// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_HEAP_INL_H_ #define V8_HEAP_INL_H_ #include "log.h" #include "v8-counters.h" namespace v8 { namespace internal { int Heap::MaxHeapObjectSize() { return Page::kMaxHeapObjectSize; } Object* Heap::AllocateSymbol(Vector str, int chars, uint32_t length_field) { unibrow::Utf8InputBuffer<> buffer(str.start(), static_cast(str.length())); return AllocateInternalSymbol(&buffer, chars, length_field); } Object* Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationSpace retry_space) { ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); ASSERT(space != NEW_SPACE || retry_space == OLD_POINTER_SPACE || retry_space == OLD_DATA_SPACE); #ifdef DEBUG if (FLAG_gc_interval >= 0 && !disallow_allocation_failure_ && Heap::allocation_timeout_-- <= 0) { return Failure::RetryAfterGC(size_in_bytes, space); } Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result; if (NEW_SPACE == space) { result = new_space_.AllocateRaw(size_in_bytes); if (always_allocate() && result->IsFailure()) { space = retry_space; } else { return result; } } if (OLD_POINTER_SPACE == space) { result = old_pointer_space_->AllocateRaw(size_in_bytes); } else if (OLD_DATA_SPACE == space) { result = old_data_space_->AllocateRaw(size_in_bytes); } else if (CODE_SPACE == space) { result = code_space_->AllocateRaw(size_in_bytes); } else if (LO_SPACE == space) { result = lo_space_->AllocateRaw(size_in_bytes); } else { ASSERT(MAP_SPACE == space); result = map_space_->AllocateRaw(size_in_bytes); } if (result->IsFailure()) old_gen_exhausted_ = true; return result; } Object* Heap::NumberFromInt32(int32_t value) { if (Smi::IsValid(value)) return Smi::FromInt(value); // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastI2D(value)); } Object* Heap::NumberFromUint32(uint32_t value) { if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { return Smi::FromInt((int32_t)value); } // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastUI2D(value)); } Object* Heap::AllocateRawMap(int size_in_bytes) { #ifdef DEBUG Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result = map_space_->AllocateRaw(size_in_bytes); if (result->IsFailure()) old_gen_exhausted_ = true; return result; } bool Heap::InNewSpace(Object* object) { return new_space_.Contains(object); } bool Heap::InFromSpace(Object* object) { return new_space_.FromSpaceContains(object); } bool Heap::InToSpace(Object* object) { return new_space_.ToSpaceContains(object); } bool Heap::ShouldBePromoted(Address old_address, int object_size) { // An object should be promoted if: // - the object has survived a scavenge operation or // - to space is already 25% full. return old_address < new_space_.age_mark() || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2); } void Heap::RecordWrite(Address address, int offset) { if (new_space_.Contains(address)) return; ASSERT(!new_space_.FromSpaceContains(address)); SLOW_ASSERT(Contains(address + offset)); Page::SetRSet(address, offset); } OldSpace* Heap::TargetSpace(HeapObject* object) { InstanceType type = object->map()->instance_type(); AllocationSpace space = TargetSpaceId(type); return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_; } AllocationSpace Heap::TargetSpaceId(InstanceType type) { // Heap numbers and sequential strings are promoted to old data space, all // other object types are promoted to old pointer space. We do not use // object->IsHeapNumber() and object->IsSeqString() because we already // know that object has the heap object tag. ASSERT((type != CODE_TYPE) && (type != MAP_TYPE)); bool has_pointers = type != HEAP_NUMBER_TYPE && (type >= FIRST_NONSTRING_TYPE || (type & kStringRepresentationMask) != kSeqStringTag); return has_pointers ? OLD_POINTER_SPACE : OLD_DATA_SPACE; } void Heap::CopyBlock(Object** dst, Object** src, int byte_size) { ASSERT(IsAligned(byte_size, kPointerSize)); // Use block copying memcpy if the segment we're copying is // enough to justify the extra call/setup overhead. static const int kBlockCopyLimit = 16 * kPointerSize; if (byte_size >= kBlockCopyLimit) { memcpy(dst, src, byte_size); } else { int remaining = byte_size / kPointerSize; do { remaining--; *dst++ = *src++; } while (remaining > 0); } } Object* Heap::GetKeyedLookupCache() { if (keyed_lookup_cache()->IsUndefined()) { Object* obj = LookupCache::Allocate(4); if (obj->IsFailure()) return obj; keyed_lookup_cache_ = obj; } return keyed_lookup_cache(); } void Heap::SetKeyedLookupCache(LookupCache* cache) { keyed_lookup_cache_ = cache; } void Heap::ClearKeyedLookupCache() { keyed_lookup_cache_ = undefined_value(); } #define GC_GREEDY_CHECK() \ ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) // Calls the FUNCTION_CALL function and retries it up to three times // to guarantee that any allocations performed during the call will // succeed if there's enough memory. // Warning: Do not use the identifiers __object__ or __scope__ in a // call to this macro. #define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ do { \ GC_GREEDY_CHECK(); \ Object* __object__ = FUNCTION_CALL; \ if (!__object__->IsFailure()) return RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure()) { \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \ } \ if (!__object__->IsRetryAfterGC()) return RETURN_EMPTY; \ Heap::CollectGarbage(Failure::cast(__object__)->requested(), \ Failure::cast(__object__)->allocation_space()); \ __object__ = FUNCTION_CALL; \ if (!__object__->IsFailure()) return RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure()) { \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \ } \ if (!__object__->IsRetryAfterGC()) return RETURN_EMPTY; \ Counters::gc_last_resort_from_handles.Increment(); \ Heap::CollectAllGarbage(); \ { \ AlwaysAllocateScope __scope__; \ __object__ = FUNCTION_CALL; \ } \ if (!__object__->IsFailure()) return RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure()) { \ /* TODO(1181417): Fix this. */ \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \ } \ ASSERT(!__object__->IsRetryAfterGC()); \ return RETURN_EMPTY; \ } while (false) #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ CALL_AND_RETRY(FUNCTION_CALL, \ Handle(TYPE::cast(__object__)), \ Handle()) #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ CALL_AND_RETRY(FUNCTION_CALL, , ) #ifdef DEBUG inline bool Heap::allow_allocation(bool new_state) { bool old = allocation_allowed_; allocation_allowed_ = new_state; return old; } #endif } } // namespace v8::internal #endif // V8_HEAP_INL_H_