &if_valueisnotnull); Bind(&if_valueisnotnull); { // Check if the {value} is undefined. Branch(WordEqual(value, UndefinedConstant()), &if_valueisnullorundefined, &if_valueisnotnullorundefined); Bind(&if_valueisnotnullorundefined); { // Convert the {value} to a String. Callable callable = CodeFactory::ToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } } Bind(&if_valueisnullorundefined); { // The {value} is either null or undefined. CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context, HeapConstant(factory()->NewStringFromAsciiChecked( method_name, TENURED))); Goto(&if_valueisstring); // Never reached. } } } Bind(&if_valueissmi); { // The {value} is a Smi, convert it to a String. Callable callable = CodeFactory::NumberToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } Bind(&if_valueisstring); return var_value.value(); } Node* CodeStubAssembler::ToThisValue(Node* context, Node* value, PrimitiveType primitive_type, char const* method_name) { // We might need to loop once due to JSValue unboxing. Variable var_value(this, MachineRepresentation::kTagged); Label loop(this, &var_value), done_loop(this), done_throw(this, Label::kDeferred); var_value.Bind(value); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. GotoIf(WordIsSmi(value), (primitive_type == PrimitiveType::kNumber) ? &done_loop : &done_throw); // Load the mape of the {value}. Node* value_map = LoadMap(value); // Load the instance type of the {value}. Node* value_instance_type = LoadMapInstanceType(value_map); // Check if {value} is a JSValue. Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this); Branch(Word32Equal(value_instance_type, Int32Constant(JS_VALUE_TYPE)), &if_valueisvalue, &if_valueisnotvalue); Bind(&if_valueisvalue); { // Load the actual value from the {value}. var_value.Bind(LoadObjectField(value, JSValue::kValueOffset)); Goto(&loop); } Bind(&if_valueisnotvalue); { switch (primitive_type) { case PrimitiveType::kBoolean: GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop); break; case PrimitiveType::kNumber: GotoIf( Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &done_loop); break; case PrimitiveType::kString: GotoIf(Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)), &done_loop); break; case PrimitiveType::kSymbol: GotoIf(Word32Equal(value_instance_type, Int32Constant(SYMBOL_TYPE)), &done_loop); break; } Goto(&done_throw); } } Bind(&done_throw); { // The {value} is not a compatible receiver for this method. CallRuntime(Runtime::kThrowNotGeneric, context, HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED))); Goto(&done_loop); // Never reached. } Bind(&done_loop); return var_value.value(); } Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) { // Translate the {index} into a Word. index = SmiToWord(index); // We may need to loop in case of cons or sliced strings. Variable var_index(this, MachineType::PointerRepresentation()); Variable var_result(this, MachineRepresentation::kWord32); Variable var_string(this, MachineRepresentation::kTagged); Variable* loop_vars[] = {&var_index, &var_string}; Label done_loop(this, &var_result), loop(this, 2, loop_vars); var_string.Bind(string); var_index.Bind(index); Goto(&loop); Bind(&loop); { // Load the current {index}. index = var_index.value(); // Load the current {string}. string = var_string.value(); // Load the instance type of the {string}. Node* string_instance_type = LoadInstanceType(string); // Check if the {string} is a SeqString. Label if_stringissequential(this), if_stringisnotsequential(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kSeqStringTag)), &if_stringissequential, &if_stringisnotsequential); Bind(&if_stringissequential); { // Check if the {string} is a TwoByteSeqString or a OneByteSeqString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string, IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind( Load(MachineType::Uint16(), string, IntPtrAdd(WordShl(index, IntPtrConstant(1)), IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } } Bind(&if_stringisnotsequential); { // Check if the {string} is a ConsString. Label if_stringiscons(this), if_stringisnotcons(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kConsStringTag)), &if_stringiscons, &if_stringisnotcons); Bind(&if_stringiscons); { // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we flatten the string first. Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred); Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty, &if_rhsisnotempty); Bind(&if_rhsisempty); { // Just operate on the left hand side of the {string}. var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset)); Goto(&loop); } Bind(&if_rhsisnotempty); { // Flatten the {string} and lookup in the resulting string. var_string.Bind(CallRuntime(Runtime::kFlattenString, NoContextConstant(), string)); Goto(&loop); } } Bind(&if_stringisnotcons); { // Check if the {string} is an ExternalString. Label if_stringisexternal(this), if_stringisnotexternal(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kExternalStringTag)), &if_stringisexternal, &if_stringisnotexternal); Bind(&if_stringisexternal); { // Check if the {string} is a short external string. Label if_stringisshort(this), if_stringisnotshort(this, Label::kDeferred); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kShortExternalStringMask)), Int32Constant(0)), &if_stringisshort, &if_stringisnotshort); Bind(&if_stringisshort); { // Load the actual resource data from the {string}. Node* string_resource_data = LoadObjectField(string, ExternalString::kResourceDataOffset, MachineType::Pointer()); // Check if the {string} is a TwoByteExternalString or a // OneByteExternalString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string_resource_data, index)); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind(Load(MachineType::Uint16(), string_resource_data, WordShl(index, IntPtrConstant(1)))); Goto(&done_loop); } } Bind(&if_stringisnotshort); { // The {string} might be compressed, call the runtime. var_result.Bind(SmiToWord32( CallRuntime(Runtime::kExternalStringGetChar, NoContextConstant(), string, SmiTag(index)))); Goto(&done_loop); } } Bind(&if_stringisnotexternal); { // The {string} is a SlicedString, continue with its parent. Node* string_offset = SmiToWord(LoadObjectField(string, SlicedString::kOffsetOffset)); Node* string_parent = LoadObjectField(string, SlicedString::kParentOffset); var_index.Bind(IntPtrAdd(index, string_offset)); var_string.Bind(string_parent); Goto(&loop); } } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::StringFromCharCode(Node* code) { Variable var_result(this, MachineRepresentation::kTagged); // Check if the {code} is a one-byte char code. Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred), if_done(this); Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)), &if_codeisonebyte, &if_codeistwobyte); Bind(&if_codeisonebyte); { // Load the isolate wide single character string cache. Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex); // Check if we have an entry for the {code} in the single character string // cache already. Label if_entryisundefined(this, Label::kDeferred), if_entryisnotundefined(this); Node* entry = LoadFixedArrayElement(cache, code); Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined, &if_entryisnotundefined); Bind(&if_entryisundefined); { // Allocate a new SeqOneByteString for {code} and store it in the {cache}. Node* result = AllocateSeqOneByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord8, result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code); StoreFixedArrayElement(cache, code, result); var_result.Bind(result); Goto(&if_done); } Bind(&if_entryisnotundefined); { // Return the entry from the {cache}. var_result.Bind(entry); Goto(&if_done); } } Bind(&if_codeistwobyte); { // Allocate a new SeqTwoByteString for {code}. Node* result = AllocateSeqTwoByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord16, result, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code); var_result.Bind(result); Goto(&if_done); } Bind(&if_done); return var_result.value(); } Node* CodeStubAssembler::BitFieldDecode(Node* word32, uint32_t shift, uint32_t mask) { return Word32Shr(Word32And(word32, Int32Constant(mask)), static_cast(shift)); } void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, Int32Constant(value)); } } void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Add(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Sub(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::Use(Label* label) { GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label); } void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex, Variable* var_index, Label* if_keyisunique, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kWord32, var_index->rep()); Comment("TryToName"); Label if_keyissmi(this), if_keyisnotsmi(this); Branch(WordIsSmi(key), &if_keyissmi, &if_keyisnotsmi); Bind(&if_keyissmi); { // Negative smi keys are named properties. Handle in the runtime. GotoUnless(WordIsPositiveSmi(key), if_bailout); var_index->Bind(SmiToWord32(key)); Goto(if_keyisindex); } Bind(&if_keyisnotsmi); Node* key_instance_type = LoadInstanceType(key); // Symbols are unique. GotoIf(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)), if_keyisunique); Label if_keyisinternalized(this); Node* bits = WordAnd(key_instance_type, Int32Constant(kIsNotStringMask | kIsNotInternalizedMask)); Branch(Word32Equal(bits, Int32Constant(kStringTag | kInternalizedTag)), &if_keyisinternalized, if_bailout); Bind(&if_keyisinternalized); // Check whether the key is an array index passed in as string. Handle // uniform with smi keys if so. // TODO(verwaest): Also support non-internalized strings. Node* hash = LoadNameHashField(key); Node* bit = Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask)); GotoIf(Word32NotEqual(bit, Int32Constant(0)), if_keyisunique); // Key is an index. Check if it is small enough to be encoded in the // hash_field. Handle too big array index in runtime. bit = Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask)); GotoIf(Word32NotEqual(bit, Int32Constant(0)), if_bailout); var_index->Bind(BitFieldDecode(hash)); Goto(if_keyisindex); } template Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) { Node* entry_index = Int32Mul(entry, Int32Constant(Dictionary::kEntrySize)); return Int32Add(entry_index, Int32Constant(Dictionary::kElementsStartIndex + field_index)); } template void CodeStubAssembler::NameDictionaryLookup(Node* dictionary, Node* unique_name, Label* if_found, Variable* var_name_index, Label* if_not_found, int inlined_probes) { DCHECK_EQ(MachineRepresentation::kWord32, var_name_index->rep()); Comment("NameDictionaryLookup"); Node* capacity = SmiToWord32(LoadFixedArrayElement( dictionary, Int32Constant(Dictionary::kCapacityIndex))); Node* mask = Int32Sub(capacity, Int32Constant(1)); Node* hash = LoadNameHash(unique_name); // See Dictionary::FirstProbe(). Node* count = Int32Constant(0); Node* entry = Word32And(hash, mask); for (int i = 0; i < inlined_probes; i++) { Node* index = EntryToIndex(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, unique_name), if_found); // See Dictionary::NextProbe(). count = Int32Constant(i + 1); entry = Word32And(Int32Add(entry, count), mask); } Node* undefined = UndefinedConstant(); Variable var_count(this, MachineRepresentation::kWord32); Variable var_entry(this, MachineRepresentation::kWord32); Variable* loop_vars[] = {&var_count, &var_entry, var_name_index}; Label loop(this, 3, loop_vars); var_count.Bind(count); var_entry.Bind(entry); Goto(&loop); Bind(&loop); { Node* count = var_count.value(); Node* entry = var_entry.value(); Node* index = EntryToIndex(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, undefined), if_not_found); GotoIf(WordEqual(current, unique_name), if_found); // See Dictionary::NextProbe(). count = Int32Add(count, Int32Constant(1)); entry = Word32And(Int32Add(entry, count), mask); var_count.Bind(count); var_entry.Bind(entry); Goto(&loop); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NameDictionaryLookup( Node*, Node*, Label*, Variable*, Label*, int); template void CodeStubAssembler::NameDictionaryLookup( Node*, Node*, Label*, Variable*, Label*, int); Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) { // See v8::internal::ComputeIntegerHash() Node* hash = key; hash = Word32Xor(hash, seed); hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)), Word32Shl(hash, Int32Constant(15))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12))); hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4))); hash = Int32Mul(hash, Int32Constant(2057)); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16))); return Word32And(hash, Int32Constant(0x3fffffff)); } template void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary, Node* key, Label* if_found, Variable* var_entry, Label* if_not_found) { DCHECK_EQ(MachineRepresentation::kWord32, var_entry->rep()); Comment("NumberDictionaryLookup"); Node* capacity = SmiToWord32(LoadFixedArrayElement( dictionary, Int32Constant(Dictionary::kCapacityIndex))); Node* mask = Int32Sub(capacity, Int32Constant(1)); Node* seed; if (Dictionary::ShapeT::UsesSeed) { seed = HashSeed(); } else { seed = Int32Constant(kZeroHashSeed); } Node* hash = ComputeIntegerHash(key, seed); Node* key_as_float64 = ChangeUint32ToFloat64(key); // See Dictionary::FirstProbe(). Node* count = Int32Constant(0); Node* entry = Word32And(hash, mask); Node* undefined = UndefinedConstant(); Node* the_hole = TheHoleConstant(); Variable var_count(this, MachineRepresentation::kWord32); Variable* loop_vars[] = {&var_count, var_entry}; Label loop(this, 2, loop_vars); var_count.Bind(count); var_entry->Bind(entry); Goto(&loop); Bind(&loop); { Node* count = var_count.value(); Node* entry = var_entry->value(); Node* index = EntryToIndex(entry); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, undefined), if_not_found); Label next_probe(this); { Label if_currentissmi(this), if_currentisnotsmi(this); Branch(WordIsSmi(current), &if_currentissmi, &if_currentisnotsmi); Bind(&if_currentissmi); { Node* current_value = SmiToWord32(current); Branch(Word32Equal(current_value, key), if_found, &next_probe); } Bind(&if_currentisnotsmi); { GotoIf(WordEqual(current, the_hole), &next_probe); // Current must be the Number. Node* current_value = LoadHeapNumberValue(current); Branch(Float64Equal(current_value, key_as_float64), if_found, &next_probe); } } Bind(&next_probe); // See Dictionary::NextProbe(). count = Int32Add(count, Int32Constant(1)); entry = Word32And(Int32Add(entry, count), mask); var_count.Bind(count); var_entry->Bind(entry); Goto(&loop); } } void CodeStubAssembler::TryLookupProperty( Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep()); DCHECK_EQ(MachineRepresentation::kWord32, var_name_index->rep()); Label if_objectisspecial(this); STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), &if_objectisspecial); Node* bit_field = LoadMapBitField(map); Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded); Assert(Word32Equal(Word32And(bit_field, mask), Int32Constant(0))); Node* bit_field3 = LoadMapBitField3(map); Node* bit = BitFieldDecode(bit_field3); Label if_isfastmap(this), if_isslowmap(this); Branch(Word32Equal(bit, Int32Constant(0)), &if_isfastmap, &if_isslowmap); Bind(&if_isfastmap); { Comment("DescriptorArrayLookup"); Node* nof = BitFieldDecode(bit_field3); // Bail out to the runtime for large numbers of own descriptors. The stub // only does linear search, which becomes too expensive in that case. { static const int32_t kMaxLinear = 210; GotoIf(Int32GreaterThan(nof, Int32Constant(kMaxLinear)), if_bailout); } Node* descriptors = LoadMapDescriptors(map); var_meta_storage->Bind(descriptors); Variable var_descriptor(this, MachineRepresentation::kWord32); Label loop(this, &var_descriptor); var_descriptor.Bind(Int32Constant(0)); Goto(&loop); Bind(&loop); { Node* index = var_descriptor.value(); Node* name_offset = Int32Constant(DescriptorArray::ToKeyIndex(0)); Node* factor = Int32Constant(DescriptorArray::kDescriptorSize); GotoIf(Word32Equal(index, nof), if_not_found); Node* name_index = Int32Add(name_offset, Int32Mul(index, factor)); Node* name = LoadFixedArrayElement(descriptors, name_index); var_name_index->Bind(name_index); GotoIf(WordEqual(name, unique_name), if_found_fast); var_descriptor.Bind(Int32Add(index, Int32Constant(1))); Goto(&loop); } } Bind(&if_isslowmap); { Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup(dictionary, unique_name, if_found_dict, var_name_index, if_not_found); } Bind(&if_objectisspecial); { // Handle global object here and other special objects in runtime. GotoUnless(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)), if_bailout); // Handle interceptors and access checks in runtime. Node* bit_field = LoadMapBitField(map); Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded); GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)), if_bailout); Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup( dictionary, unique_name, if_found_global, var_name_index, if_not_found); } } void CodeStubAssembler::TryHasOwnProperty(compiler::Node* object, compiler::Node* map, compiler::Node* instance_type, compiler::Node* unique_name, Label* if_found, Label* if_not_found, Label* if_bailout) { Comment("TryHasOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_name_index(this, MachineRepresentation::kWord32); Label if_found_global(this); TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found, &if_found_global, &var_meta_storage, &var_name_index, if_not_found, if_bailout); Bind(&if_found_global); { Variable var_value(this, MachineRepresentation::kTagged); Variable var_details(this, MachineRepresentation::kWord32); // Check if the property cell is not deleted. LoadPropertyFromGlobalDictionary(var_meta_storage.value(), var_name_index.value(), &var_value, &var_details, if_not_found); Goto(if_found); } } void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors, Node* name_index, Variable* var_details, Variable* var_value) { DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("[ LoadPropertyFromFastObject"); const int name_to_details_offset = (DescriptorArray::kDescriptorDetails - DescriptorArray::kDescriptorKey) * kPointerSize; const int name_to_value_offset = (DescriptorArray::kDescriptorValue - DescriptorArray::kDescriptorKey) * kPointerSize; Node* details = SmiToWord32( LoadFixedArrayElement(descriptors, name_index, name_to_details_offset)); var_details->Bind(details); Node* location = BitFieldDecode(details); Label if_in_field(this), if_in_descriptor(this), done(this); Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field, &if_in_descriptor); Bind(&if_in_field); { Node* field_index = BitFieldDecode(details); Node* representation = BitFieldDecode(details); Node* inobject_properties = LoadMapInobjectProperties(map); Label if_inobject(this), if_backing_store(this); Variable var_double_value(this, MachineRepresentation::kFloat64); Label rebox_double(this, &var_double_value); BranchIfInt32LessThan(field_index, inobject_properties, &if_inobject, &if_backing_store); Bind(&if_inobject); { Comment("if_inobject"); Node* field_offset = ChangeInt32ToIntPtr( Int32Mul(Int32Sub(LoadMapInstanceSize(map), Int32Sub(inobject_properties, field_index)), Int32Constant(kPointerSize))); Label if_double(this), if_tagged(this); BranchIfWord32NotEqual(representation, Int32Constant(Representation::kDouble), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(LoadObjectField(object, field_offset)); Goto(&done); } Bind(&if_double); { if (FLAG_unbox_double_fields) { var_double_value.Bind( LoadObjectField(object, field_offset, MachineType::Float64())); } else { Node* mutable_heap_number = LoadObjectField(object, field_offset); var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); } Goto(&rebox_double); } } Bind(&if_backing_store); { Comment("if_backing_store"); Node* properties = LoadProperties(object); field_index = Int32Sub(field_index, inobject_properties); Node* value = LoadFixedArrayElement(properties, field_index); Label if_double(this), if_tagged(this); BranchIfWord32NotEqual(representation, Int32Constant(Representation::kDouble), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(value); Goto(&done); } Bind(&if_double); { var_double_value.Bind(LoadHeapNumberValue(value)); Goto(&rebox_double); } } Bind(&rebox_double); { Comment("rebox_double"); Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value()); var_value->Bind(heap_number); Goto(&done); } } Bind(&if_in_descriptor); { Node* value = LoadFixedArrayElement(descriptors, name_index, name_to_value_offset); var_value->Bind(value); Goto(&done); } Bind(&done); Comment("] LoadPropertyFromFastObject"); } void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value) { Comment("LoadPropertyFromNameDictionary"); const int name_to_details_offset = (NameDictionary::kEntryDetailsIndex - NameDictionary::kEntryKeyIndex) * kPointerSize; const int name_to_value_offset = (NameDictionary::kEntryValueIndex - NameDictionary::kEntryKeyIndex) * kPointerSize; Node* details = SmiToWord32( LoadFixedArrayElement(dictionary, name_index, name_to_details_offset)); var_details->Bind(details); var_value->Bind( LoadFixedArrayElement(dictionary, name_index, name_to_value_offset)); Comment("] LoadPropertyFromNameDictionary"); } void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value, Label* if_deleted) { Comment("[ LoadPropertyFromGlobalDictionary"); const int name_to_value_offset = (GlobalDictionary::kEntryValueIndex - GlobalDictionary::kEntryKeyIndex) * kPointerSize; Node* property_cell = LoadFixedArrayElement(dictionary, name_index, name_to_value_offset); Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); GotoIf(WordEqual(value, TheHoleConstant()), if_deleted); var_value->Bind(value); Node* details = SmiToWord32(LoadObjectField(property_cell, PropertyCell::kDetailsOffset)); var_details->Bind(details); Comment("] LoadPropertyFromGlobalDictionary"); } void CodeStubAssembler::TryGetOwnProperty( Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_value, Variable* var_value, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("TryGetOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_entry(this, MachineRepresentation::kWord32); Label if_found_fast(this), if_found_dict(this), if_found_global(this); Variable var_details(this, MachineRepresentation::kWord32); Variable* vars[] = {var_value, &var_details}; Label if_found(this, 2, vars); TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast, &if_found_dict, &if_found_global, &var_meta_storage, &var_entry, if_not_found, if_bailout); Bind(&if_found_fast); { Node* descriptors = var_meta_storage.value(); Node* name_index = var_entry.value(); LoadPropertyFromFastObject(object, map, descriptors, name_index, &var_details, var_value); Goto(&if_found); } Bind(&if_found_dict); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value); Goto(&if_found); } Bind(&if_found_global); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value, if_not_found); Goto(&if_found); } // Here we have details and value which could be an accessor. Bind(&if_found); { Node* details = var_details.value(); Node* kind = BitFieldDecode(details); Label if_accessor(this); Branch(Word32Equal(kind, Int32Constant(kData)), if_found_value, &if_accessor); Bind(&if_accessor); { Node* accessor_pair = var_value->value(); GotoIf(Word32Equal(LoadInstanceType(accessor_pair), Int32Constant(ACCESSOR_INFO_TYPE)), if_bailout); AssertInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE); Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset); Node* getter_map = LoadMap(getter); Node* instance_type = LoadMapInstanceType(getter_map); // FunctionTemplateInfo getters are not supported yet. GotoIf(Word32Equal(instance_type, Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)), if_bailout); // Return undefined if the {getter} is not callable. var_value->Bind(UndefinedConstant()); GotoIf(Word32Equal(Word32And(LoadMapBitField(getter_map), Int32Constant(1 << Map::kIsCallable)), Int32Constant(0)), if_found_value); // Call the accessor. Callable callable = CodeFactory::Call(isolate()); Node* result = CallJS(callable, context, getter, receiver); var_value->Bind(result); Goto(if_found_value); } } } void CodeStubAssembler::TryLookupElement(Node* object, Node* map, Node* instance_type, Node* index, Label* if_found, Label* if_not_found, Label* if_bailout) { // Handle special objects in runtime. GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), if_bailout); Node* bit_field2 = LoadMapBitField2(map); Node* elements_kind = BitFieldDecode(bit_field2); // TODO(verwaest): Support other elements kinds as well. Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this), if_isfaststringwrapper(this), if_isslowstringwrapper(this); // clang-format off int32_t values[] = { // Handled by {if_isobjectorsmi}. FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, // Handled by {if_isdouble}. FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, // Handled by {if_isdictionary}. DICTIONARY_ELEMENTS, // Handled by {if_isfaststringwrapper}. FAST_STRING_WRAPPER_ELEMENTS, // Handled by {if_isslowstringwrapper}. SLOW_STRING_WRAPPER_ELEMENTS, // Handled by {if_not_found}. NO_ELEMENTS, }; Label* labels[] = { &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isdouble, &if_isdouble, &if_isdictionary, &if_isfaststringwrapper, &if_isslowstringwrapper, if_not_found, }; // clang-format on STATIC_ASSERT(arraysize(values) == arraysize(labels)); Switch(elements_kind, if_bailout, values, labels, arraysize(values)); Bind(&if_isobjectorsmi); { Node* elements = LoadElements(object); Node* length = LoadFixedArrayBaseLength(elements); GotoUnless(Uint32LessThan(index, SmiToWord32(length)), if_not_found); Node* element = LoadFixedArrayElement(elements, index); Node* the_hole = TheHoleConstant(); Branch(WordEqual(element, the_hole), if_not_found, if_found); } Bind(&if_isdouble); { Node* elements = LoadElements(object); Node* length = LoadFixedArrayBaseLength(elements); GotoUnless(Uint32LessThan(index, SmiToWord32(length)), if_not_found); if (kPointerSize == kDoubleSize) { Node* element = LoadFixedDoubleArrayElement(elements, index, MachineType::Uint64()); Node* the_hole = Int64Constant(kHoleNanInt64); Branch(Word64Equal(element, the_hole), if_not_found, if_found); } else { Node* element_upper = LoadFixedDoubleArrayElement(elements, index, MachineType::Uint32(), kIeeeDoubleExponentWordOffset); Branch(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)), if_not_found, if_found); } } Bind(&if_isdictionary); { Variable var_entry(this, MachineRepresentation::kWord32); Node* elements = LoadElements(object); NumberDictionaryLookup(elements, index, if_found, &var_entry, if_not_found); } Bind(&if_isfaststringwrapper); { AssertInstanceType(object, JS_VALUE_TYPE); Node* string = LoadJSValueValue(object); Assert(Int32LessThan(LoadInstanceType(string), Int32Constant(FIRST_NONSTRING_TYPE))); Node* length = LoadStringLength(string); GotoIf(Uint32LessThan(index, SmiToWord32(length)), if_found); Goto(&if_isobjectorsmi); } Bind(&if_isslowstringwrapper); { AssertInstanceType(object, JS_VALUE_TYPE); Node* string = LoadJSValueValue(object); Assert(Int32LessThan(LoadInstanceType(string), Int32Constant(FIRST_NONSTRING_TYPE))); Node* length = LoadStringLength(string); GotoIf(Uint32LessThan(index, SmiToWord32(length)), if_found); Goto(&if_isdictionary); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NumberDictionaryLookup( Node*, Node*, Label*, Variable*, Label*); template void CodeStubAssembler::NumberDictionaryLookup< UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*); void CodeStubAssembler::TryPrototypeChainLookup( Node* receiver, Node* key, LookupInHolder& lookup_property_in_holder, LookupInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout) { // Ensure receiver is JSReceiver, otherwise bailout. Label if_objectisnotsmi(this); Branch(WordIsSmi(receiver), if_bailout, &if_objectisnotsmi); Bind(&if_objectisnotsmi); Node* map = LoadMap(receiver); Node* instance_type = LoadMapInstanceType(map); { Label if_objectisreceiver(this); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE); Branch( Int32GreaterThan(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)), &if_objectisreceiver, if_bailout); Bind(&if_objectisreceiver); } Variable var_index(this, MachineRepresentation::kWord32); Label if_keyisindex(this), if_iskeyunique(this); TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, if_bailout); Bind(&if_iskeyunique); { Variable var_holder(this, MachineRepresentation::kTagged); Variable var_holder_map(this, MachineRepresentation::kTagged); Variable var_holder_instance_type(this, MachineRepresentation::kWord8); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); var_holder.Bind(receiver); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); Bind(&loop); { Node* holder_map = var_holder_map.value(); Node* holder_instance_type = var_holder_instance_type.value(); Label next_proto(this); lookup_property_in_holder(receiver, var_holder.value(), holder_map, holder_instance_type, key, &next_proto, if_bailout); Bind(&next_proto); // Bailout if it can be an integer indexed exotic case. GotoIf( Word32Equal(holder_instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), if_bailout); Node* proto = LoadMapPrototype(holder_map); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } Bind(&if_keyisindex); { Variable var_holder(this, MachineRepresentation::kTagged); Variable var_holder_map(this, MachineRepresentation::kTagged); Variable var_holder_instance_type(this, MachineRepresentation::kWord8); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); var_holder.Bind(receiver); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); Bind(&loop); { Label next_proto(this); lookup_element_in_holder(receiver, var_holder.value(), var_holder_map.value(), var_holder_instance_type.value(), var_index.value(), &next_proto, if_bailout); Bind(&next_proto); Node* proto = LoadMapPrototype(var_holder_map.value()); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } } Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable, Node* object) { Variable var_result(this, MachineRepresentation::kTagged); Label return_false(this), return_true(this), return_runtime(this, Label::kDeferred), return_result(this); // Goto runtime if {object} is a Smi. GotoIf(WordIsSmi(object), &return_runtime); // Load map of {object}. Node* object_map = LoadMap(object); // Lookup the {callable} and {object} map in the global instanceof cache. // Note: This is safe because we clear the global instanceof cache whenever // we change the prototype of any object. Node* instanceof_cache_function = LoadRoot(Heap::kInstanceofCacheFunctionRootIndex); Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex); { Label instanceof_cache_miss(this); GotoUnless(WordEqual(instanceof_cache_function, callable), &instanceof_cache_miss); GotoUnless(WordEqual(instanceof_cache_map, object_map), &instanceof_cache_miss); var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex)); Goto(&return_result); Bind(&instanceof_cache_miss); } // Goto runtime if {callable} is a Smi. GotoIf(WordIsSmi(callable), &return_runtime); // Load map of {callable}. Node* callable_map = LoadMap(callable); // Goto runtime if {callable} is not a JSFunction. Node* callable_instance_type = LoadMapInstanceType(callable_map); GotoUnless( Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)), &return_runtime); // Goto runtime if {callable} is not a constructor or has // a non-instance "prototype". Node* callable_bitfield = LoadMapBitField(callable_map); GotoUnless( Word32Equal(Word32And(callable_bitfield, Int32Constant((1 << Map::kHasNonInstancePrototype) | (1 << Map::kIsConstructor))), Int32Constant(1 << Map::kIsConstructor)), &return_runtime); // Get the "prototype" (or initial map) of the {callable}. Node* callable_prototype = LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset); { Variable var_callable_prototype(this, MachineRepresentation::kTagged); Label callable_prototype_valid(this); var_callable_prototype.Bind(callable_prototype); // Resolve the "prototype" if the {callable} has an initial map. Afterwards // the {callable_prototype} will be either the JSReceiver prototype object // or the hole value, which means that no instances of the {callable} were // created so far and hence we should return false. Node* callable_prototype_instance_type = LoadInstanceType(callable_prototype); GotoUnless( Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)), &callable_prototype_valid); var_callable_prototype.Bind( LoadObjectField(callable_prototype, Map::kPrototypeOffset)); Goto(&callable_prototype_valid); Bind(&callable_prototype_valid); callable_prototype = var_callable_prototype.value(); } // Update the global instanceof cache with the current {object} map and // {callable}. The cached answer will be set when it is known below. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable); StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map); // Loop through the prototype chain looking for the {callable} prototype. Variable var_object_map(this, MachineRepresentation::kTagged); var_object_map.Bind(object_map); Label loop(this, &var_object_map); Goto(&loop); Bind(&loop); { Node* object_map = var_object_map.value(); // Check if the current {object} needs to be access checked. Node* object_bitfield = LoadMapBitField(object_map); GotoUnless( Word32Equal(Word32And(object_bitfield, Int32Constant(1 << Map::kIsAccessCheckNeeded)), Int32Constant(0)), &return_runtime); // Check if the current {object} is a proxy. Node* object_instance_type = LoadMapInstanceType(object_map); GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)), &return_runtime); // Check the current {object} prototype. Node* object_prototype = LoadMapPrototype(object_map); GotoIf(WordEqual(object_prototype, NullConstant()), &return_false); GotoIf(WordEqual(object_prototype, callable_prototype), &return_true); // Continue with the prototype. var_object_map.Bind(LoadMap(object_prototype)); Goto(&loop); } Bind(&return_true); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true)); var_result.Bind(BooleanConstant(true)); Goto(&return_result); Bind(&return_false); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false)); var_result.Bind(BooleanConstant(false)); Goto(&return_result); Bind(&return_runtime); { // Invalidate the global instanceof cache. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0)); // Fallback to the runtime implementation. var_result.Bind( CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object)); } Goto(&return_result); Bind(&return_result); return var_result.value(); } compiler::Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node, ElementsKind kind, ParameterMode mode, int base_size) { bool is_double = IsFastDoubleElementsKind(kind); int element_size_shift = is_double ? kDoubleSizeLog2 : kPointerSizeLog2; int element_size = 1 << element_size_shift; int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; int32_t index = 0; bool constant_index = false; if (mode == SMI_PARAMETERS) { element_size_shift -= kSmiShiftBits; intptr_t temp = 0; constant_index = ToIntPtrConstant(index_node, temp); index = temp >> kSmiShiftBits; } else { constant_index = ToInt32Constant(index_node, index); } if (constant_index) { return IntPtrConstant(base_size + element_size * index); } if (Is64() && mode == INTEGER_PARAMETERS) { index_node = ChangeInt32ToInt64(index_node); } if (base_size == 0) { return (element_size_shift >= 0) ? WordShl(index_node, IntPtrConstant(element_size_shift)) : WordShr(index_node, IntPtrConstant(-element_size_shift)); } return IntPtrAdd( IntPtrConstant(base_size), (element_size_shift >= 0) ? WordShl(index_node, IntPtrConstant(element_size_shift)) : WordShr(index_node, IntPtrConstant(-element_size_shift))); } compiler::Node* CodeStubAssembler::LoadTypeFeedbackVectorForStub() { Node* function = LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset); Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset); return LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset); } compiler::Node* CodeStubAssembler::LoadReceiverMap(compiler::Node* receiver) { Variable var_receiver_map(this, MachineRepresentation::kTagged); // TODO(ishell): defer blocks when it works. Label load_smi_map(this /*, Label::kDeferred*/), load_receiver_map(this), if_result(this); Branch(WordIsSmi(receiver), &load_smi_map, &load_receiver_map); Bind(&load_smi_map); { var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex)); Goto(&if_result); } Bind(&load_receiver_map); { var_receiver_map.Bind(LoadMap(receiver)); Goto(&if_result); } Bind(&if_result); return var_receiver_map.value(); } compiler::Node* CodeStubAssembler::TryMonomorphicCase( const LoadICParameters* p, compiler::Node* receiver_map, Label* if_handler, Variable* var_handler, Label* if_miss) { DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep()); // TODO(ishell): add helper class that hides offset computations for a series // of loads. int32_t header_size = FixedArray::kHeaderSize - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS, header_size); Node* feedback = Load(MachineType::AnyTagged(), p->vector, offset); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. GotoUnless(WordEqual(receiver_map, LoadWeakCellValue(feedback)), if_miss); Node* handler = Load(MachineType::AnyTagged(), p->vector, IntPtrAdd(offset, IntPtrConstant(kPointerSize))); var_handler->Bind(handler); Goto(if_handler); return feedback; } void CodeStubAssembler::HandlePolymorphicCase( const LoadICParameters* p, compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler, Variable* var_handler, Label* if_miss, int unroll_count) { DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep()); // Iterate {feedback} array. const int kEntrySize = 2; for (int i = 0; i < unroll_count; i++) { Label next_entry(this); Node* cached_map = LoadWeakCellValue( LoadFixedArrayElement(feedback, Int32Constant(i * kEntrySize))); GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry); // Found, now call handler. Node* handler = LoadFixedArrayElement(feedback, Int32Constant(i * kEntrySize + 1)); var_handler->Bind(handler); Goto(if_handler); Bind(&next_entry); } Node* length = SmiToWord32(LoadFixedArrayBaseLength(feedback)); // Loop from {unroll_count}*kEntrySize to {length}. Variable var_index(this, MachineRepresentation::kWord32); Label loop(this, &var_index); var_index.Bind(Int32Constant(unroll_count * kEntrySize)); Goto(&loop); Bind(&loop); { Node* index = var_index.value(); GotoIf(Int32GreaterThanOrEqual(index, length), if_miss); Node* cached_map = LoadWeakCellValue(LoadFixedArrayElement(feedback, index)); Label next_entry(this); GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry); // Found, now call handler. Node* handler = LoadFixedArrayElement(feedback, index, kPointerSize); var_handler->Bind(handler); Goto(if_handler); Bind(&next_entry); var_index.Bind(Int32Add(index, Int32Constant(kEntrySize))); Goto(&loop); } } compiler::Node* CodeStubAssembler::StubCachePrimaryOffset(compiler::Node* name, compiler::Node* map) { // See v8::internal::StubCache::PrimaryOffset(). STATIC_ASSERT(StubCache::kCacheIndexShift == Name::kHashShift); // Compute the hash of the name (use entire hash field). Node* hash_field = LoadNameHashField(name); Assert(WordEqual( Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)), Int32Constant(0))); // Using only the low bits in 64-bit mode is unlikely to increase the // risk of collision even if the heap is spread over an area larger than // 4Gb (and not at all if it isn't). Node* hash = Int32Add(hash_field, map); // Base the offset on a simple combination of name and map. hash = Word32Xor(hash, Int32Constant(StubCache::kPrimaryMagic)); uint32_t mask = (StubCache::kPrimaryTableSize - 1) << StubCache::kCacheIndexShift; return Word32And(hash, Int32Constant(mask)); } compiler::Node* CodeStubAssembler::StubCacheSecondaryOffset( compiler::Node* name, compiler::Node* seed) { // See v8::internal::StubCache::SecondaryOffset(). // Use the seed from the primary cache in the secondary cache. Node* hash = Int32Sub(seed, name); hash = Int32Add(hash, Int32Constant(StubCache::kSecondaryMagic)); int32_t mask = (StubCache::kSecondaryTableSize - 1) << StubCache::kCacheIndexShift; return Word32And(hash, Int32Constant(mask)); } enum CodeStubAssembler::StubCacheTable : int { kPrimary = static_cast(StubCache::kPrimary), kSecondary = static_cast(StubCache::kSecondary) }; void CodeStubAssembler::TryProbeStubCacheTable( StubCache* stub_cache, StubCacheTable table_id, compiler::Node* entry_offset, compiler::Node* name, compiler::Node* map, Label* if_handler, Variable* var_handler, Label* if_miss) { StubCache::Table table = static_cast(table_id); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { Goto(if_miss); return; } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { Goto(if_miss); return; } #endif // The {table_offset} holds the entry offset times four (due to masking // and shifting optimizations). const int kMultiplier = sizeof(StubCache::Entry) >> Name::kHashShift; entry_offset = Int32Mul(entry_offset, Int32Constant(kMultiplier)); // Check that the key in the entry matches the name. Node* key_base = ExternalConstant(ExternalReference(stub_cache->key_reference(table))); Node* entry_key = Load(MachineType::Pointer(), key_base, entry_offset); GotoIf(WordNotEqual(name, entry_key), if_miss); // Get the map entry from the cache. DCHECK_EQ(kPointerSize * 2, stub_cache->map_reference(table).address() - stub_cache->key_reference(table).address()); Node* entry_map = Load(MachineType::Pointer(), key_base, Int32Add(entry_offset, Int32Constant(kPointerSize * 2))); GotoIf(WordNotEqual(map, entry_map), if_miss); DCHECK_EQ(kPointerSize, stub_cache->value_reference(table).address() - stub_cache->key_reference(table).address()); Node* code = Load(MachineType::Pointer(), key_base, Int32Add(entry_offset, Int32Constant(kPointerSize))); // We found the handler. var_handler->Bind(code); Goto(if_handler); } void CodeStubAssembler::TryProbeStubCache( StubCache* stub_cache, compiler::Node* receiver, compiler::Node* name, Label* if_handler, Variable* var_handler, Label* if_miss) { Label try_secondary(this), miss(this); Counters* counters = isolate()->counters(); IncrementCounter(counters->megamorphic_stub_cache_probes(), 1); // Check that the {receiver} isn't a smi. GotoIf(WordIsSmi(receiver), &miss); Node* receiver_map = LoadMap(receiver); // Probe the primary table. Node* primary_offset = StubCachePrimaryOffset(name, receiver_map); TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name, receiver_map, if_handler, var_handler, &try_secondary); Bind(&try_secondary); { // Probe the secondary table. Node* secondary_offset = StubCacheSecondaryOffset(name, primary_offset); TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name, receiver_map, if_handler, var_handler, &miss); } Bind(&miss); { IncrementCounter(counters->megamorphic_stub_cache_misses(), 1); Goto(if_miss); } } void CodeStubAssembler::HandleLoadICHandlerCase(const LoadICParameters* p, Node* handler, Label* miss) { Comment("have_handler"); Label call_handler(this); GotoUnless(WordIsSmi(handler), &call_handler); // |handler| is a Smi. It encodes a field index as obtained by // FieldIndex.GetLoadByFieldOffset(). // TODO(jkummerow): For KeyedLoadICs, extend this scheme to encode // fast *element* loads. { Variable var_double_value(this, MachineRepresentation::kFloat64); Label rebox_double(this, &var_double_value); Node* handler_word = SmiUntag(handler); // |handler_word| is a field index as obtained by // FieldIndex.GetLoadByFieldOffset(): Label inobject_double(this), out_of_object(this), out_of_object_double(this); Node* inobject_bit = WordAnd( handler_word, IntPtrConstant(FieldIndex::FieldOffsetIsInobject::kMask)); Node* double_bit = WordAnd( handler_word, IntPtrConstant(FieldIndex::FieldOffsetIsDouble::kMask)); Node* offset = WordSar( handler_word, IntPtrConstant(FieldIndex::FieldOffsetOffset::kShift)); GotoIf(WordEqual(inobject_bit, IntPtrConstant(0)), &out_of_object); GotoUnless(WordEqual(double_bit, IntPtrConstant(0)), &inobject_double); Return(LoadObjectField(p->receiver, offset)); Bind(&inobject_double); if (FLAG_unbox_double_fields) { var_double_value.Bind( LoadObjectField(p->receiver, offset, MachineType::Float64())); } else { Node* mutable_heap_number = LoadObjectField(p->receiver, offset); var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); } Goto(&rebox_double); Bind(&out_of_object); Node* properties = LoadProperties(p->receiver); Node* value = LoadObjectField(properties, offset); GotoUnless(WordEqual(double_bit, IntPtrConstant(0)), &out_of_object_double); Return(value); Bind(&out_of_object_double); var_double_value.Bind(LoadHeapNumberValue(value)); Goto(&rebox_double); Bind(&rebox_double); Return(AllocateHeapNumberWithValue(var_double_value.value())); } // |handler| is a heap object. Must be code, call it. Bind(&call_handler); typedef LoadWithVectorDescriptor Descriptor; TailCallStub(Descriptor(isolate()), handler, p->context, Arg(Descriptor::kReceiver, p->receiver), Arg(Descriptor::kName, p->name), Arg(Descriptor::kSlot, p->slot), Arg(Descriptor::kVector, p->vector)); } void CodeStubAssembler::LoadIC(const LoadICParameters* p) { Variable var_handler(this, MachineRepresentation::kTagged); // TODO(ishell): defer blocks when it works. Label if_handler(this, &var_handler), try_polymorphic(this), try_megamorphic(this /*, Label::kDeferred*/), miss(this /*, Label::kDeferred*/); Node* receiver_map = LoadReceiverMap(p->receiver); // Check monomorphic case. Node* feedback = TryMonomorphicCase(p, receiver_map, &if_handler, &var_handler, &try_polymorphic); Bind(&if_handler); { HandleLoadICHandlerCase(p, var_handler.value(), &miss); } Bind(&try_polymorphic); { // Check polymorphic case. Comment("LoadIC_try_polymorphic"); GotoUnless( WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)), &try_megamorphic); HandlePolymorphicCase(p, receiver_map, feedback, &if_handler, &var_handler, &miss, 2); } Bind(&try_megamorphic); { // Check megamorphic case. GotoUnless( WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)), &miss); TryProbeStubCache(isolate()->load_stub_cache(), p->receiver, p->name, &if_handler, &var_handler, &miss); } Bind(&miss); { TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name, p->slot, p->vector); } } void CodeStubAssembler::KeyedLoadIC(const LoadICParameters* p) { Variable var_handler(this, MachineRepresentation::kTagged); // TODO(ishell): defer blocks when it works. Label if_handler(this, &var_handler), try_polymorphic(this), try_megamorphic(this /*, Label::kDeferred*/), try_polymorphic_name(this /*, Label::kDeferred*/), miss(this /*, Label::kDeferred*/); Node* receiver_map = LoadReceiverMap(p->receiver); // Check monomorphic case. Node* feedback = TryMonomorphicCase(p, receiver_map, &if_handler, &var_handler, &try_polymorphic); Bind(&if_handler); { HandleLoadICHandlerCase(p, var_handler.value(), &miss); } Bind(&try_polymorphic); { // Check polymorphic case. Comment("KeyedLoadIC_try_polymorphic"); GotoUnless( WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)), &try_megamorphic); HandlePolymorphicCase(p, receiver_map, feedback, &if_handler, &var_handler, &miss, 2); } Bind(&try_megamorphic); { // Check megamorphic case. Comment("KeyedLoadIC_try_megamorphic"); GotoUnless( WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)), &try_polymorphic_name); // TODO(jkummerow): Inline this? Or some of it? TailCallStub(CodeFactory::KeyedLoadIC_Megamorphic(isolate()), p->context, p->receiver, p->name, p->slot, p->vector); } Bind(&try_polymorphic_name); { // We might have a name in feedback, and a fixed array in the next slot. Comment("KeyedLoadIC_try_polymorphic_name"); GotoUnless(WordEqual(feedback, p->name), &miss); // If the name comparison succeeded, we know we have a fixed array with // at least one map/handler pair. Node* offset = ElementOffsetFromIndex( p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS, FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag); Node* array = Load(MachineType::AnyTagged(), p->vector, offset); HandlePolymorphicCase(p, receiver_map, array, &if_handler, &var_handler, &miss, 1); } Bind(&miss); { Comment("KeyedLoadIC_miss"); TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver, p->name, p->slot, p->vector); } } void CodeStubAssembler::LoadGlobalIC(const LoadICParameters* p) { Label try_handler(this), miss(this); Node* weak_cell = LoadFixedArrayElement(p->vector, p->slot, 0, SMI_PARAMETERS); AssertInstanceType(weak_cell, WEAK_CELL_TYPE); // Load value or try handler case if the {weak_cell} is cleared. Node* property_cell = LoadWeakCellValue(weak_cell, &try_handler); AssertInstanceType(property_cell, PROPERTY_CELL_TYPE); Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); GotoIf(WordEqual(value, TheHoleConstant()), &miss); Return(value); Bind(&try_handler); { Node* handler = LoadFixedArrayElement(p->vector, p->slot, kPointerSize, SMI_PARAMETERS); GotoIf(WordEqual(handler, LoadRoot(Heap::kuninitialized_symbolRootIndex)), &miss); // In this case {handler} must be a Code object. AssertInstanceType(handler, CODE_TYPE); LoadWithVectorDescriptor descriptor(isolate()); Node* native_context = LoadNativeContext(p->context); Node* receiver = LoadFixedArrayElement( native_context, Int32Constant(Context::EXTENSION_INDEX)); Node* fake_name = IntPtrConstant(0); TailCallStub(descriptor, handler, p->context, receiver, fake_name, p->slot, p->vector); } Bind(&miss); { TailCallRuntime(Runtime::kLoadGlobalIC_Miss, p->context, p->slot, p->vector); } } Node* CodeStubAssembler::EnumLength(Node* map) { Node* bitfield_3 = LoadMapBitField3(map); Node* enum_length = BitFieldDecode(bitfield_3); return SmiTag(enum_length); } void CodeStubAssembler::CheckEnumCache(Node* receiver, Label* use_cache, Label* use_runtime) { Variable current_js_object(this, MachineRepresentation::kTagged); current_js_object.Bind(receiver); Variable current_map(this, MachineRepresentation::kTagged); current_map.Bind(LoadMap(current_js_object.value())); // These variables are updated in the loop below. Variable* loop_vars[2] = {¤t_js_object, ¤t_map}; Label loop(this, 2, loop_vars), next(this); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. { Node* invalid_enum_cache_sentinel = SmiConstant(Smi::FromInt(kInvalidEnumCacheSentinel)); Node* enum_length = EnumLength(current_map.value()); BranchIfWordEqual(enum_length, invalid_enum_cache_sentinel, use_runtime, &loop); } // Check that there are no elements. |current_js_object| contains // the current JS object we've reached through the prototype chain. Bind(&loop); { Label if_elements(this), if_no_elements(this); Node* elements = LoadElements(current_js_object.value()); Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex); // Check that there are no elements. BranchIfWordEqual(elements, empty_fixed_array, &if_no_elements, &if_elements); Bind(&if_elements); { // Second chance, the object may be using the empty slow element // dictionary. Node* slow_empty_dictionary = LoadRoot(Heap::kEmptySlowElementDictionaryRootIndex); BranchIfWordNotEqual(elements, slow_empty_dictionary, use_runtime, &if_no_elements); } Bind(&if_no_elements); { // Update map prototype. current_js_object.Bind(LoadMapPrototype(current_map.value())); BranchIfWordEqual(current_js_object.value(), NullConstant(), use_cache, &next); } } Bind(&next); { // For all objects but the receiver, check that the cache is empty. current_map.Bind(LoadMap(current_js_object.value())); Node* enum_length = EnumLength(current_map.value()); Node* zero_constant = SmiConstant(Smi::FromInt(0)); BranchIf(WordEqual(enum_length, zero_constant), &loop, use_runtime); } } Node* CodeStubAssembler::CreateWeakCellInFeedbackVector(Node* feedback_vector, Node* slot, Node* value) { Node* size = IntPtrConstant(WeakCell::kSize); Node* cell = Allocate(size, compiler::CodeAssembler::kPretenured); // Initialize the WeakCell. StoreObjectFieldRoot(cell, WeakCell::kMapOffset, Heap::kWeakCellMapRootIndex); StoreObjectField(cell, WeakCell::kValueOffset, value); StoreObjectFieldRoot(cell, WeakCell::kNextOffset, Heap::kTheHoleValueRootIndex); // Store the WeakCell in the feedback vector. StoreFixedArrayElement(feedback_vector, slot, cell, UPDATE_WRITE_BARRIER, CodeStubAssembler::SMI_PARAMETERS); return cell; } } // namespace internal } // namespace v8