// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Flags: --allow-natives-syntax // Test fast div and mod. function divmod(div_func, mod_func, x, y) { var div_answer = (div_func)(x); assertEquals(x / y, div_answer, x + "/" + y); var mod_answer = (mod_func)(x); assertEquals(x % y, mod_answer, x + "%" + y); var minus_div_answer = (div_func)(-x); assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y); var minus_mod_answer = (mod_func)(-x); assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y); } function run_tests_for(divisor) { print("(function(left) { return left / " + divisor + "; })"); var div_func = this.eval("(function(left) { return left / " + divisor + "; })"); var mod_func = this.eval("(function(left) { return left % " + divisor + "; })"); var exp; // Strange number test. divmod(div_func, mod_func, 0, divisor); divmod(div_func, mod_func, 1 / 0, divisor); // Floating point number test. for (exp = -1024; exp <= 1024; exp += 8) { divmod(div_func, mod_func, Math.pow(2, exp), divisor); divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor); divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor); } // Integer number test. for (exp = 0; exp <= 32; exp++) { divmod(div_func, mod_func, 1 << exp, divisor); divmod(div_func, mod_func, (1 << exp) + 1, divisor); divmod(div_func, mod_func, (1 << exp) - 1, divisor); } divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor); divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor); } var divisors = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0x1000000, 0x40000000, 12, 60, 100, 1000 * 60 * 60 * 24]; for (var i = 0; i < divisors.length; i++) { run_tests_for(divisors[i]); } // Test extreme corner cases of modulo. // Computes the modulo by slow but lossless operations. function compute_mod(dividend, divisor) { // Return NaN if either operand is NaN, if divisor is 0 or // dividend is an infinity. Return dividend if divisor is an infinity. if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; } var sign = 1; if (dividend < 0) { dividend = -dividend; sign = -1; } if (dividend == Infinity) { return NaN; } if (divisor < 0) { divisor = -divisor; } if (divisor == Infinity) { return sign * dividend; } function rec_mod(a, b) { // Subtracts maximal possible multiplum of b from a. if (a >= b) { a = rec_mod(a, 2 * b); if (a >= b) { a -= b; } } return a; } return sign * rec_mod(dividend, divisor); } (function () { var large_non_smi = 1234567891234.12245; var small_non_smi = 43.2367243; var repeating_decimal = 0.3; var finite_decimal = 0.5; var smi = 43; var power_of_two = 64; var min_normal = Number.MIN_VALUE * Math.pow(2, 52); var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1); // All combinations of NaN, Infinity, normal, denormal and zero. var example_numbers = [ NaN, 0, // Due to a bug in fmod(), modulos involving denormals // return the wrong result for glibc <= 2.16. // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048 Number.MIN_VALUE, 3 * Number.MIN_VALUE, max_denormal, min_normal, repeating_decimal, finite_decimal, smi, power_of_two, small_non_smi, large_non_smi, Number.MAX_VALUE, Infinity ]; function doTest(a, b) { var exp = compute_mod(a, b); var act = a % b; assertEquals(exp, act, a + " % " + b); } for (var i = 0; i < example_numbers.length; i++) { for (var j = 0; j < example_numbers.length; j++) { var a = example_numbers[i]; var b = example_numbers[j]; doTest(a,b); doTest(-a,b); doTest(a,-b); doTest(-a,-b); } } })(); (function () { // Edge cases var zero = 0; var minsmi32 = -0x40000000; var minsmi64 = -0x80000000; var somenum = 3532; assertEquals(-0, zero / -1, "0 / -1"); assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32"); assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64"); assertEquals(somenum, somenum % -0x40000000, "%minsmi-32"); assertEquals(somenum, somenum % -0x80000000, "%minsmi-64"); })(); // Side-effect-free expressions containing bit operations use // an optimized compiler with int32 values. Ensure that modulus // produces negative zeros correctly. function negative_zero_modulus_test() { var x = 4; var y = -4; x = x + x - x; y = y + y - y; var z = (y | y | y | y) % x; assertEquals(-1 / 0, 1 / z); z = (x | x | x | x) % x; assertEquals(1 / 0, 1 / z); z = (y | y | y | y) % y; assertEquals(-1 / 0, 1 / z); z = (x | x | x | x) % y; assertEquals(1 / 0, 1 / z); } negative_zero_modulus_test(); function lithium_integer_mod() { var left_operands = [ 0, 305419896, // 0x12345678 ]; // Test the standard lithium code for modulo opeartions. var mod_func; for (var i = 0; i < left_operands.length; i++) { for (var j = 0; j < divisors.length; j++) { mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })"); assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]); assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]); } } var results_powers_of_two = [ // 0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // 305419896 == 0x12345678 [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896], ]; // Test the lithium code for modulo operations with a variable power of two // right hand side operand. for (var i = 0; i < left_operands.length; i++) { for (var j = 0; j < 31; j++) { assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j)); assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j)); assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j)); assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j)); } } // Test the lithium code for modulo operations with a constant power of two // right hand side operand. for (var i = 0; i < left_operands.length; i++) { // With positive left hand side operand. assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0)); assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1)); assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2)); assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3)); assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4)); assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5)); assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6)); assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7)); assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8)); assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9)); assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10)); assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11)); assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12)); assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13)); assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14)); assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15)); assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16)); assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17)); assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18)); assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19)); assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20)); assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21)); assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22)); assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23)); assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24)); assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25)); assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26)); assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27)); assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28)); assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29)); assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30)); // With negative left hand side operand. assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0)); assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1)); assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2)); assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3)); assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4)); assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5)); assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6)); assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7)); assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8)); assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9)); assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10)); assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11)); assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12)); assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13)); assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14)); assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15)); assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16)); assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17)); assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18)); assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19)); assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20)); assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21)); assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22)); assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23)); assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24)); assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25)); assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26)); assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27)); assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28)); assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29)); assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30)); } } %PrepareFunctionForOptimization(lithium_integer_mod); lithium_integer_mod(); %OptimizeFunctionOnNextCall(lithium_integer_mod) lithium_integer_mod();