// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "v8.h" #include "compilation-cache.h" #include "execution.h" #include "factory.h" #include "macro-assembler.h" #include "global-handles.h" #include "stub-cache.h" #include "cctest.h" using namespace v8::internal; static v8::Persistent env; static void InitializeVM() { if (env.IsEmpty()) env = v8::Context::New(); v8::HandleScope scope; env->Enter(); } // Go through all incremental marking steps in one swoop. static void SimulateIncrementalMarking() { MarkCompactCollector* collector = HEAP->mark_compact_collector(); IncrementalMarking* marking = HEAP->incremental_marking(); if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { marking->Start(); } CHECK(marking->IsMarking()); while (!marking->IsComplete()) { marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsComplete()); } static void CheckMap(Map* map, int type, int instance_size) { CHECK(map->IsHeapObject()); #ifdef DEBUG CHECK(HEAP->Contains(map)); #endif CHECK_EQ(HEAP->meta_map(), map->map()); CHECK_EQ(type, map->instance_type()); CHECK_EQ(instance_size, map->instance_size()); } TEST(HeapMaps) { InitializeVM(); CheckMap(HEAP->meta_map(), MAP_TYPE, Map::kSize); CheckMap(HEAP->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize); CheckMap(HEAP->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel); CheckMap(HEAP->string_map(), STRING_TYPE, kVariableSizeSentinel); } static void CheckOddball(Isolate* isolate, Object* obj, const char* string) { CHECK(obj->IsOddball()); bool exc; Object* print_string = *Execution::ToString(Handle(obj, isolate), &exc); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckSmi(Isolate* isolate, int value, const char* string) { bool exc; Object* print_string = *Execution::ToString(Handle(Smi::FromInt(value), isolate), &exc); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckNumber(Isolate* isolate, double value, const char* string) { Object* obj = HEAP->NumberFromDouble(value)->ToObjectChecked(); CHECK(obj->IsNumber()); bool exc; Object* print_string = *Execution::ToString(Handle(obj, isolate), &exc); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckFindCodeObject(Isolate* isolate) { // Test FindCodeObject #define __ assm. Assembler assm(isolate, NULL, 0); __ nop(); // supported on all architectures CodeDesc desc; assm.GetCode(&desc); Heap* heap = isolate->heap(); Object* code = heap->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked(); CHECK(code->IsCode()); HeapObject* obj = HeapObject::cast(code); Address obj_addr = obj->address(); for (int i = 0; i < obj->Size(); i += kPointerSize) { Object* found = heap->FindCodeObject(obj_addr + i); CHECK_EQ(code, found); } Object* copy = heap->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked(); CHECK(copy->IsCode()); HeapObject* obj_copy = HeapObject::cast(copy); Object* not_right = heap->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != code); } TEST(HeapObjects) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope sc; Object* value = heap->NumberFromDouble(1.000123)->ToObjectChecked(); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = heap->NumberFromDouble(1.0)->ToObjectChecked(); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = heap->NumberFromInt32(1024)->ToObjectChecked(); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = heap->NumberFromInt32(Smi::kMinValue)->ToObjectChecked(); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Smi::cast(value)->value()); value = heap->NumberFromInt32(Smi::kMaxValue)->ToObjectChecked(); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Smi::cast(value)->value()); #ifndef V8_TARGET_ARCH_X64 // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = heap->NumberFromInt32(Smi::kMinValue - 1)->ToObjectChecked(); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif MaybeObject* maybe_value = heap->NumberFromUint32(static_cast(Smi::kMaxValue) + 1); value = maybe_value->ToObjectChecked(); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); maybe_value = heap->NumberFromUint32(static_cast(1) << 31); value = maybe_value->ToObjectChecked(); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(heap->nan_value()->IsNumber()); CHECK(isnan(heap->nan_value()->Number())); Handle s = FACTORY->NewStringFromAscii(CStrVector("fisk hest ")); CHECK(s->IsString()); CHECK_EQ(10, s->length()); String* object_string = String::cast(heap->Object_string()); CHECK( Isolate::Current()->context()->global_object()->HasLocalProperty( object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Failure::RetryAfterGC(NEW_SPACE)->IsFailure()); CHECK_EQ(NEW_SPACE, Failure::RetryAfterGC(NEW_SPACE)->allocation_space()); CHECK_EQ(OLD_POINTER_SPACE, Failure::RetryAfterGC(OLD_POINTER_SPACE)->allocation_space()); CHECK(Failure::Exception()->IsFailure()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); v8::HandleScope sc; // Check GC. heap->CollectGarbage(NEW_SPACE); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name, factory->undefined_value()); Handle initial_map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); function->set_initial_map(*initial_map); Isolate::Current()->context()->global_object()->SetProperty( *name, *function, NONE, kNonStrictMode)->ToObjectChecked(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); obj->SetProperty( *prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked(); obj->SetProperty( *prop_namex, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name)); CHECK_EQ(Smi::FromInt(24), obj->GetProperty(*prop_namex)); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(Isolate::Current()->context()->global_object()-> HasLocalProperty(*name)); // Check function is retained. Object* func_value = Isolate::Current()->context()->global_object()-> GetProperty(*name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); Handle function(JSFunction::cast(func_value)); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); Isolate::Current()->context()->global_object()->SetProperty( *obj_name, *obj, NONE, kNonStrictMode)->ToObjectChecked(); obj->SetProperty( *prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(Isolate::Current()->context()->global_object()-> HasLocalProperty(*obj_name)); CHECK(Isolate::Current()->context()->global_object()-> GetProperty(*obj_name)->ToObjectChecked()->IsJSObject()); Object* obj = Isolate::Current()->context()->global_object()-> GetProperty(*obj_name)->ToObjectChecked(); JSObject* js_obj = JSObject::cast(obj); CHECK_EQ(Smi::FromInt(23), js_obj->GetProperty(*prop_name)); } static void VerifyStringAllocation(const char* string) { v8::HandleScope scope; Handle s = FACTORY->NewStringFromUtf8(CStrVector(string)); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { InitializeVM(); VerifyStringAllocation("a"); VerifyStringAllocation("ab"); VerifyStringAllocation("abc"); VerifyStringAllocation("abcd"); VerifyStringAllocation("fiskerdrengen er paa havet"); } TEST(LocalHandles) { InitializeVM(); v8::HandleScope scope; const char* name = "Kasper the spunky"; Handle string = FACTORY->NewStringFromAscii(CStrVector(name)); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromAscii(CStrVector("fisk")); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); global_handles->Destroy(h1.location()); global_handles->Destroy(h3.location()); CHECK_EQ(*h4, *h2); global_handles->Destroy(h2.location()); global_handles->Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback(v8::Isolate* isolate, v8::Persistent handle, void* id) { if (1234 == reinterpret_cast(id)) WeakPointerCleared = true; handle.Dispose(isolate); } TEST(WeakGlobalHandlesScavenge) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromAscii(CStrVector("fisk")); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } global_handles->MakeWeak(h2.location(), reinterpret_cast(1234), NULL, &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->PerformScavenge(); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); global_handles->Destroy(h1.location()); global_handles->Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromAscii(CStrVector("fisk")); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); global_handles->MakeWeak(h2.location(), reinterpret_cast(1234), NULL, &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); global_handles->Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromAscii(CStrVector("fisk")); h = global_handles->Create(*i); } global_handles->MakeWeak(h.location(), reinterpret_cast(1234), NULL, &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->PerformScavenge(); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { for (const char* string = *strings; *strings != 0; string = *strings++) { Object* a; MaybeObject* maybe_a = HEAP->InternalizeUtf8String(string); // InternalizeUtf8String may return a failure if a GC is needed. if (!maybe_a->ToObject(&a)) continue; CHECK(a->IsInternalizedString()); Object* b; MaybeObject* maybe_b = HEAP->InternalizeUtf8String(string); if (!maybe_b->ToObject(&b)) continue; CHECK_EQ(b, a); CHECK(String::cast(b)->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { InitializeVM(); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { InitializeVM(); v8::HandleScope sc; Handle name = FACTORY->InternalizeUtf8String("theFunction"); Handle function = FACTORY->NewFunction(name, FACTORY->undefined_value()); Handle initial_map = FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); function->set_initial_map(*initial_map); Handle prop_name = FACTORY->InternalizeUtf8String("theSlot"); Handle obj = FACTORY->NewJSObject(function); obj->SetProperty( *prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name)); // Check that we can add properties to function objects. function->SetProperty( *prop_name, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(Smi::FromInt(24), function->GetProperty(*prop_name)); } TEST(ObjectProperties) { InitializeVM(); v8::HandleScope sc; String* object_string = String::cast(HEAP->Object_string()); Object* raw_object = Isolate::Current()->context()->global_object()-> GetProperty(object_string)->ToObjectChecked(); JSFunction* object_function = JSFunction::cast(raw_object); Handle constructor(object_function); Handle obj = FACTORY->NewJSObject(constructor); Handle first = FACTORY->InternalizeUtf8String("first"); Handle second = FACTORY->InternalizeUtf8String("second"); // check for empty CHECK(!obj->HasLocalProperty(*first)); // add first obj->SetProperty( *first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); CHECK(obj->HasLocalProperty(*first)); // delete first CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION)); CHECK(!obj->HasLocalProperty(*first)); // add first and then second obj->SetProperty( *first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); obj->SetProperty( *second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked(); CHECK(obj->HasLocalProperty(*first)); CHECK(obj->HasLocalProperty(*second)); // delete first and then second CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION)); CHECK(obj->HasLocalProperty(*second)); CHECK(obj->DeleteProperty(*second, JSObject::NORMAL_DELETION)); CHECK(!obj->HasLocalProperty(*first)); CHECK(!obj->HasLocalProperty(*second)); // add first and then second obj->SetProperty( *first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); obj->SetProperty( *second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked(); CHECK(obj->HasLocalProperty(*first)); CHECK(obj->HasLocalProperty(*second)); // delete second and then first CHECK(obj->DeleteProperty(*second, JSObject::NORMAL_DELETION)); CHECK(obj->HasLocalProperty(*first)); CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION)); CHECK(!obj->HasLocalProperty(*first)); CHECK(!obj->HasLocalProperty(*second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = FACTORY->NewStringFromAscii(CStrVector(string1)); obj->SetProperty( *s1, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); Handle s1_string = FACTORY->InternalizeUtf8String(string1); CHECK(obj->HasLocalProperty(*s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = FACTORY->InternalizeUtf8String(string2); obj->SetProperty( *s2_string, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); Handle s2 = FACTORY->NewStringFromAscii(CStrVector(string2)); CHECK(obj->HasLocalProperty(*s2)); } TEST(JSObjectMaps) { InitializeVM(); v8::HandleScope sc; Handle name = FACTORY->InternalizeUtf8String("theFunction"); Handle function = FACTORY->NewFunction(name, FACTORY->undefined_value()); Handle initial_map = FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); function->set_initial_map(*initial_map); Handle prop_name = FACTORY->InternalizeUtf8String("theSlot"); Handle obj = FACTORY->NewJSObject(function); // Set a propery obj->SetProperty( *prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name)); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { InitializeVM(); v8::HandleScope sc; Handle name = FACTORY->InternalizeUtf8String("Array"); Object* raw_object = Isolate::Current()->context()->global_object()-> GetProperty(*name)->ToObjectChecked(); Handle function = Handle( JSFunction::cast(raw_object)); // Allocate the object. Handle object = FACTORY->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. array->Initialize(0)->ToObjectChecked(); // Set array length to 0. array->SetElementsLength(Smi::FromInt(0))->ToObjectChecked(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. array->SetElement(0, *name, NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(Smi::FromInt(1), array->length()); CHECK_EQ(array->GetElement(0), *name); // Set array length with larger than smi value. Handle length = FACTORY->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); array->SetElementsLength(*length)->ToObjectChecked(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. array->SetElement(int_length, *name, NONE, kNonStrictMode)->ToObjectChecked(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); CHECK_EQ(array->GetElement(int_length), *name); CHECK_EQ(array->GetElement(0), *name); } TEST(JSObjectCopy) { InitializeVM(); v8::HandleScope sc; String* object_string = String::cast(HEAP->Object_string()); Object* raw_object = Isolate::Current()->context()->global_object()-> GetProperty(object_string)->ToObjectChecked(); JSFunction* object_function = JSFunction::cast(raw_object); Handle constructor(object_function); Handle obj = FACTORY->NewJSObject(constructor); Handle first = FACTORY->InternalizeUtf8String("first"); Handle second = FACTORY->InternalizeUtf8String("second"); obj->SetProperty( *first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); obj->SetProperty( *second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked(); obj->SetElement(0, *first, NONE, kNonStrictMode)->ToObjectChecked(); obj->SetElement(1, *second, NONE, kNonStrictMode)->ToObjectChecked(); // Make the clone. Handle clone = Copy(obj); CHECK(!clone.is_identical_to(obj)); CHECK_EQ(obj->GetElement(0), clone->GetElement(0)); CHECK_EQ(obj->GetElement(1), clone->GetElement(1)); CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*first)); CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*second)); // Flip the values. clone->SetProperty( *first, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked(); clone->SetProperty( *second, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked(); clone->SetElement(0, *second, NONE, kNonStrictMode)->ToObjectChecked(); clone->SetElement(1, *first, NONE, kNonStrictMode)->ToObjectChecked(); CHECK_EQ(obj->GetElement(1), clone->GetElement(0)); CHECK_EQ(obj->GetElement(0), clone->GetElement(1)); CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*first)); CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*second)); } TEST(StringAllocation) { InitializeVM(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope; char* non_ascii = NewArray(3 * length + 1); char* ascii = NewArray(length + 1); non_ascii[3 * length] = 0; ascii[length] = 0; for (int i = 0; i < length; i++) { ascii[i] = 'a'; non_ascii[3 * i] = chars[0]; non_ascii[3 * i + 1] = chars[1]; non_ascii[3 * i + 2] = chars[2]; } Handle non_ascii_sym = FACTORY->InternalizeUtf8String( Vector(non_ascii, 3 * length)); CHECK_EQ(length, non_ascii_sym->length()); Handle ascii_sym = FACTORY->InternalizeOneByteString(OneByteVector(ascii, length)); CHECK_EQ(length, ascii_sym->length()); Handle non_ascii_str = FACTORY->NewStringFromUtf8(Vector(non_ascii, 3 * length)); non_ascii_str->Hash(); CHECK_EQ(length, non_ascii_str->length()); Handle ascii_str = FACTORY->NewStringFromUtf8(Vector(ascii, length)); ascii_str->Hash(); CHECK_EQ(length, ascii_str->length()); DeleteArray(non_ascii); DeleteArray(ascii); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { InitializeVM(); v8::HandleScope scope; // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = FACTORY->NewJSArray(10); objs[next_objs_index++] = FACTORY->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = FACTORY->NewStringFromAscii(CStrVector("abcdefghij")); objs[next_objs_index++] = FACTORY->NewStringFromAscii(CStrVector("abcdefghij"), TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxNonCodeHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = FACTORY->NewStringFromAscii(CStrVector(str), TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(HEAP, objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { InitializeVM(); v8::HandleScope scope; Handle runaway; { v8::HandleScope nested; Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. InitializeVM(); // Increase the chance of 'bump-the-pointer' allocation in old space. HEAP->CollectAllGarbage(Heap::kNoGCFlags); v8::HandleScope scope; // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. Handle object_ctor( Isolate::Current()->native_context()->object_function()); CHECK(object_ctor->has_initial_map()); Handle object_map(object_ctor->initial_map()); // Create a map with single inobject property. Handle my_map = FACTORY->CopyMap(object_map, 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, HEAP->MaxObjectSizeInNewSpace()); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = HEAP->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!HEAP->always_allocate()); Object* array = HEAP->AllocateFixedArray(allocation_len)->ToObjectChecked(); CHECK(!array->IsFailure()); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!HEAP->always_allocate()); Object* array = HEAP->AllocateFixedArray(fixed_array_len)->ToObjectChecked(); CHECK(!array->IsFailure()); CHECK(new_space->Contains(array)); Object* object = HEAP->AllocateJSObjectFromMap(*my_map)->ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. jsobject->FastPropertyAtPut(-1, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = HEAP->old_pointer_space()->top(); AlwaysAllocateScope aa_scope; Object* clone_obj = HEAP->CopyJSObject(jsobject)->ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(HEAP->old_pointer_space()->Contains(clone->address())); } TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; InitializeVM(); v8::HandleScope scope; const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = FACTORY->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope; CompileRun(source); } // Check function is compiled. Object* func_value = Isolate::Current()->context()->global_object()-> GetProperty(*foo_name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); Handle function(JSFunction::cast(func_value)); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; InitializeVM(); v8::HandleScope scope; const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = FACTORY->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope; CompileRun(source); } // Check function is compiled. Object* func_value = Isolate::Current()->context()->global_object()-> GetProperty(*foo_name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); Handle function(JSFunction::cast(func_value)); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope; CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); if (!function->next_function_link()->IsUndefined()) break; HEAP->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope; CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; InitializeVM(); v8::HandleScope scope; const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = FACTORY->InternalizeUtf8String("foo"); Handle bar_name = FACTORY->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. HEAP->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope; CompileRun(source); } // Check functions are compiled. Object* func_value = Isolate::Current()->context()->global_object()-> GetProperty(*foo_name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); Handle function(JSFunction::cast(func_value)); CHECK(function->shared()->is_compiled()); Object* func_value2 = Isolate::Current()->context()->global_object()-> GetProperty(*bar_name)->ToObjectChecked(); CHECK(func_value2->IsJSFunction()); Handle function2(JSFunction::cast(func_value2)); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope; CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(); *function2.location() = NULL; HEAP->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = FACTORY->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope; CompileRun(source); } // Check function is compiled. Object* func_value = Isolate::Current()->context()->global_object()-> GetProperty(*foo_name)->ToObjectChecked(); CHECK(func_value->IsJSFunction()); Handle function(JSFunction::cast(func_value)); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope; CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = HEAP->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; v8::Persistent ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(); bool opt = (FLAG_always_opt && i::V8::UseCrankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope v8::HandleScope scope; const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { HEAP->PerformScavenge(); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { HEAP->PerformScavenge(); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { HEAP->PerformScavenge(); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. HEAP->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { ctx[i].Dispose(ctx[i]->GetIsolate()); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { HEAP->PerformScavenge(); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = Isolate::Current(); static const int kNumTestContexts = 10; v8::HandleScope scope; v8::Persistent ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && i::V8::UseCrankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. HEAP->CollectAllGarbage(Heap::kNoGCFlags); HEAP->CollectAllGarbage(Heap::kNoGCFlags); HEAP->CollectAllGarbage(Heap::kNoGCFlags); HEAP->CollectAllGarbage(Heap::kNoGCFlags); HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK(HEAP->old_pointer_space()->IsLazySweepingComplete()); int initial_size = static_cast(HEAP->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // lazy sweeping kicks in for subsequent GC runs. AlwaysAllocateScope always_allocate; int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { HEAP->AllocateFixedArray(8192, TENURED)->ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(HEAP->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. HEAP->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(HEAP->SizeOfObjects())); // Advancing the sweeper step-wise should not change the heap size. while (!HEAP->old_pointer_space()->IsLazySweepingComplete()) { HEAP->old_pointer_space()->AdvanceSweeper(KB); CHECK_EQ(initial_size, static_cast(HEAP->SizeOfObjects())); } } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { InitializeVM(); HEAP->EnsureHeapIsIterable(); intptr_t size_of_objects_1 = HEAP->SizeOfObjects(); HeapIterator iterator(HEAP); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. v8::HandleScope scope; AlwaysAllocateScope always_allocate; intptr_t available = new_space->EffectiveCapacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(HEAP->InNewSpace(*FACTORY->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { InitializeVM(); NewSpace* new_space = HEAP->new_space(); if (HEAP->ReservedSemiSpaceSize() == HEAP->InitialSemiSpaceSize() || HEAP->MaxSemiSpaceSize() == HEAP->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->Capacity(); FillUpNewSpace(new_space); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. HEAP->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { InitializeVM(); if (HEAP->ReservedSemiSpaceSize() == HEAP->InitialSemiSpaceSize() || HEAP->MaxSemiSpaceSize() == HEAP->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope; NewSpace* new_space = HEAP->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); HEAP->CollectAllAvailableGarbage(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(HEAP); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::HandleScope outer_scope; v8::Persistent ctx1 = v8::Context::New(); v8::Persistent ctx2 = v8::Context::New(); ctx1->Enter(); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope; CompileRun("var v = {x: 42}"); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0)); ctx2->Exit(); ctx1->Exit(); ctx1.Dispose(ctx1->GetIsolate()); v8::V8::ContextDisposedNotification(); } HEAP->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2.Dispose(ctx2->GetIsolate()); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::HandleScope outer_scope; v8::Persistent ctx1 = v8::Context::New(); v8::Persistent ctx2 = v8::Context::New(); ctx1->Enter(); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope; CompileRun("var v = function() { return 42; }"); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0)); ctx2->Exit(); ctx1->Exit(); ctx1.Dispose(ctx1->GetIsolate()); v8::V8::ContextDisposedNotification(); } HEAP->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2.Dispose(ctx2->GetIsolate()); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::HandleScope outer_scope; v8::Persistent ctx1 = v8::Context::New(); v8::Persistent ctx2 = v8::Context::New(); ctx1->Enter(); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope; CompileRun("var v = [42, 43]"); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0)); ctx2->Exit(); ctx1->Exit(); ctx1.Dispose(ctx1->GetIsolate()); v8::V8::ContextDisposedNotification(); } HEAP->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2.Dispose(ctx2->GetIsolate()); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::HandleScope outer_scope; v8::Persistent ctx1 = v8::Context::New(); v8::Persistent ctx2 = v8::Context::New(); ctx1->Enter(); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope; CompileRun("var v = { y: 42}"); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(0)); ctx2->Exit(); ctx1->Exit(); ctx1.Dispose(ctx1->GetIsolate()); v8::V8::ContextDisposedNotification(); } HEAP->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2.Dispose(ctx2->GetIsolate()); HEAP->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif InitializeVM(); if (!i::V8::UseCrankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope; { v8::HandleScope scope; CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = HEAP->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope; v8::Handle global = v8::Context::GetCurrent()->Global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } HEAP->incremental_marking()->set_should_hurry(true); HEAP->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { InitializeVM(); v8::HandleScope scope; CompileRun( "var base = {};" "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("base")))); // Verify that only dead prototype transitions are cleared. CHECK_EQ(10, baseObject->map()->NumberOfProtoTransitions()); HEAP->CollectAllGarbage(Heap::kNoGCFlags); const int transitions = 10 - 3; CHECK_EQ(transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = 0; i < transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsTheHole() || proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = HEAP->old_pointer_space(); { AlwaysAllocateScope always_allocate; SimulateFullSpace(space); prototype = FACTORY->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); baseObject->SetPrototype(*prototype, false)->ToObjectChecked(); CHECK(map->GetPrototypeTransition(*prototype)->IsMap()); HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK(map->GetPrototypeTransition(*prototype)->IsMap()); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif InitializeVM(); if (!i::V8::UseCrankshaft()) return; v8::HandleScope outer_scope; { v8::HandleScope scope; CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = HEAP->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment HEAP->global_ic_age(). const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. HEAP->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(HEAP->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif InitializeVM(); if (!i::V8::UseCrankshaft()) return; v8::HandleScope outer_scope; { v8::HandleScope scope; CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); HEAP->incremental_marking()->Abort(); // The following two calls will increment HEAP->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); CHECK_EQ(HEAP->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; InitializeVM(); if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope; SimulateFullSpace(HEAP->new_space()); AlwaysAllocateScope always_allocate; v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(HEAP->InNewSpace(*o)); } // Test pretenuring of array literals allocated with HAllocate. TEST(OptimizedPretenuringArrayLiterals) { i::FLAG_allow_natives_syntax = true; InitializeVM(); if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope; AlwaysAllocateScope always_allocate; v8::Local res = CompileRun( "function f() {" " var numbers = new Array(1, 2, 3);" " numbers[0] = 3.14;" " return numbers;" "};" "f(); f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(static_cast(3.14), v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); // TODO(hpayer): remove InNewSpace check and test if object was allocated // in old pointer space. CHECK(!HEAP->InOldPointerSpace(*o)); CHECK(HEAP->InNewSpace(*o)); } // Test regular array literals allocation. TEST(OptimizedAllocationArrayLiterals) { i::FLAG_allow_natives_syntax = true; InitializeVM(); if (!i::V8::UseCrankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope; AlwaysAllocateScope always_allocate; v8::Local res = CompileRun( "function f() {" " var numbers = new Array(1, 2, 3);" " numbers[0] = 3.14;" " return numbers;" "};" "f(); f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(static_cast(3.14), v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(HEAP->InNewSpace(*o)); } static int CountMapTransitions(Map* map) { return map->transitions()->number_of_transitions(); } // Test that map transitions are cleared and maps are collected with // incremental marking as well. TEST(Regress1465) { i::FLAG_allow_natives_syntax = true; i::FLAG_trace_incremental_marking = true; InitializeVM(); v8::HandleScope scope; static const int transitions_count = 256; { AlwaysAllocateScope always_allocate; for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; OS::SNPrintF(buffer, "var o = new Object; o.prop%d = %d;", i, i); CompileRun(buffer.start()); } CompileRun("var root = new Object;"); } Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("root")))); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(transitions_count, transitions_before); SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(1, transitions_after); } TEST(Regress2143a) { i::FLAG_collect_maps = true; i::FLAG_incremental_marking = true; InitializeVM(); v8::HandleScope scope; // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); SimulateIncrementalMarking(); // Compile a StoreIC that performs the prepared map transition. This // will restart incremental marking and should make sure the root is // marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(root);"); // This bug only triggers with aggressive IC clearing. HEAP->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. HEAP->CollectAllGarbage(Heap::kNoGCFlags); Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("root")))); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(Regress2143b) { i::FLAG_collect_maps = true; i::FLAG_incremental_marking = true; i::FLAG_allow_natives_syntax = true; InitializeVM(); v8::HandleScope scope; // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); SimulateIncrementalMarking(); // Compile an optimized LStoreNamedField that performs the prepared // map transition. This will restart incremental marking and should // make sure the root is marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(new Object);" "%OptimizeFunctionOnNextCall(f);" "f(root);" "%DeoptimizeFunction(f);"); // This bug only triggers with aggressive IC clearing. HEAP->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. HEAP->CollectAllGarbage(Heap::kNoGCFlags); Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("root")))); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(ReleaseOverReservedPages) { i::FLAG_trace_gc = true; // The optimizer can allocate stuff, messing up the test. i::FLAG_crankshaft = false; i::FLAG_always_opt = false; InitializeVM(); v8::HandleScope scope; static const int number_of_test_pages = 20; // Prepare many pages with low live-bytes count. PagedSpace* old_pointer_space = HEAP->old_pointer_space(); CHECK_EQ(1, old_pointer_space->CountTotalPages()); for (int i = 0; i < number_of_test_pages; i++) { AlwaysAllocateScope always_allocate; SimulateFullSpace(old_pointer_space); FACTORY->NewFixedArray(1, TENURED); } CHECK_EQ(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); // Triggering one GC will cause a lot of garbage to be discovered but // even spread across all allocated pages. HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered for preparation"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); // Triggering subsequent GCs should cause at least half of the pages // to be released to the OS after at most two cycles. HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 1"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); HEAP->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 2"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages() * 2); // Triggering a last-resort GC should cause all pages to be released to the // OS so that other processes can seize the memory. If we get a failure here // where there are 2 pages left instead of 1, then we should increase the // size of the first page a little in SizeOfFirstPage in spaces.cc. The // first page should be small in order to reduce memory used when the VM // boots, but if the 20 small arrays don't fit on the first page then that's // an indication that it is too small. HEAP->CollectAllAvailableGarbage("triggered really hard"); CHECK_EQ(1, old_pointer_space->CountTotalPages()); } TEST(Regress2237) { InitializeVM(); v8::HandleScope scope; Handle slice(HEAP->empty_string()); { // Generate a parent that lives in new-space. v8::HandleScope inner_scope; const char* c = "This text is long enough to trigger sliced strings."; Handle s = FACTORY->NewStringFromAscii(CStrVector(c)); CHECK(s->IsSeqOneByteString()); CHECK(HEAP->InNewSpace(*s)); // Generate a sliced string that is based on the above parent and // lives in old-space. SimulateFullSpace(HEAP->new_space()); AlwaysAllocateScope always_allocate; Handle t = FACTORY->NewProperSubString(s, 5, 35); CHECK(t->IsSlicedString()); CHECK(!HEAP->InNewSpace(*t)); *slice.location() = *t.location(); } CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString()); HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString()); } #ifdef OBJECT_PRINT TEST(PrintSharedFunctionInfo) { InitializeVM(); v8::HandleScope scope; const char* source = "f = function() { return 987654321; }\n" "g = function() { return 123456789; }\n"; CompileRun(source); Handle g = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("g")))); AssertNoAllocation no_alloc; g->shared()->PrintLn(); } #endif // OBJECT_PRINT TEST(Regress2211) { InitializeVM(); v8::HandleScope scope; v8::Handle value = v8_str("val string"); Smi* hash = Smi::FromInt(321); Heap* heap = Isolate::Current()->heap(); for (int i = 0; i < 2; i++) { // Store identity hash first and common hidden property second. v8::Handle obj = v8::Object::New(); Handle internal_obj = v8::Utils::OpenHandle(*obj); CHECK(internal_obj->HasFastProperties()); // In the first iteration, set hidden value first and identity hash second. // In the second iteration, reverse the order. if (i == 0) obj->SetHiddenValue(v8_str("key string"), value); MaybeObject* maybe_obj = internal_obj->SetIdentityHash(hash, ALLOW_CREATION); CHECK(!maybe_obj->IsFailure()); if (i == 1) obj->SetHiddenValue(v8_str("key string"), value); // Check values. CHECK_EQ(hash, internal_obj->GetHiddenProperty(heap->identity_hash_string())); CHECK(value->Equals(obj->GetHiddenValue(v8_str("key string")))); // Check size. DescriptorArray* descriptors = internal_obj->map()->instance_descriptors(); ObjectHashTable* hashtable = ObjectHashTable::cast( internal_obj->FastPropertyAt(descriptors->GetFieldIndex(0))); // HashTable header (5) and 4 initial entries (8). CHECK_LE(hashtable->SizeFor(hashtable->length()), 13 * kPointerSize); } } TEST(IncrementalMarkingClearsTypeFeedbackCells) { if (i::FLAG_always_opt) return; InitializeVM(); v8::HandleScope scope; v8::Local fun1, fun2; { LocalContext env; CompileRun("function fun() {};"); fun1 = env->Global()->Get(v8_str("fun")); } { LocalContext env; CompileRun("function fun() {};"); fun2 = env->Global()->Get(v8_str("fun")); } // Prepare function f that contains type feedback for closures // originating from two different native contexts. v8::Context::GetCurrent()->Global()->Set(v8_str("fun1"), fun1); v8::Context::GetCurrent()->Global()->Set(v8_str("fun2"), fun2); CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); Handle cells(TypeFeedbackInfo::cast( f->shared()->code()->type_feedback_info())->type_feedback_cells()); CHECK_EQ(2, cells->CellCount()); CHECK(cells->Cell(0)->value()->IsJSFunction()); CHECK(cells->Cell(1)->value()->IsJSFunction()); SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(2, cells->CellCount()); CHECK(cells->Cell(0)->value()->IsTheHole()); CHECK(cells->Cell(1)->value()->IsTheHole()); } static Code* FindFirstIC(Code* code, Code::Kind kind) { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_CONTEXT); for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target = Code::GetCodeFromTargetAddress(info->target_address()); if (target->is_inline_cache_stub() && target->kind() == kind) { return target; } } return NULL; } TEST(IncrementalMarkingPreservesMonomorhpicIC) { if (i::FLAG_always_opt) return; InitializeVM(); v8::HandleScope scope; // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun("function fun() { this.x = 1; }; var obj = new fun();" "function f(o) { return o.x; } f(obj); f(obj);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == MONOMORPHIC); SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_after->ic_state() == MONOMORPHIC); } TEST(IncrementalMarkingClearsMonomorhpicIC) { if (i::FLAG_always_opt) return; InitializeVM(); v8::HandleScope scope; v8::Local obj1; { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(v8_str("obj")); } // Prepare function f that contains a monomorphic IC for object // originating from a different native context. v8::Context::GetCurrent()->Global()->Set(v8_str("obj1"), obj1); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == MONOMORPHIC); // Fire context dispose notification. v8::V8::ContextDisposedNotification(); SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_after->ic_state() == UNINITIALIZED); } TEST(IncrementalMarkingClearsPolymorhpicIC) { if (i::FLAG_always_opt) return; InitializeVM(); v8::HandleScope scope; v8::Local obj1, obj2; { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(v8_str("obj")); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(v8_str("obj")); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. v8::Context::GetCurrent()->Global()->Set(v8_str("obj1"), obj1); v8::Context::GetCurrent()->Global()->Set(v8_str("obj2"), obj2); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == POLYMORPHIC); // Fire context dispose notification. v8::V8::ContextDisposedNotification(); SimulateIncrementalMarking(); HEAP->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_after->ic_state() == UNINITIALIZED); } class SourceResource: public v8::String::ExternalAsciiStringResource { public: explicit SourceResource(const char* data) : data_(data), length_(strlen(data)) { } virtual void Dispose() { i::DeleteArray(data_); data_ = NULL; } const char* data() const { return data_; } size_t length() const { return length_; } bool IsDisposed() { return data_ == NULL; } private: const char* data_; size_t length_; }; void ReleaseStackTraceDataTest(const char* source) { // Test that the data retained by the Error.stack accessor is released // after the first time the accessor is fired. We use external string // to check whether the data is being released since the external string // resource's callback is fired when the external string is GC'ed. InitializeVM(); v8::HandleScope scope; SourceResource* resource = new SourceResource(i::StrDup(source)); { v8::HandleScope scope; v8::Handle source_string = v8::String::NewExternal(resource); v8::Script::Compile(source_string)->Run(); CHECK(!resource->IsDisposed()); } HEAP->CollectAllAvailableGarbage(); // External source has been released. CHECK(resource->IsDisposed()); delete resource; } TEST(ReleaseStackTraceData) { static const char* source1 = "var error = null; " /* Normal Error */ "try { " " throw new Error(); " "} catch (e) { " " error = e; " "} "; static const char* source2 = "var error = null; " /* Stack overflow */ "try { " " (function f() { f(); })(); " "} catch (e) { " " error = e; " "} "; ReleaseStackTraceDataTest(source1); ReleaseStackTraceDataTest(source2); } TEST(Regression144230) { InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // First make sure that the uninitialized CallIC stub is on a single page // that will later be selected as an evacuation candidate. { v8::HandleScope inner_scope; AlwaysAllocateScope always_allocate; SimulateFullSpace(heap->code_space()); isolate->stub_cache()->ComputeCallInitialize(9, RelocInfo::CODE_TARGET); } // Second compile a CallIC and execute it once so that it gets patched to // the pre-monomorphic stub. These code objects are on yet another page. { v8::HandleScope inner_scope; AlwaysAllocateScope always_allocate; SimulateFullSpace(heap->code_space()); CompileRun("var o = { f:function(a,b,c,d,e,f,g,h,i) {}};" "function call() { o.f(1,2,3,4,5,6,7,8,9); };" "call();"); } // Third we fill up the last page of the code space so that it does not get // chosen as an evacuation candidate. { v8::HandleScope inner_scope; AlwaysAllocateScope always_allocate; CompileRun("for (var i = 0; i < 2000; i++) {" " eval('function f' + i + '() { return ' + i +'; };' +" " 'f' + i + '();');" "}"); } heap->CollectAllGarbage(Heap::kNoGCFlags); // Fourth is the tricky part. Make sure the code containing the CallIC is // visited first without clearing the IC. The shared function info is then // visited later, causing the CallIC to be cleared. Handle name = isolate->factory()->InternalizeUtf8String("call"); Handle global(isolate->context()->global_object()); MaybeObject* maybe_call = global->GetProperty(*name); JSFunction* call = JSFunction::cast(maybe_call->ToObjectChecked()); USE(global->SetProperty(*name, Smi::FromInt(0), NONE, kNonStrictMode)); isolate->compilation_cache()->Clear(); call->shared()->set_ic_age(heap->global_ic_age() + 1); Handle call_code(call->code(), isolate); Handle call_function(call, isolate); // Now we are ready to mess up the heap. heap->CollectAllGarbage(Heap::kReduceMemoryFootprintMask); // Either heap verification caught the problem already or we go kaboom once // the CallIC is executed the next time. USE(global->SetProperty(*name, *call_function, NONE, kNonStrictMode)); CompileRun("call();"); } TEST(Regress159140) { i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare several closures that are all eligible for code flushing // because all reachable ones are not optimized. Make sure that the // optimized code object is directly reachable through a handle so // that it is marked black during incremental marking. Handle code; { HandleScope inner_scope(isolate); CompileRun("function h(x) {}" "function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "var g = mkClosure();" "f(1); f(2);" "g(1); g(2);" "h(1); h(2);" "%OptimizeFunctionOnNextCall(f); f(3);" "%OptimizeFunctionOnNextCall(h); h(3);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->is_compiled()); CompileRun("f = null;"); Handle g = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("g")))); CHECK(g->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { g->code()->MakeOlder(static_cast(i % 2)); } code = inner_scope.CloseAndEscape(Handle(f->code())); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then optimize one function. Finally // finish the GC to complete code flushing. SimulateIncrementalMarking(); CompileRun("%OptimizeFunctionOnNextCall(g); g(3);"); heap->CollectAllGarbage(Heap::kNoGCFlags); // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("g('bozo');"); } TEST(Regress165495) { i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare an optimized closure that the optimized code map will get // populated. Then age the unoptimized code to trigger code flushing // but make sure the optimized code is unreachable. { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);" "%OptimizeFunctionOnNextCall(f); f(3);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } CompileRun("f = null;"); } // Simulate incremental marking so that unoptimized code is flushed // even though it still is cached in the optimized code map. SimulateIncrementalMarking(); heap->CollectAllGarbage(Heap::kNoGCFlags); // Make a new closure that will get code installed from the code map. // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("var g = mkClosure(); g('bozo');"); } TEST(Regress169209) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare a shared function info eligible for code flushing for which // the unoptimized code will be replaced during optimization. Handle shared1; { HandleScope inner_scope(isolate); CompileRun("function f() { return 'foobar'; }" "function g(x) { if (x) f(); }" "f();" "g(false);" "g(false);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Prepare a shared function info eligible for code flushing that will // represent the dangling tail of the candidate list. Handle shared2; { HandleScope inner_scope(isolate); CompileRun("function flushMe() { return 0; }" "flushMe(1);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("flushMe")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Simulate incremental marking and collect code flushing candidates. SimulateIncrementalMarking(); CHECK(shared1->code()->gc_metadata() != NULL); // Optimize function and make sure the unoptimized code is replaced. #ifdef DEBUG FLAG_stop_at = "f"; #endif CompileRun("%OptimizeFunctionOnNextCall(g);" "g(false);"); // Finish garbage collection cycle. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(shared1->code()->gc_metadata() == NULL); } // Helper function that simulates a fill new-space in the heap. static inline void AllocateAllButNBytes(v8::internal::NewSpace* space, int extra_bytes) { int space_remaining = static_cast( *space->allocation_limit_address() - *space->allocation_top_address()); CHECK(space_remaining >= extra_bytes); int new_linear_size = space_remaining - extra_bytes; v8::internal::MaybeObject* maybe = space->AllocateRaw(new_linear_size); v8::internal::FreeListNode* node = v8::internal::FreeListNode::cast(maybe); node->set_size(space->heap(), new_linear_size); } TEST(Regress169928) { i::FLAG_allow_natives_syntax = true; i::FLAG_crankshaft = false; InitializeVM(); v8::HandleScope scope; // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; // Prepare the environment CompileRun("function fastliteralcase(literal, value) {" " literal[0] = value;" " return literal;" "}" "function get_standard_literal() {" " var literal = [1, 2, 3];" " return literal;" "}" "obj = fastliteralcase(get_standard_literal(), 1);" "obj = fastliteralcase(get_standard_literal(), 1.5);" "obj = fastliteralcase(get_standard_literal(), 2);"); // prepare the heap v8::Local mote_code_string = v8_str("fastliteralcase(mote, 2.5);"); v8::Local array_name = v8_str("mote"); v8::Context::GetCurrent()->Global()->Set(array_name, v8::Int32::New(0)); // First make sure we flip spaces HEAP->CollectGarbage(NEW_SPACE); // Allocate the object. Handle array_data = FACTORY->NewFixedArray(2, NOT_TENURED); array_data->set(0, Smi::FromInt(1)); array_data->set(1, Smi::FromInt(2)); AllocateAllButNBytes(HEAP->new_space(), JSArray::kSize + AllocationSiteInfo::kSize + kPointerSize); Handle array = FACTORY->NewJSArrayWithElements(array_data, FAST_SMI_ELEMENTS, NOT_TENURED); CHECK_EQ(Smi::FromInt(2), array->length()); CHECK(array->HasFastSmiOrObjectElements()); // We need filler the size of AllocationSiteInfo object, plus an extra // fill pointer value. MaybeObject* maybe_object = HEAP->AllocateRaw( AllocationSiteInfo::kSize + kPointerSize, NEW_SPACE, OLD_POINTER_SPACE); Object* obj = NULL; CHECK(maybe_object->ToObject(&obj)); Address addr_obj = reinterpret_cast
( reinterpret_cast(obj - kHeapObjectTag)); HEAP->CreateFillerObjectAt(addr_obj, AllocationSiteInfo::kSize + kPointerSize); // Give the array a name, making sure not to allocate strings. v8::Handle array_obj = v8::Utils::ToLocal(array); v8::Context::GetCurrent()->Global()->Set(array_name, array_obj); // This should crash with a protection violation if we are running a build // with the bug. AlwaysAllocateScope aa_scope; v8::Script::Compile(mote_code_string)->Run(); } TEST(Regress168801) { i::FLAG_always_compact = true; i::FLAG_cache_optimized_code = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Ensure the code ends up on an evacuation candidate. SimulateFullSpace(heap->code_space()); // Prepare an unoptimized function that is eligible for code flushing. Handle function; { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } function = inner_scope.CloseAndEscape(handle(*f, isolate)); } // Simulate incremental marking so that unoptimized function is enqueued as a // candidate for code flushing. The shared function info however will not be // explicitly enqueued. SimulateIncrementalMarking(); // Now optimize the function so that it is taken off the candidate list. { HandleScope inner_scope(isolate); CompileRun("%OptimizeFunctionOnNextCall(f); f(3);"); } // This cycle will bust the heap and subsequent cycles will go ballistic. heap->CollectAllGarbage(Heap::kNoGCFlags); heap->CollectAllGarbage(Heap::kNoGCFlags); } TEST(Regress173458) { i::FLAG_always_compact = true; i::FLAG_cache_optimized_code = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; InitializeVM(); Isolate* isolate = Isolate::Current(); Heap* heap = isolate->heap(); v8::HandleScope scope; // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Ensure the code ends up on an evacuation candidate. SimulateFullSpace(heap->code_space()); // Prepare an unoptimized function that is eligible for code flushing. Handle function; { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( v8::Context::GetCurrent()->Global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } function = inner_scope.CloseAndEscape(handle(*f, isolate)); } // Simulate incremental marking so that unoptimized function is enqueued as a // candidate for code flushing. The shared function info however will not be // explicitly enqueued. SimulateIncrementalMarking(); // Now enable the debugger which in turn will disable code flushing. CHECK(isolate->debug()->Load()); // This cycle will bust the heap and subsequent cycles will go ballistic. heap->CollectAllGarbage(Heap::kNoGCFlags); heap->CollectAllGarbage(Heap::kNoGCFlags); }