// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include "src/base/utils/random-number-generator.h" #include "src/codegen/arm64/assembler-arm64-inl.h" #include "src/codegen/arm64/decoder-arm64-inl.h" #include "src/codegen/arm64/macro-assembler-arm64-inl.h" #include "src/codegen/arm64/utils-arm64.h" #include "src/codegen/macro-assembler.h" #include "src/diagnostics/arm64/disasm-arm64.h" #include "src/execution/arm64/simulator-arm64.h" #include "src/heap/factory.h" #include "test/cctest/cctest.h" #include "test/cctest/test-utils-arm64.h" #include "test/common/assembler-tester.h" namespace v8 { namespace internal { // Test infrastructure. // // Tests are functions which accept no parameters and have no return values. // The testing code should not perform an explicit return once completed. For // example to test the mov immediate instruction a very simple test would be: // // TEST(mov_x0_one) { // SETUP(); // // START(); // __ mov(x0, Operand(1)); // END(); // // RUN(); // // CHECK_EQUAL_64(1, x0); // } // // Within a START ... END block all registers but sp can be modified. sp has to // be explicitly saved/restored. The END() macro replaces the function return // so it may appear multiple times in a test if the test has multiple exit // points. // // Once the test has been run all integer and floating point registers as well // as flags are accessible through a RegisterDump instance, see // utils-arm64.cc for more info on RegisterDump. // // We provide some helper assert to handle common cases: // // CHECK_EQUAL_32(int32_t, int_32t) // CHECK_EQUAL_FP32(float, float) // CHECK_EQUAL_32(int32_t, W register) // CHECK_EQUAL_FP32(float, S register) // CHECK_EQUAL_64(int64_t, int_64t) // CHECK_EQUAL_FP64(double, double) // CHECK_EQUAL_64(int64_t, X register) // CHECK_EQUAL_64(X register, X register) // CHECK_EQUAL_FP64(double, D register) // // e.g. CHECK_EQUAL_64(0.5, d30); // // If more advance computation is required before the assert then access the // RegisterDump named core directly: // // CHECK_EQUAL_64(0x1234, core.xreg(0) & 0xFFFF); #if 0 // TODO(all): enable. static v8::Persistent env; static void InitializeVM() { if (env.IsEmpty()) { env = v8::Context::New(); } } #endif #define __ masm. #define BUF_SIZE 8192 #define SETUP() SETUP_SIZE(BUF_SIZE) #define INIT_V8() \ CcTest::InitializeVM(); \ #ifdef USE_SIMULATOR // Run tests with the simulator. #define SETUP_SIZE(buf_size) \ Isolate* isolate = CcTest::i_isolate(); \ HandleScope scope(isolate); \ CHECK_NOT_NULL(isolate); \ auto owned_buf = \ AllocateAssemblerBuffer(buf_size, nullptr, JitPermission::kNoJit); \ MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, \ ExternalAssemblerBuffer(owned_buf->start(), buf_size)); \ std::optional rw_buffer_scope; \ Decoder* decoder = \ new Decoder(); \ Simulator simulator(decoder); \ std::unique_ptr pdis; \ RegisterDump core; \ HandleScope handle_scope(isolate); \ Handle code; \ if (i::v8_flags.trace_sim) { \ pdis.reset(new PrintDisassembler(stdout)); \ decoder->PrependVisitor(pdis.get()); \ } // Reset the assembler and simulator, so that instructions can be generated, // but don't actually emit any code. This can be used by tests that need to // emit instructions at the start of the buffer. Note that START_AFTER_RESET // must be called before any callee-saved register is modified, and before an // END is encountered. // // Most tests should call START, rather than call RESET directly. #define RESET() \ __ Reset(); \ simulator.ResetState(); #define START_AFTER_RESET() \ __ PushCalleeSavedRegisters(); \ __ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL); #define START() \ RESET(); \ START_AFTER_RESET(); #define RUN() simulator.RunFrom(reinterpret_cast(code->entry())) #define END() \ __ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \ core.Dump(&masm); \ __ PopCalleeSavedRegisters(); \ __ Ret(); \ { \ CodeDesc desc; \ __ GetCode(masm.isolate(), &desc); \ code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); \ if (v8_flags.print_code) code->Print(); \ } #else // ifdef USE_SIMULATOR. // Run the test on real hardware or models. #define SETUP_SIZE(buf_size) \ Isolate* isolate = CcTest::i_isolate(); \ HandleScope scope(isolate); \ CHECK_NOT_NULL(isolate); \ auto owned_buf = AllocateAssemblerBuffer(buf_size); \ std::optional rw_buffer_scope; \ MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, \ owned_buf->CreateView()); \ HandleScope handle_scope(isolate); \ Handle code; \ RegisterDump core; #define RESET() \ rw_buffer_scope.emplace(*owned_buf); \ __ Reset(); \ __ CodeEntry(); \ /* Reset the machine state (like simulator.ResetState()). */ \ __ Msr(NZCV, xzr); \ __ Msr(FPCR, xzr); #define START_AFTER_RESET() \ __ PushCalleeSavedRegisters(); #define START() \ RESET(); \ START_AFTER_RESET(); #define RUN() \ { \ /* Reset the scope and thus make the buffer executable. */ \ rw_buffer_scope.reset(); \ auto f = GeneratedCode::FromCode(*code); \ f.Call(); \ } #define END() \ core.Dump(&masm); \ __ PopCalleeSavedRegisters(); \ __ Ret(); \ { \ CodeDesc desc; \ __ GetCode(masm.isolate(), &desc); \ code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); \ if (v8_flags.print_code) code->Print(); \ } #endif // ifdef USE_SIMULATOR. #define CHECK_EQUAL_NZCV(expected) \ CHECK(EqualNzcv(expected, core.flags_nzcv())) #define CHECK_EQUAL_REGISTERS(expected) \ CHECK(EqualV8Registers(&expected, &core)) #define CHECK_EQUAL_32(expected, result) \ CHECK(Equal32(static_cast(expected), &core, result)) #define CHECK_EQUAL_FP32(expected, result) \ CHECK(EqualFP32(expected, &core, result)) #define CHECK_EQUAL_64(expected, result) \ CHECK(Equal64(expected, &core, result)) #define CHECK_FULL_HEAP_OBJECT_IN_REGISTER(expected, result) \ CHECK(Equal64(expected->ptr(), &core, result)) #define CHECK_NOT_ZERO_AND_NOT_EQUAL_64(reg0, reg1) \ { \ int64_t value0 = core.xreg(reg0.code()); \ int64_t value1 = core.xreg(reg1.code()); \ CHECK_NE(0, value0); \ CHECK_NE(0, value1); \ CHECK_NE(value0, value1); \ } #define CHECK_EQUAL_FP64(expected, result) \ CHECK(EqualFP64(expected, &core, result)) // Expected values for 128-bit comparisons are passed as two 64-bit values, // where expected_h (high) is <127:64> and expected_l (low) is <63:0>. #define CHECK_EQUAL_128(expected_h, expected_l, result) \ CHECK(Equal128(expected_h, expected_l, &core, result)) #ifdef DEBUG #define CHECK_CONSTANT_POOL_SIZE(expected) \ CHECK_EQ(expected, __ GetConstantPoolEntriesSizeForTesting()) #else #define CHECK_CONSTANT_POOL_SIZE(expected) ((void)0) #endif TEST(stack_ops) { INIT_V8(); SETUP(); START(); // save sp. __ Mov(x29, sp); // Set the sp to a known value. __ Mov(x16, 0x1000); __ Mov(sp, x16); __ Mov(x0, sp); // Add immediate to the sp, and move the result to a normal register. __ Add(sp, sp, Operand(0x50)); __ Mov(x1, sp); // Add extended to the sp, and move the result to a normal register. __ Mov(x17, 0xFFF); __ Add(sp, sp, Operand(x17, SXTB)); __ Mov(x2, sp); // Create an sp using a logical instruction, and move to normal register. __ Orr(sp, xzr, Operand(0x1FFF)); __ Mov(x3, sp); // Write wsp using a logical instruction. __ Orr(wsp, wzr, Operand(0xFFFFFFF8L)); __ Mov(x4, sp); // Write sp, and read back wsp. __ Orr(sp, xzr, Operand(0xFFFFFFF8L)); __ Mov(w5, wsp); // restore sp. __ Mov(sp, x29); END(); RUN(); CHECK_EQUAL_64(0x1000, x0); CHECK_EQUAL_64(0x1050, x1); CHECK_EQUAL_64(0x104F, x2); CHECK_EQUAL_64(0x1FFF, x3); CHECK_EQUAL_64(0xFFFFFFF8, x4); CHECK_EQUAL_64(0xFFFFFFF8, x5); } TEST(mvn) { INIT_V8(); SETUP(); START(); __ Mvn(w0, 0xFFF); __ Mvn(x1, 0xFFF); __ Mvn(w2, Operand(w0, LSL, 1)); __ Mvn(x3, Operand(x1, LSL, 2)); __ Mvn(w4, Operand(w0, LSR, 3)); __ Mvn(x5, Operand(x1, LSR, 4)); __ Mvn(w6, Operand(w0, ASR, 11)); __ Mvn(x7, Operand(x1, ASR, 12)); __ Mvn(w8, Operand(w0, ROR, 13)); __ Mvn(x9, Operand(x1, ROR, 14)); __ Mvn(w10, Operand(w2, UXTB)); __ Mvn(x11, Operand(x2, SXTB, 1)); __ Mvn(w12, Operand(w2, UXTH, 2)); __ Mvn(x13, Operand(x2, SXTH, 3)); __ Mvn(x14, Operand(w2, UXTW, 4)); __ Mvn(x15, Operand(w2, SXTW, 4)); END(); RUN(); CHECK_EQUAL_64(0xFFFFF000, x0); CHECK_EQUAL_64(0xFFFFFFFFFFFFF000UL, x1); CHECK_EQUAL_64(0x00001FFF, x2); CHECK_EQUAL_64(0x0000000000003FFFUL, x3); CHECK_EQUAL_64(0xE00001FF, x4); CHECK_EQUAL_64(0xF0000000000000FFUL, x5); CHECK_EQUAL_64(0x00000001, x6); CHECK_EQUAL_64(0x0, x7); CHECK_EQUAL_64(0x7FF80000, x8); CHECK_EQUAL_64(0x3FFC000000000000UL, x9); CHECK_EQUAL_64(0xFFFFFF00, x10); CHECK_EQUAL_64(0x0000000000000001UL, x11); CHECK_EQUAL_64(0xFFFF8003, x12); CHECK_EQUAL_64(0xFFFFFFFFFFFF0007UL, x13); CHECK_EQUAL_64(0xFFFFFFFFFFFE000FUL, x14); CHECK_EQUAL_64(0xFFFFFFFFFFFE000FUL, x15); } TEST(mov) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFFFFFFFFFFFFFFFL); __ Mov(x1, 0xFFFFFFFFFFFFFFFFL); __ Mov(x2, 0xFFFFFFFFFFFFFFFFL); __ Mov(x3, 0xFFFFFFFFFFFFFFFFL); __ Mov(x0, 0x0123456789ABCDEFL); __ movz(x1, 0xABCDLL << 16); __ movk(x2, 0xABCDLL << 32); __ movn(x3, 0xABCDLL << 48); __ Mov(x4, 0x0123456789ABCDEFL); __ Mov(x5, x4); __ Mov(w6, -1); // Test that moves back to the same register have the desired effect. This // is a no-op for X registers, and a truncation for W registers. __ Mov(x7, 0x0123456789ABCDEFL); __ Mov(x7, x7); __ Mov(x8, 0x0123456789ABCDEFL); __ Mov(w8, w8); __ Mov(x9, 0x0123456789ABCDEFL); __ Mov(x9, Operand(x9)); __ Mov(x10, 0x0123456789ABCDEFL); __ Mov(w10, Operand(w10)); __ Mov(w11, 0xFFF); __ Mov(x12, 0xFFF); __ Mov(w13, Operand(w11, LSL, 1)); __ Mov(x14, Operand(x12, LSL, 2)); __ Mov(w15, Operand(w11, LSR, 3)); __ Mov(x28, Operand(x12, LSR, 4)); __ Mov(w19, Operand(w11, ASR, 11)); __ Mov(x20, Operand(x12, ASR, 12)); __ Mov(w21, Operand(w11, ROR, 13)); __ Mov(x22, Operand(x12, ROR, 14)); __ Mov(w23, Operand(w13, UXTB)); __ Mov(x24, Operand(x13, SXTB, 1)); __ Mov(w25, Operand(w13, UXTH, 2)); __ Mov(x26, Operand(x13, SXTH, 3)); __ Mov(x27, Operand(w13, UXTW, 4)); END(); RUN(); CHECK_EQUAL_64(0x0123456789ABCDEFL, x0); CHECK_EQUAL_64(0x00000000ABCD0000L, x1); CHECK_EQUAL_64(0xFFFFABCDFFFFFFFFL, x2); CHECK_EQUAL_64(0x5432FFFFFFFFFFFFL, x3); CHECK_EQUAL_64(x4, x5); CHECK_EQUAL_32(-1, w6); CHECK_EQUAL_64(0x0123456789ABCDEFL, x7); CHECK_EQUAL_32(0x89ABCDEFL, w8); CHECK_EQUAL_64(0x0123456789ABCDEFL, x9); CHECK_EQUAL_32(0x89ABCDEFL, w10); CHECK_EQUAL_64(0x00000FFF, x11); CHECK_EQUAL_64(0x0000000000000FFFUL, x12); CHECK_EQUAL_64(0x00001FFE, x13); CHECK_EQUAL_64(0x0000000000003FFCUL, x14); CHECK_EQUAL_64(0x000001FF, x15); CHECK_EQUAL_64(0x00000000000000FFUL, x28); CHECK_EQUAL_64(0x00000001, x19); CHECK_EQUAL_64(0x0, x20); CHECK_EQUAL_64(0x7FF80000, x21); CHECK_EQUAL_64(0x3FFC000000000000UL, x22); CHECK_EQUAL_64(0x000000FE, x23); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFCUL, x24); CHECK_EQUAL_64(0x00007FF8, x25); CHECK_EQUAL_64(0x000000000000FFF0UL, x26); CHECK_EQUAL_64(0x000000000001FFE0UL, x27); } TEST(move_pair) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xabababab); __ Mov(x1, 0xbabababa); __ Mov(x2, 0x12341234); __ Mov(x3, 0x43214321); // No overlap: // x4 <- x0 // x5 <- x1 __ MovePair(x4, x0, x5, x1); // Overlap but we can swap moves: // x2 <- x0 // x6 <- x2 __ MovePair(x2, x0, x6, x2); // Overlap but can be done: // x7 <- x3 // x3 <- x0 __ MovePair(x7, x3, x3, x0); // Swap. // x0 <- x1 // x1 <- x0 __ MovePair(x0, x1, x1, x0); END(); RUN(); // x4 <- x0 // x5 <- x1 CHECK_EQUAL_64(0xabababab, x4); CHECK_EQUAL_64(0xbabababa, x5); // x2 <- x0 // x6 <- x2 CHECK_EQUAL_64(0xabababab, x2); CHECK_EQUAL_64(0x12341234, x6); // x7 <- x3 // x3 <- x0 CHECK_EQUAL_64(0x43214321, x7); CHECK_EQUAL_64(0xabababab, x3); // x0 and x1 should be swapped. CHECK_EQUAL_64(0xbabababa, x0); CHECK_EQUAL_64(0xabababab, x1); } TEST(mov_imm_w) { INIT_V8(); SETUP(); START(); __ Mov(w0, 0xFFFFFFFFL); __ Mov(w1, 0xFFFF1234L); __ Mov(w2, 0x1234FFFFL); __ Mov(w3, 0x00000000L); __ Mov(w4, 0x00001234L); __ Mov(w5, 0x12340000L); __ Mov(w6, 0x12345678L); __ Mov(w7, (int32_t)0x80000000); __ Mov(w8, (int32_t)0xFFFF0000); __ Mov(w9, kWMinInt); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFL, x0); CHECK_EQUAL_64(0xFFFF1234L, x1); CHECK_EQUAL_64(0x1234FFFFL, x2); CHECK_EQUAL_64(0x00000000L, x3); CHECK_EQUAL_64(0x00001234L, x4); CHECK_EQUAL_64(0x12340000L, x5); CHECK_EQUAL_64(0x12345678L, x6); CHECK_EQUAL_64(0x80000000L, x7); CHECK_EQUAL_64(0xFFFF0000L, x8); CHECK_EQUAL_32(kWMinInt, w9); } TEST(mov_imm_x) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFFFFFFFFFFFFFFFL); __ Mov(x1, 0xFFFFFFFFFFFF1234L); __ Mov(x2, 0xFFFFFFFF12345678L); __ Mov(x3, 0xFFFF1234FFFF5678L); __ Mov(x4, 0x1234FFFFFFFF5678L); __ Mov(x5, 0x1234FFFF5678FFFFL); __ Mov(x6, 0x12345678FFFFFFFFL); __ Mov(x7, 0x1234FFFFFFFFFFFFL); __ Mov(x8, 0x123456789ABCFFFFL); __ Mov(x9, 0x12345678FFFF9ABCL); __ Mov(x10, 0x1234FFFF56789ABCL); __ Mov(x11, 0xFFFF123456789ABCL); __ Mov(x12, 0x0000000000000000L); __ Mov(x13, 0x0000000000001234L); __ Mov(x14, 0x0000000012345678L); __ Mov(x15, 0x0000123400005678L); __ Mov(x30, 0x1234000000005678L); __ Mov(x19, 0x1234000056780000L); __ Mov(x20, 0x1234567800000000L); __ Mov(x21, 0x1234000000000000L); __ Mov(x22, 0x123456789ABC0000L); __ Mov(x23, 0x1234567800009ABCL); __ Mov(x24, 0x1234000056789ABCL); __ Mov(x25, 0x0000123456789ABCL); __ Mov(x26, 0x123456789ABCDEF0L); __ Mov(x27, 0xFFFF000000000001L); __ Mov(x28, 0x8000FFFF00000000L); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFFFFF1234L, x1); CHECK_EQUAL_64(0xFFFFFFFF12345678L, x2); CHECK_EQUAL_64(0xFFFF1234FFFF5678L, x3); CHECK_EQUAL_64(0x1234FFFFFFFF5678L, x4); CHECK_EQUAL_64(0x1234FFFF5678FFFFL, x5); CHECK_EQUAL_64(0x12345678FFFFFFFFL, x6); CHECK_EQUAL_64(0x1234FFFFFFFFFFFFL, x7); CHECK_EQUAL_64(0x123456789ABCFFFFL, x8); CHECK_EQUAL_64(0x12345678FFFF9ABCL, x9); CHECK_EQUAL_64(0x1234FFFF56789ABCL, x10); CHECK_EQUAL_64(0xFFFF123456789ABCL, x11); CHECK_EQUAL_64(0x0000000000000000L, x12); CHECK_EQUAL_64(0x0000000000001234L, x13); CHECK_EQUAL_64(0x0000000012345678L, x14); CHECK_EQUAL_64(0x0000123400005678L, x15); CHECK_EQUAL_64(0x1234000000005678L, x30); CHECK_EQUAL_64(0x1234000056780000L, x19); CHECK_EQUAL_64(0x1234567800000000L, x20); CHECK_EQUAL_64(0x1234000000000000L, x21); CHECK_EQUAL_64(0x123456789ABC0000L, x22); CHECK_EQUAL_64(0x1234567800009ABCL, x23); CHECK_EQUAL_64(0x1234000056789ABCL, x24); CHECK_EQUAL_64(0x0000123456789ABCL, x25); CHECK_EQUAL_64(0x123456789ABCDEF0L, x26); CHECK_EQUAL_64(0xFFFF000000000001L, x27); CHECK_EQUAL_64(0x8000FFFF00000000L, x28); } TEST(orr) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xF0F0); __ Mov(x1, 0xF00000FF); __ Orr(x2, x0, Operand(x1)); __ Orr(w3, w0, Operand(w1, LSL, 28)); __ Orr(x4, x0, Operand(x1, LSL, 32)); __ Orr(x5, x0, Operand(x1, LSR, 4)); __ Orr(w6, w0, Operand(w1, ASR, 4)); __ Orr(x7, x0, Operand(x1, ASR, 4)); __ Orr(w8, w0, Operand(w1, ROR, 12)); __ Orr(x9, x0, Operand(x1, ROR, 12)); __ Orr(w10, w0, Operand(0xF)); __ Orr(x11, x0, Operand(0xF0000000F0000000L)); END(); RUN(); CHECK_EQUAL_64(0xF000F0FF, x2); CHECK_EQUAL_64(0xF000F0F0, x3); CHECK_EQUAL_64(0xF00000FF0000F0F0L, x4); CHECK_EQUAL_64(0x0F00F0FF, x5); CHECK_EQUAL_64(0xFF00F0FF, x6); CHECK_EQUAL_64(0x0F00F0FF, x7); CHECK_EQUAL_64(0x0FFFF0F0, x8); CHECK_EQUAL_64(0x0FF00000000FF0F0L, x9); CHECK_EQUAL_64(0xF0FF, x10); CHECK_EQUAL_64(0xF0000000F000F0F0L, x11); } TEST(orr_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 1); __ Mov(x1, 0x8000000080008080UL); __ Orr(w6, w0, Operand(w1, UXTB)); __ Orr(x7, x0, Operand(x1, UXTH, 1)); __ Orr(w8, w0, Operand(w1, UXTW, 2)); __ Orr(x9, x0, Operand(x1, UXTX, 3)); __ Orr(w10, w0, Operand(w1, SXTB)); __ Orr(x11, x0, Operand(x1, SXTH, 1)); __ Orr(x12, x0, Operand(x1, SXTW, 2)); __ Orr(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0x00000081, x6); CHECK_EQUAL_64(0x00010101, x7); CHECK_EQUAL_64(0x00020201, x8); CHECK_EQUAL_64(0x0000000400040401UL, x9); CHECK_EQUAL_64(0x00000000FFFFFF81UL, x10); CHECK_EQUAL_64(0xFFFFFFFFFFFF0101UL, x11); CHECK_EQUAL_64(0xFFFFFFFE00020201UL, x12); CHECK_EQUAL_64(0x0000000400040401UL, x13); } TEST(bitwise_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0xF0F0F0F0F0F0F0F0UL); __ Orr(x10, x0, Operand(0x1234567890ABCDEFUL)); __ Orr(w11, w1, Operand(0x90ABCDEF)); __ Orr(w12, w0, kWMinInt); __ Eor(w13, w0, kWMinInt); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(0xF0F0F0F0F0F0F0F0UL, x1); CHECK_EQUAL_64(0x1234567890ABCDEFUL, x10); CHECK_EQUAL_64(0xF0FBFDFFUL, x11); CHECK_EQUAL_32(kWMinInt, w12); CHECK_EQUAL_32(kWMinInt, w13); } TEST(orn) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xF0F0); __ Mov(x1, 0xF00000FF); __ Orn(x2, x0, Operand(x1)); __ Orn(w3, w0, Operand(w1, LSL, 4)); __ Orn(x4, x0, Operand(x1, LSL, 4)); __ Orn(x5, x0, Operand(x1, LSR, 1)); __ Orn(w6, w0, Operand(w1, ASR, 1)); __ Orn(x7, x0, Operand(x1, ASR, 1)); __ Orn(w8, w0, Operand(w1, ROR, 16)); __ Orn(x9, x0, Operand(x1, ROR, 16)); __ Orn(w10, w0, Operand(0xFFFF)); __ Orn(x11, x0, Operand(0xFFFF0000FFFFL)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFF0FFFFFF0L, x2); CHECK_EQUAL_64(0xFFFFF0FF, x3); CHECK_EQUAL_64(0xFFFFFFF0FFFFF0FFL, x4); CHECK_EQUAL_64(0xFFFFFFFF87FFFFF0L, x5); CHECK_EQUAL_64(0x07FFFFF0, x6); CHECK_EQUAL_64(0xFFFFFFFF87FFFFF0L, x7); CHECK_EQUAL_64(0xFF00FFFF, x8); CHECK_EQUAL_64(0xFF00FFFFFFFFFFFFL, x9); CHECK_EQUAL_64(0xFFFFF0F0, x10); CHECK_EQUAL_64(0xFFFF0000FFFFF0F0L, x11); } TEST(orn_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 1); __ Mov(x1, 0x8000000080008081UL); __ Orn(w6, w0, Operand(w1, UXTB)); __ Orn(x7, x0, Operand(x1, UXTH, 1)); __ Orn(w8, w0, Operand(w1, UXTW, 2)); __ Orn(x9, x0, Operand(x1, UXTX, 3)); __ Orn(w10, w0, Operand(w1, SXTB)); __ Orn(x11, x0, Operand(x1, SXTH, 1)); __ Orn(x12, x0, Operand(x1, SXTW, 2)); __ Orn(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFF7F, x6); CHECK_EQUAL_64(0xFFFFFFFFFFFEFEFDUL, x7); CHECK_EQUAL_64(0xFFFDFDFB, x8); CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x9); CHECK_EQUAL_64(0x0000007F, x10); CHECK_EQUAL_64(0x0000FEFD, x11); CHECK_EQUAL_64(0x00000001FFFDFDFBUL, x12); CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x13); } TEST(and_) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFF0); __ Mov(x1, 0xF00000FF); __ And(x2, x0, Operand(x1)); __ And(w3, w0, Operand(w1, LSL, 4)); __ And(x4, x0, Operand(x1, LSL, 4)); __ And(x5, x0, Operand(x1, LSR, 1)); __ And(w6, w0, Operand(w1, ASR, 20)); __ And(x7, x0, Operand(x1, ASR, 20)); __ And(w8, w0, Operand(w1, ROR, 28)); __ And(x9, x0, Operand(x1, ROR, 28)); __ And(w10, w0, Operand(0xFF00)); __ And(x11, x0, Operand(0xFF)); END(); RUN(); CHECK_EQUAL_64(0x000000F0, x2); CHECK_EQUAL_64(0x00000FF0, x3); CHECK_EQUAL_64(0x00000FF0, x4); CHECK_EQUAL_64(0x00000070, x5); CHECK_EQUAL_64(0x0000FF00, x6); CHECK_EQUAL_64(0x00000F00, x7); CHECK_EQUAL_64(0x00000FF0, x8); CHECK_EQUAL_64(0x00000000, x9); CHECK_EQUAL_64(0x0000FF00, x10); CHECK_EQUAL_64(0x000000F0, x11); } TEST(and_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x1, 0x8000000080008081UL); __ And(w6, w0, Operand(w1, UXTB)); __ And(x7, x0, Operand(x1, UXTH, 1)); __ And(w8, w0, Operand(w1, UXTW, 2)); __ And(x9, x0, Operand(x1, UXTX, 3)); __ And(w10, w0, Operand(w1, SXTB)); __ And(x11, x0, Operand(x1, SXTH, 1)); __ And(x12, x0, Operand(x1, SXTW, 2)); __ And(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0x00000081, x6); CHECK_EQUAL_64(0x00010102, x7); CHECK_EQUAL_64(0x00020204, x8); CHECK_EQUAL_64(0x0000000400040408UL, x9); CHECK_EQUAL_64(0xFFFFFF81, x10); CHECK_EQUAL_64(0xFFFFFFFFFFFF0102UL, x11); CHECK_EQUAL_64(0xFFFFFFFE00020204UL, x12); CHECK_EQUAL_64(0x0000000400040408UL, x13); } TEST(ands) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0xF00000FF); __ Ands(w0, w1, Operand(w1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); CHECK_EQUAL_64(0xF00000FF, x0); START(); __ Mov(x0, 0xFFF0); __ Mov(x1, 0xF00000FF); __ Ands(w0, w0, Operand(w1, LSR, 4)); END(); RUN(); CHECK_EQUAL_NZCV(ZFlag); CHECK_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0x8000000000000000L); __ Mov(x1, 0x00000001); __ Ands(x0, x0, Operand(x1, ROR, 1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); CHECK_EQUAL_64(0x8000000000000000L, x0); START(); __ Mov(x0, 0xFFF0); __ Ands(w0, w0, Operand(0xF)); END(); RUN(); CHECK_EQUAL_NZCV(ZFlag); CHECK_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xFF000000); __ Ands(w0, w0, Operand(0x80000000)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); CHECK_EQUAL_64(0x80000000, x0); } TEST(bic) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFF0); __ Mov(x1, 0xF00000FF); __ Bic(x2, x0, Operand(x1)); __ Bic(w3, w0, Operand(w1, LSL, 4)); __ Bic(x4, x0, Operand(x1, LSL, 4)); __ Bic(x5, x0, Operand(x1, LSR, 1)); __ Bic(w6, w0, Operand(w1, ASR, 20)); __ Bic(x7, x0, Operand(x1, ASR, 20)); __ Bic(w8, w0, Operand(w1, ROR, 28)); __ Bic(x9, x0, Operand(x1, ROR, 24)); __ Bic(x10, x0, Operand(0x1F)); __ Bic(x11, x0, Operand(0x100)); // Test bic into sp when the constant cannot be encoded in the immediate // field. // Use x20 to preserve sp. We check for the result via x21 because the // test infrastructure requires that sp be restored to its original value. __ Mov(x20, sp); __ Mov(x0, 0xFFFFFF); __ Bic(sp, x0, Operand(0xABCDEF)); __ Mov(x21, sp); __ Mov(sp, x20); END(); RUN(); CHECK_EQUAL_64(0x0000FF00, x2); CHECK_EQUAL_64(0x0000F000, x3); CHECK_EQUAL_64(0x0000F000, x4); CHECK_EQUAL_64(0x0000FF80, x5); CHECK_EQUAL_64(0x000000F0, x6); CHECK_EQUAL_64(0x0000F0F0, x7); CHECK_EQUAL_64(0x0000F000, x8); CHECK_EQUAL_64(0x0000FF00, x9); CHECK_EQUAL_64(0x0000FFE0, x10); CHECK_EQUAL_64(0x0000FEF0, x11); CHECK_EQUAL_64(0x543210, x21); } TEST(bic_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x1, 0x8000000080008081UL); __ Bic(w6, w0, Operand(w1, UXTB)); __ Bic(x7, x0, Operand(x1, UXTH, 1)); __ Bic(w8, w0, Operand(w1, UXTW, 2)); __ Bic(x9, x0, Operand(x1, UXTX, 3)); __ Bic(w10, w0, Operand(w1, SXTB)); __ Bic(x11, x0, Operand(x1, SXTH, 1)); __ Bic(x12, x0, Operand(x1, SXTW, 2)); __ Bic(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFF7E, x6); CHECK_EQUAL_64(0xFFFFFFFFFFFEFEFDUL, x7); CHECK_EQUAL_64(0xFFFDFDFB, x8); CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x9); CHECK_EQUAL_64(0x0000007E, x10); CHECK_EQUAL_64(0x0000FEFD, x11); CHECK_EQUAL_64(0x00000001FFFDFDFBUL, x12); CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x13); } TEST(bics) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0xFFFF); __ Bics(w0, w1, Operand(w1)); END(); RUN(); CHECK_EQUAL_NZCV(ZFlag); CHECK_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xFFFFFFFF); __ Bics(w0, w0, Operand(w0, LSR, 1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); CHECK_EQUAL_64(0x80000000, x0); START(); __ Mov(x0, 0x8000000000000000L); __ Mov(x1, 0x00000001); __ Bics(x0, x0, Operand(x1, ROR, 1)); END(); RUN(); CHECK_EQUAL_NZCV(ZFlag); CHECK_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xFFFFFFFFFFFFFFFFL); __ Bics(x0, x0, Operand(0x7FFFFFFFFFFFFFFFL)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); CHECK_EQUAL_64(0x8000000000000000L, x0); START(); __ Mov(w0, 0xFFFF0000); __ Bics(w0, w0, Operand(0xFFFFFFF0)); END(); RUN(); CHECK_EQUAL_NZCV(ZFlag); CHECK_EQUAL_64(0x00000000, x0); } TEST(eor) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFF0); __ Mov(x1, 0xF00000FF); __ Eor(x2, x0, Operand(x1)); __ Eor(w3, w0, Operand(w1, LSL, 4)); __ Eor(x4, x0, Operand(x1, LSL, 4)); __ Eor(x5, x0, Operand(x1, LSR, 1)); __ Eor(w6, w0, Operand(w1, ASR, 20)); __ Eor(x7, x0, Operand(x1, ASR, 20)); __ Eor(w8, w0, Operand(w1, ROR, 28)); __ Eor(x9, x0, Operand(x1, ROR, 28)); __ Eor(w10, w0, Operand(0xFF00FF00)); __ Eor(x11, x0, Operand(0xFF00FF00FF00FF00L)); END(); RUN(); CHECK_EQUAL_64(0xF000FF0F, x2); CHECK_EQUAL_64(0x0000F000, x3); CHECK_EQUAL_64(0x0000000F0000F000L, x4); CHECK_EQUAL_64(0x7800FF8F, x5); CHECK_EQUAL_64(0xFFFF00F0, x6); CHECK_EQUAL_64(0x0000F0F0, x7); CHECK_EQUAL_64(0x0000F00F, x8); CHECK_EQUAL_64(0x00000FF00000FFFFL, x9); CHECK_EQUAL_64(0xFF0000F0, x10); CHECK_EQUAL_64(0xFF00FF00FF0000F0L, x11); } TEST(eor_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x1111111111111111UL); __ Mov(x1, 0x8000000080008081UL); __ Eor(w6, w0, Operand(w1, UXTB)); __ Eor(x7, x0, Operand(x1, UXTH, 1)); __ Eor(w8, w0, Operand(w1, UXTW, 2)); __ Eor(x9, x0, Operand(x1, UXTX, 3)); __ Eor(w10, w0, Operand(w1, SXTB)); __ Eor(x11, x0, Operand(x1, SXTH, 1)); __ Eor(x12, x0, Operand(x1, SXTW, 2)); __ Eor(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0x11111190, x6); CHECK_EQUAL_64(0x1111111111101013UL, x7); CHECK_EQUAL_64(0x11131315, x8); CHECK_EQUAL_64(0x1111111511151519UL, x9); CHECK_EQUAL_64(0xEEEEEE90, x10); CHECK_EQUAL_64(0xEEEEEEEEEEEE1013UL, x11); CHECK_EQUAL_64(0xEEEEEEEF11131315UL, x12); CHECK_EQUAL_64(0x1111111511151519UL, x13); } TEST(eon) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xFFF0); __ Mov(x1, 0xF00000FF); __ Eon(x2, x0, Operand(x1)); __ Eon(w3, w0, Operand(w1, LSL, 4)); __ Eon(x4, x0, Operand(x1, LSL, 4)); __ Eon(x5, x0, Operand(x1, LSR, 1)); __ Eon(w6, w0, Operand(w1, ASR, 20)); __ Eon(x7, x0, Operand(x1, ASR, 20)); __ Eon(w8, w0, Operand(w1, ROR, 28)); __ Eon(x9, x0, Operand(x1, ROR, 28)); __ Eon(w10, w0, Operand(0x03C003C0)); __ Eon(x11, x0, Operand(0x0000100000001000L)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFF0FFF00F0L, x2); CHECK_EQUAL_64(0xFFFF0FFF, x3); CHECK_EQUAL_64(0xFFFFFFF0FFFF0FFFL, x4); CHECK_EQUAL_64(0xFFFFFFFF87FF0070L, x5); CHECK_EQUAL_64(0x0000FF0F, x6); CHECK_EQUAL_64(0xFFFFFFFFFFFF0F0FL, x7); CHECK_EQUAL_64(0xFFFF0FF0, x8); CHECK_EQUAL_64(0xFFFFF00FFFFF0000L, x9); CHECK_EQUAL_64(0xFC3F03CF, x10); CHECK_EQUAL_64(0xFFFFEFFFFFFF100FL, x11); } TEST(eon_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x1111111111111111UL); __ Mov(x1, 0x8000000080008081UL); __ Eon(w6, w0, Operand(w1, UXTB)); __ Eon(x7, x0, Operand(x1, UXTH, 1)); __ Eon(w8, w0, Operand(w1, UXTW, 2)); __ Eon(x9, x0, Operand(x1, UXTX, 3)); __ Eon(w10, w0, Operand(w1, SXTB)); __ Eon(x11, x0, Operand(x1, SXTH, 1)); __ Eon(x12, x0, Operand(x1, SXTW, 2)); __ Eon(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); CHECK_EQUAL_64(0xEEEEEE6F, x6); CHECK_EQUAL_64(0xEEEEEEEEEEEFEFECUL, x7); CHECK_EQUAL_64(0xEEECECEA, x8); CHECK_EQUAL_64(0xEEEEEEEAEEEAEAE6UL, x9); CHECK_EQUAL_64(0x1111116F, x10); CHECK_EQUAL_64(0x111111111111EFECUL, x11); CHECK_EQUAL_64(0x11111110EEECECEAUL, x12); CHECK_EQUAL_64(0xEEEEEEEAEEEAEAE6UL, x13); } TEST(mul) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x15, 0xFFFFFFFF); __ Mov(x19, 0xFFFFFFFFFFFFFFFFUL); __ Mul(w0, w16, w16); __ Mul(w1, w16, w17); __ Mul(w2, w17, w15); __ Mul(w3, w15, w19); __ Mul(x4, x16, x16); __ Mul(x5, x17, x15); __ Mul(x6, x15, x19); __ Mul(x7, x19, x19); __ Smull(x8, w17, w15); __ Smull(x9, w15, w15); __ Smull(x10, w19, w19); __ Mneg(w11, w16, w16); __ Mneg(w12, w16, w17); __ Mneg(w13, w17, w15); __ Mneg(w14, w15, w19); __ Mneg(x20, x16, x16); __ Mneg(x21, x17, x15); __ Mneg(x22, x15, x19); __ Mneg(x23, x19, x19); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(0, x1); CHECK_EQUAL_64(0xFFFFFFFF, x2); CHECK_EQUAL_64(1, x3); CHECK_EQUAL_64(0, x4); CHECK_EQUAL_64(0xFFFFFFFF, x5); CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x6); CHECK_EQUAL_64(1, x7); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(1, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0, x12); CHECK_EQUAL_64(1, x13); CHECK_EQUAL_64(0xFFFFFFFF, x14); CHECK_EQUAL_64(0, x20); CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x21); CHECK_EQUAL_64(0xFFFFFFFF, x22); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x23); } static void SmullHelper(int64_t expected, int64_t a, int64_t b) { SETUP(); START(); __ Mov(w0, a); __ Mov(w1, b); __ Smull(x2, w0, w1); END(); RUN(); CHECK_EQUAL_64(expected, x2); } TEST(smull) { INIT_V8(); SmullHelper(0, 0, 0); SmullHelper(1, 1, 1); SmullHelper(-1, -1, 1); SmullHelper(1, -1, -1); SmullHelper(0xFFFFFFFF80000000, 0x80000000, 1); SmullHelper(0x0000000080000000, 0x00010000, 0x00008000); } TEST(madd) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x28, 0xFFFFFFFF); __ Mov(x19, 0xFFFFFFFFFFFFFFFFUL); __ Madd(w0, w16, w16, w16); __ Madd(w1, w16, w16, w17); __ Madd(w2, w16, w16, w28); __ Madd(w3, w16, w16, w19); __ Madd(w4, w16, w17, w17); __ Madd(w5, w17, w17, w28); __ Madd(w6, w17, w17, w19); __ Madd(w7, w17, w28, w16); __ Madd(w8, w17, w28, w28); __ Madd(w9, w28, w28, w17); __ Madd(w10, w28, w19, w28); __ Madd(w11, w19, w19, w19); __ Madd(x12, x16, x16, x16); __ Madd(x13, x16, x16, x17); __ Madd(x14, x16, x16, x28); __ Madd(x15, x16, x16, x19); __ Madd(x20, x16, x17, x17); __ Madd(x21, x17, x17, x28); __ Madd(x22, x17, x17, x19); __ Madd(x23, x17, x28, x16); __ Madd(x24, x17, x28, x28); __ Madd(x25, x28, x28, x17); __ Madd(x26, x28, x19, x28); __ Madd(x27, x19, x19, x19); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(0xFFFFFFFF, x2); CHECK_EQUAL_64(0xFFFFFFFF, x3); CHECK_EQUAL_64(1, x4); CHECK_EQUAL_64(0, x5); CHECK_EQUAL_64(0, x6); CHECK_EQUAL_64(0xFFFFFFFF, x7); CHECK_EQUAL_64(0xFFFFFFFE, x8); CHECK_EQUAL_64(2, x9); CHECK_EQUAL_64(0, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0, x12); CHECK_EQUAL_64(1, x13); CHECK_EQUAL_64(0xFFFFFFFF, x14); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFF, x15); CHECK_EQUAL_64(1, x20); CHECK_EQUAL_64(0x100000000UL, x21); CHECK_EQUAL_64(0, x22); CHECK_EQUAL_64(0xFFFFFFFF, x23); CHECK_EQUAL_64(0x1FFFFFFFE, x24); CHECK_EQUAL_64(0xFFFFFFFE00000002UL, x25); CHECK_EQUAL_64(0, x26); CHECK_EQUAL_64(0, x27); } TEST(msub) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x28, 0xFFFFFFFF); __ Mov(x19, 0xFFFFFFFFFFFFFFFFUL); __ Msub(w0, w16, w16, w16); __ Msub(w1, w16, w16, w17); __ Msub(w2, w16, w16, w28); __ Msub(w3, w16, w16, w19); __ Msub(w4, w16, w17, w17); __ Msub(w5, w17, w17, w28); __ Msub(w6, w17, w17, w19); __ Msub(w7, w17, w28, w16); __ Msub(w8, w17, w28, w28); __ Msub(w9, w28, w28, w17); __ Msub(w10, w28, w19, w28); __ Msub(w11, w19, w19, w19); __ Msub(x12, x16, x16, x16); __ Msub(x13, x16, x16, x17); __ Msub(x14, x16, x16, x28); __ Msub(x15, x16, x16, x19); __ Msub(x20, x16, x17, x17); __ Msub(x21, x17, x17, x28); __ Msub(x22, x17, x17, x19); __ Msub(x23, x17, x28, x16); __ Msub(x24, x17, x28, x28); __ Msub(x25, x28, x28, x17); __ Msub(x26, x28, x19, x28); __ Msub(x27, x19, x19, x19); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(0xFFFFFFFF, x2); CHECK_EQUAL_64(0xFFFFFFFF, x3); CHECK_EQUAL_64(1, x4); CHECK_EQUAL_64(0xFFFFFFFE, x5); CHECK_EQUAL_64(0xFFFFFFFE, x6); CHECK_EQUAL_64(1, x7); CHECK_EQUAL_64(0, x8); CHECK_EQUAL_64(0, x9); CHECK_EQUAL_64(0xFFFFFFFE, x10); CHECK_EQUAL_64(0xFFFFFFFE, x11); CHECK_EQUAL_64(0, x12); CHECK_EQUAL_64(1, x13); CHECK_EQUAL_64(0xFFFFFFFF, x14); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x15); CHECK_EQUAL_64(1, x20); CHECK_EQUAL_64(0xFFFFFFFEUL, x21); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x22); CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x23); CHECK_EQUAL_64(0, x24); CHECK_EQUAL_64(0x200000000UL, x25); CHECK_EQUAL_64(0x1FFFFFFFEUL, x26); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x27); } TEST(smulh) { INIT_V8(); SETUP(); START(); __ Mov(x20, 0); __ Mov(x21, 1); __ Mov(x22, 0x0000000100000000L); __ Mov(x23, 0x12345678); __ Mov(x24, 0x0123456789ABCDEFL); __ Mov(x25, 0x0000000200000000L); __ Mov(x26, 0x8000000000000000UL); __ Mov(x27, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x28, 0x5555555555555555UL); __ Mov(x29, 0xAAAAAAAAAAAAAAAAUL); __ Smulh(x0, x20, x24); __ Smulh(x1, x21, x24); __ Smulh(x2, x22, x23); __ Smulh(x3, x22, x24); __ Smulh(x4, x24, x25); __ Smulh(x5, x23, x27); __ Smulh(x6, x26, x26); __ Smulh(x7, x26, x27); __ Smulh(x8, x27, x27); __ Smulh(x9, x28, x28); __ Smulh(x10, x28, x29); __ Smulh(x11, x29, x29); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(0, x1); CHECK_EQUAL_64(0, x2); CHECK_EQUAL_64(0x01234567, x3); CHECK_EQUAL_64(0x02468ACF, x4); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x5); CHECK_EQUAL_64(0x4000000000000000UL, x6); CHECK_EQUAL_64(0, x7); CHECK_EQUAL_64(0, x8); CHECK_EQUAL_64(0x1C71C71C71C71C71UL, x9); CHECK_EQUAL_64(0xE38E38E38E38E38EUL, x10); CHECK_EQUAL_64(0x1C71C71C71C71C72UL, x11); } TEST(smaddl_umaddl) { INIT_V8(); SETUP(); START(); __ Mov(x17, 1); __ Mov(x28, 0xFFFFFFFF); __ Mov(x19, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x20, 4); __ Mov(x21, 0x200000000UL); __ Smaddl(x9, w17, w28, x20); __ Smaddl(x10, w28, w28, x20); __ Smaddl(x11, w19, w19, x20); __ Smaddl(x12, w19, w19, x21); __ Umaddl(x13, w17, w28, x20); __ Umaddl(x14, w28, w28, x20); __ Umaddl(x15, w19, w19, x20); __ Umaddl(x22, w19, w19, x21); END(); RUN(); CHECK_EQUAL_64(3, x9); CHECK_EQUAL_64(5, x10); CHECK_EQUAL_64(5, x11); CHECK_EQUAL_64(0x200000001UL, x12); CHECK_EQUAL_64(0x100000003UL, x13); CHECK_EQUAL_64(0xFFFFFFFE00000005UL, x14); CHECK_EQUAL_64(0xFFFFFFFE00000005UL, x15); CHECK_EQUAL_64(0x1, x22); } TEST(smsubl_umsubl) { INIT_V8(); SETUP(); START(); __ Mov(x17, 1); __ Mov(x28, 0xFFFFFFFF); __ Mov(x19, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x20, 4); __ Mov(x21, 0x200000000UL); __ Smsubl(x9, w17, w28, x20); __ Smsubl(x10, w28, w28, x20); __ Smsubl(x11, w19, w19, x20); __ Smsubl(x12, w19, w19, x21); __ Umsubl(x13, w17, w28, x20); __ Umsubl(x14, w28, w28, x20); __ Umsubl(x15, w19, w19, x20); __ Umsubl(x22, w19, w19, x21); END(); RUN(); CHECK_EQUAL_64(5, x9); CHECK_EQUAL_64(3, x10); CHECK_EQUAL_64(3, x11); CHECK_EQUAL_64(0x1FFFFFFFFUL, x12); CHECK_EQUAL_64(0xFFFFFFFF00000005UL, x13); CHECK_EQUAL_64(0x200000003UL, x14); CHECK_EQUAL_64(0x200000003UL, x15); CHECK_EQUAL_64(0x3FFFFFFFFUL, x22); } TEST(div) { INIT_V8(); SETUP(); START(); __ Mov(x16, 1); __ Mov(x17, 0xFFFFFFFF); __ Mov(x30, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x19, 0x80000000); __ Mov(x20, 0x8000000000000000UL); __ Mov(x21, 2); __ Udiv(w0, w16, w16); __ Udiv(w1, w17, w16); __ Sdiv(w2, w16, w16); __ Sdiv(w3, w16, w17); __ Sdiv(w4, w17, w30); __ Udiv(x5, x16, x16); __ Udiv(x6, x17, x30); __ Sdiv(x7, x16, x16); __ Sdiv(x8, x16, x17); __ Sdiv(x9, x17, x30); __ Udiv(w10, w19, w21); __ Sdiv(w11, w19, w21); __ Udiv(x12, x19, x21); __ Sdiv(x13, x19, x21); __ Udiv(x14, x20, x21); __ Sdiv(x15, x20, x21); __ Udiv(w22, w19, w17); __ Sdiv(w23, w19, w17); __ Udiv(x24, x20, x30); __ Sdiv(x25, x20, x30); __ Udiv(x26, x16, x21); __ Sdiv(x27, x16, x21); __ Udiv(x28, x30, x21); __ Sdiv(x29, x30, x21); __ Mov(x17, 0); __ Udiv(w30, w16, w17); __ Sdiv(w19, w16, w17); __ Udiv(x20, x16, x17); __ Sdiv(x21, x16, x17); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(0xFFFFFFFF, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0xFFFFFFFF, x3); CHECK_EQUAL_64(1, x4); CHECK_EQUAL_64(1, x5); CHECK_EQUAL_64(0, x6); CHECK_EQUAL_64(1, x7); CHECK_EQUAL_64(0, x8); CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x9); CHECK_EQUAL_64(0x40000000, x10); CHECK_EQUAL_64(0xC0000000, x11); CHECK_EQUAL_64(0x40000000, x12); CHECK_EQUAL_64(0x40000000, x13); CHECK_EQUAL_64(0x4000000000000000UL, x14); CHECK_EQUAL_64(0xC000000000000000UL, x15); CHECK_EQUAL_64(0, x22); CHECK_EQUAL_64(0x80000000, x23); CHECK_EQUAL_64(0, x24); CHECK_EQUAL_64(0x8000000000000000UL, x25); CHECK_EQUAL_64(0, x26); CHECK_EQUAL_64(0, x27); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x28); CHECK_EQUAL_64(0, x29); CHECK_EQUAL_64(0, x30); CHECK_EQUAL_64(0, x19); CHECK_EQUAL_64(0, x20); CHECK_EQUAL_64(0, x21); } TEST(rbit_rev) { INIT_V8(); SETUP(); START(); __ Mov(x24, 0xFEDCBA9876543210UL); __ Rbit(w0, w24); __ Rbit(x1, x24); __ Rev16(w2, w24); __ Rev16(x3, x24); __ Rev(w4, w24); __ Rev32(x5, x24); __ Rev(x6, x24); END(); RUN(); CHECK_EQUAL_64(0x084C2A6E, x0); CHECK_EQUAL_64(0x084C2A6E195D3B7FUL, x1); CHECK_EQUAL_64(0x54761032, x2); CHECK_EQUAL_64(0xDCFE98BA54761032UL, x3); CHECK_EQUAL_64(0x10325476, x4); CHECK_EQUAL_64(0x98BADCFE10325476UL, x5); CHECK_EQUAL_64(0x1032547698BADCFEUL, x6); } TEST(clz_cls) { INIT_V8(); SETUP(); START(); __ Mov(x24, 0x0008000000800000UL); __ Mov(x25, 0xFF800000FFF80000UL); __ Mov(x26, 0); __ Clz(w0, w24); __ Clz(x1, x24); __ Clz(w2, w25); __ Clz(x3, x25); __ Clz(w4, w26); __ Clz(x5, x26); __ Cls(w6, w24); __ Cls(x7, x24); __ Cls(w8, w25); __ Cls(x9, x25); __ Cls(w10, w26); __ Cls(x11, x26); END(); RUN(); CHECK_EQUAL_64(8, x0); CHECK_EQUAL_64(12, x1); CHECK_EQUAL_64(0, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(32, x4); CHECK_EQUAL_64(64, x5); CHECK_EQUAL_64(7, x6); CHECK_EQUAL_64(11, x7); CHECK_EQUAL_64(12, x8); CHECK_EQUAL_64(8, x9); CHECK_EQUAL_64(31, x10); CHECK_EQUAL_64(63, x11); } TEST(label) { INIT_V8(); SETUP(); Label label_1, label_2, label_3, label_4; START(); __ Mov(x0, 0x1); __ Mov(x1, 0x0); __ Mov(x22, lr); // Save lr. __ B(&label_1); __ B(&label_1); __ B(&label_1); // Multiple branches to the same label. __ Mov(x0, 0x0); __ Bind(&label_2); __ B(&label_3); // Forward branch. __ Mov(x0, 0x0); __ Bind(&label_1); __ B(&label_2); // Backward branch. __ Mov(x0, 0x0); __ Bind(&label_3); __ Bl(&label_4); END(); __ Bind(&label_4); __ Mov(x1, 0x1); __ Mov(lr, x22); END(); RUN(); CHECK_EQUAL_64(0x1, x0); CHECK_EQUAL_64(0x1, x1); } TEST(branch_at_start) { INIT_V8(); SETUP(); Label good, exit; // Test that branches can exist at the start of the buffer. (This is a // boundary condition in the label-handling code.) To achieve this, we have // to work around the code generated by START. RESET(); __ B(&good); START_AFTER_RESET(); __ Mov(x0, 0x0); END(); __ Bind(&exit); START_AFTER_RESET(); __ Mov(x0, 0x1); END(); __ Bind(&good); __ B(&exit); END(); RUN(); CHECK_EQUAL_64(0x1, x0); } TEST(adr) { INIT_V8(); SETUP(); Label label_1, label_2, label_3, label_4; START(); __ Mov(x0, 0x0); // Set to non-zero to indicate failure. __ Adr(x1, &label_3); // Set to zero to indicate success. __ Adr(x2, &label_1); // Multiple forward references to the same label. __ Adr(x3, &label_1); __ Adr(x4, &label_1); __ Bind(&label_2, BranchTargetIdentifier::kBtiJump); __ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical. __ Eor(x6, x2, Operand(x4)); __ Orr(x0, x0, Operand(x5)); __ Orr(x0, x0, Operand(x6)); __ Br(x2); // label_1, label_3 __ Bind(&label_3, BranchTargetIdentifier::kBtiJump); __ Adr(x2, &label_3); // Self-reference (offset 0). __ Eor(x1, x1, Operand(x2)); __ Adr(x2, &label_4); // Simple forward reference. __ Br(x2); // label_4 __ Bind(&label_1, BranchTargetIdentifier::kBtiJump); __ Adr(x2, &label_3); // Multiple reverse references to the same label. __ Adr(x3, &label_3); __ Adr(x4, &label_3); __ Adr(x5, &label_2); // Simple reverse reference. __ Br(x5); // label_2 __ Bind(&label_4, BranchTargetIdentifier::kBtiJump); END(); RUN(); CHECK_EQUAL_64(0x0, x0); CHECK_EQUAL_64(0x0, x1); } TEST(adr_far) { INIT_V8(); int max_range = 1 << (Instruction::ImmPCRelRangeBitwidth - 1); SETUP_SIZE(max_range + 1000 * kInstrSize); Label done, fail; Label test_near, near_forward, near_backward; Label test_far, far_forward, far_backward; START(); __ Mov(x0, 0x0); __ Bind(&test_near); __ Adr(x10, &near_forward, MacroAssembler::kAdrFar); __ Br(x10); __ B(&fail); __ Bind(&near_backward, BranchTargetIdentifier::kBtiJump); __ Orr(x0, x0, 1 << 1); __ B(&test_far); __ Bind(&near_forward, BranchTargetIdentifier::kBtiJump); __ Orr(x0, x0, 1 << 0); __ Adr(x10, &near_backward, MacroAssembler::kAdrFar); __ Br(x10); __ Bind(&test_far); __ Adr(x10, &far_forward, MacroAssembler::kAdrFar); __ Br(x10); __ B(&fail); __ Bind(&far_backward, BranchTargetIdentifier::kBtiJump); __ Orr(x0, x0, 1 << 3); __ B(&done); for (int i = 0; i < max_range / kInstrSize + 1; ++i) { if (i % 100 == 0) { // If we do land in this code, we do not want to execute so many nops // before reaching the end of test (especially if tracing is activated). __ b(&fail); } else { __ nop(); } } __ Bind(&far_forward, BranchTargetIdentifier::kBtiJump); __ Orr(x0, x0, 1 << 2); __ Adr(x10, &far_backward, MacroAssembler::kAdrFar); __ Br(x10); __ B(&done); __ Bind(&fail); __ Orr(x0, x0, 1 << 4); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0xF, x0); } TEST(branch_cond) { INIT_V8(); SETUP(); Label wrong; START(); __ Mov(x0, 0x1); __ Mov(x1, 0x1); __ Mov(x2, 0x8000000000000000L); // For each 'cmp' instruction below, condition codes other than the ones // following it would branch. __ Cmp(x1, 0); __ B(&wrong, eq); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vs); __ B(&wrong, ls); __ B(&wrong, lt); __ B(&wrong, le); Label ok_1; __ B(&ok_1, ne); __ Mov(x0, 0x0); __ Bind(&ok_1); __ Cmp(x1, 1); __ B(&wrong, ne); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vs); __ B(&wrong, hi); __ B(&wrong, lt); __ B(&wrong, gt); Label ok_2; __ B(&ok_2, pl); __ Mov(x0, 0x0); __ Bind(&ok_2); __ Cmp(x1, 2); __ B(&wrong, eq); __ B(&wrong, hs); __ B(&wrong, pl); __ B(&wrong, vs); __ B(&wrong, hi); __ B(&wrong, ge); __ B(&wrong, gt); Label ok_3; __ B(&ok_3, vc); __ Mov(x0, 0x0); __ Bind(&ok_3); __ Cmp(x2, 1); __ B(&wrong, eq); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vc); __ B(&wrong, ls); __ B(&wrong, ge); __ B(&wrong, gt); Label ok_4; __ B(&ok_4, le); __ Mov(x0, 0x0); __ Bind(&ok_4); Label ok_5; __ b(&ok_5, al); __ Mov(x0, 0x0); __ Bind(&ok_5); Label ok_6; __ b(&ok_6, nv); __ Mov(x0, 0x0); __ Bind(&ok_6); END(); __ Bind(&wrong); __ Mov(x0, 0x0); END(); RUN(); CHECK_EQUAL_64(0x1, x0); } TEST(branch_to_reg) { INIT_V8(); SETUP(); // Test br. Label fn1, after_fn1, after_bl1; START(); __ Mov(x29, lr); __ Mov(x1, 0); __ B(&after_fn1); __ Bind(&fn1); __ Mov(x0, lr); __ Mov(x1, 42); __ Br(x0); __ Bind(&after_fn1); __ Bl(&fn1); __ Bind(&after_bl1, BranchTargetIdentifier::kBtiJump); // For Br(x0) in fn1. // Test blr. Label fn2, after_fn2, after_bl2; __ Mov(x2, 0); __ B(&after_fn2); __ Bind(&fn2); __ Mov(x0, lr); __ Mov(x2, 84); __ Blr(x0); __ Bind(&after_fn2); __ Bl(&fn2); __ Bind(&after_bl2, BranchTargetIdentifier::kBtiCall); // For Blr(x0) in fn2. __ Mov(x3, lr); __ Mov(lr, x29); END(); RUN(); CHECK_EQUAL_64(core.xreg(3) + kInstrSize, x0); CHECK_EQUAL_64(42, x1); CHECK_EQUAL_64(84, x2); } static void BtiHelper(Register ipreg) { SETUP(); Label jump_target, jump_call_target, call_target, test_pacibsp, pacibsp_target, done; START(); UseScratchRegisterScope temps(&masm); temps.Exclude(ipreg); __ Adr(x0, &jump_target); __ Br(x0); __ Nop(); __ Bind(&jump_target, BranchTargetIdentifier::kBtiJump); __ Adr(x0, &call_target); __ Blr(x0); __ Adr(ipreg, &jump_call_target); __ Blr(ipreg); __ Adr(lr, &test_pacibsp); // Make Ret return to test_pacibsp. __ Br(ipreg); __ Bind(&test_pacibsp, BranchTargetIdentifier::kNone); __ Adr(ipreg, &pacibsp_target); __ Blr(ipreg); __ Adr(lr, &done); // Make Ret return to done label. __ Br(ipreg); __ Bind(&call_target, BranchTargetIdentifier::kBtiCall); __ Ret(); __ Bind(&jump_call_target, BranchTargetIdentifier::kBtiJumpCall); __ Ret(); __ Bind(&pacibsp_target, BranchTargetIdentifier::kPacibsp); __ Autibsp(); __ Ret(); __ Bind(&done); END(); #ifdef USE_SIMULATOR simulator.SetGuardedPages(true); RUN(); #endif // USE_SIMULATOR } TEST(bti) { BtiHelper(x16); BtiHelper(x17); } TEST(unguarded_bti_is_nop) { SETUP(); Label start, none, c, j, jc; START(); __ B(&start); __ Bind(&none, BranchTargetIdentifier::kBti); __ Bind(&c, BranchTargetIdentifier::kBtiCall); __ Bind(&j, BranchTargetIdentifier::kBtiJump); __ Bind(&jc, BranchTargetIdentifier::kBtiJumpCall); CHECK(__ SizeOfCodeGeneratedSince(&none) == 4 * kInstrSize); __ Ret(); Label jump_to_c, call_to_j; __ Bind(&start); __ Adr(x0, &none); __ Adr(lr, &jump_to_c); __ Br(x0); __ Bind(&jump_to_c); __ Adr(x0, &c); __ Adr(lr, &call_to_j); __ Br(x0); __ Bind(&call_to_j); __ Adr(x0, &j); __ Blr(x0); END(); #ifdef USE_SIMULATOR simulator.SetGuardedPages(false); RUN(); #endif // USE_SIMULATOR } TEST(compare_branch) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); __ Mov(x3, 0); __ Mov(x4, 0); __ Mov(x5, 0); __ Mov(x16, 0); __ Mov(x17, 42); Label zt, zt_end; __ Cbz(w16, &zt); __ B(&zt_end); __ Bind(&zt); __ Mov(x0, 1); __ Bind(&zt_end); Label zf, zf_end; __ Cbz(x17, &zf); __ B(&zf_end); __ Bind(&zf); __ Mov(x1, 1); __ Bind(&zf_end); Label nzt, nzt_end; __ Cbnz(w17, &nzt); __ B(&nzt_end); __ Bind(&nzt); __ Mov(x2, 1); __ Bind(&nzt_end); Label nzf, nzf_end; __ Cbnz(x16, &nzf); __ B(&nzf_end); __ Bind(&nzf); __ Mov(x3, 1); __ Bind(&nzf_end); __ Mov(x19, 0xFFFFFFFF00000000UL); Label a, a_end; __ Cbz(w19, &a); __ B(&a_end); __ Bind(&a); __ Mov(x4, 1); __ Bind(&a_end); Label b, b_end; __ Cbnz(w19, &b); __ B(&b_end); __ Bind(&b); __ Mov(x5, 1); __ Bind(&b_end); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(0, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(1, x4); CHECK_EQUAL_64(0, x5); } TEST(test_branch) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); __ Mov(x3, 0); __ Mov(x16, 0xAAAAAAAAAAAAAAAAUL); Label bz, bz_end; __ Tbz(w16, 0, &bz); __ B(&bz_end); __ Bind(&bz); __ Mov(x0, 1); __ Bind(&bz_end); Label bo, bo_end; __ Tbz(x16, 63, &bo); __ B(&bo_end); __ Bind(&bo); __ Mov(x1, 1); __ Bind(&bo_end); Label nbz, nbz_end; __ Tbnz(x16, 61, &nbz); __ B(&nbz_end); __ Bind(&nbz); __ Mov(x2, 1); __ Bind(&nbz_end); Label nbo, nbo_end; __ Tbnz(w16, 2, &nbo); __ B(&nbo_end); __ Bind(&nbo); __ Mov(x3, 1); __ Bind(&nbo_end); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(0, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0, x3); } namespace { // Generate a block of code that, when hit, always jumps to `landing_pad`. void GenerateLandingNops(MacroAssembler* masm, int n, Label* landing_pad) { for (int i = 0; i < (n - 1); i++) { if (i % 100 == 0) { masm->B(landing_pad); } else { masm->Nop(); } } masm->B(landing_pad); } } // namespace TEST(far_branch_backward) { INIT_V8(); ImmBranchType branch_types[] = {TestBranchType, CompareBranchType, CondBranchType}; for (ImmBranchType type : branch_types) { int range = Instruction::ImmBranchRange(type); SETUP_SIZE(range + 1000 * kInstrSize); START(); Label done, fail; // Avoid using near and far as variable name because both are defined as // macro in minwindef.h from Windows SDK. Label near_label, far_label, in_range, out_of_range; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ B(&near_label); __ Bind(&in_range); __ Orr(x0, x0, 1 << 0); __ B(&far_label); __ Bind(&out_of_range); __ Orr(x0, x0, 1 << 1); __ B(&done); // We use a slack and an approximate budget instead of checking precisely // when the branch limit is hit, since veneers and literal pool can mess // with our calculation of where the limit is. // In this test, we want to make sure we support backwards branches and the // range is more-or-less correct. It's not a big deal if the macro-assembler // got the range a little wrong, as long as it's not far off which could // affect performance. int budget = (range - static_cast(__ SizeOfCodeGeneratedSince(&in_range))) / kInstrSize; const int kSlack = 100; // Generate enough code so that the next branch will be in range but we are // close to the limit. GenerateLandingNops(&masm, budget - kSlack, &fail); __ Bind(&near_label); switch (type) { case TestBranchType: __ Tbz(x10, 3, &in_range); // This should be: // TBZ CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label)); break; case CompareBranchType: __ Cbz(x10, &in_range); // This should be: // CBZ CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label)); break; case CondBranchType: __ Cmp(x10, 0); __ B(eq, &in_range); // This should be: // CMP // B.EQ CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label)); break; default: UNREACHABLE(); } // Now go past the limit so that branches are now out of range. GenerateLandingNops(&masm, kSlack * 2, &fail); __ Bind(&far_label); switch (type) { case TestBranchType: __ Tbz(x10, 5, &out_of_range); // This should be: // TBNZ // B // skip: CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label)); break; case CompareBranchType: __ Cbz(x10, &out_of_range); // This should be: // CBNZ // B // skip: CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label)); break; case CondBranchType: __ Cmp(x10, 0); __ B(eq, &out_of_range); // This should be: // CMP // B.NE // B // skip: CHECK_EQ(3 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label)); break; default: UNREACHABLE(); } __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0x3, x0); CHECK_EQUAL_64(1, x1); } } TEST(far_branch_simple_veneer) { INIT_V8(); // Test that the MacroAssembler correctly emits veneers for forward branches // to labels that are outside the immediate range of branch instructions. int max_range = std::max(Instruction::ImmBranchRange(TestBranchType), std::max(Instruction::ImmBranchRange(CompareBranchType), Instruction::ImmBranchRange(CondBranchType))); SETUP_SIZE(max_range + 1000 * kInstrSize); START(); Label done, fail; Label test_tbz, test_cbz, test_bcond; Label success_tbz, success_cbz, success_bcond; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ Bind(&test_tbz); __ Tbz(x10, 7, &success_tbz); __ Bind(&test_cbz); __ Cbz(x10, &success_cbz); __ Bind(&test_bcond); __ Cmp(x10, 0); __ B(eq, &success_bcond); // Generate enough code to overflow the immediate range of the three types of // branches below. for (int i = 0; i < max_range / kInstrSize + 1; ++i) { if (i % 100 == 0) { // If we do land in this code, we do not want to execute so many nops // before reaching the end of test (especially if tracing is activated). // Also, the branches give the MacroAssembler the opportunity to emit the // veneers. __ B(&fail); } else { __ Nop(); } } __ B(&fail); __ Bind(&success_tbz); __ Orr(x0, x0, 1 << 0); __ B(&test_cbz); __ Bind(&success_cbz); __ Orr(x0, x0, 1 << 1); __ B(&test_bcond); __ Bind(&success_bcond); __ Orr(x0, x0, 1 << 2); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0x7, x0); CHECK_EQUAL_64(0x1, x1); } TEST(far_branch_veneer_link_chain) { INIT_V8(); // Test that the MacroAssembler correctly emits veneers for forward branches // that target out-of-range labels and are part of multiple instructions // jumping to that label. // // We test the three situations with the different types of instruction: // (1)- When the branch is at the start of the chain with tbz. // (2)- When the branch is in the middle of the chain with cbz. // (3)- When the branch is at the end of the chain with bcond. int max_range = std::max(Instruction::ImmBranchRange(TestBranchType), std::max(Instruction::ImmBranchRange(CompareBranchType), Instruction::ImmBranchRange(CondBranchType))); SETUP_SIZE(max_range + 1000 * kInstrSize); START(); Label skip, fail, done; Label test_tbz, test_cbz, test_bcond; Label success_tbz, success_cbz, success_bcond; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ B(&skip); // Branches at the start of the chain for situations (2) and (3). __ B(&success_cbz); __ B(&success_bcond); __ Nop(); __ B(&success_bcond); __ B(&success_cbz); __ Bind(&skip); __ Bind(&test_tbz); __ Tbz(x10, 7, &success_tbz); __ Bind(&test_cbz); __ Cbz(x10, &success_cbz); __ Bind(&test_bcond); __ Cmp(x10, 0); __ B(eq, &success_bcond); skip.Unuse(); __ B(&skip); // Branches at the end of the chain for situations (1) and (2). __ B(&success_cbz); __ B(&success_tbz); __ Nop(); __ B(&success_tbz); __ B(&success_cbz); __ Bind(&skip); // Generate enough code to overflow the immediate range of the three types of // branches below. GenerateLandingNops(&masm, (max_range / kInstrSize) + 1, &fail); __ Bind(&success_tbz); __ Orr(x0, x0, 1 << 0); __ B(&test_cbz); __ Bind(&success_cbz); __ Orr(x0, x0, 1 << 1); __ B(&test_bcond); __ Bind(&success_bcond); __ Orr(x0, x0, 1 << 2); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0x7, x0); CHECK_EQUAL_64(0x1, x1); } TEST(far_branch_veneer_broken_link_chain) { INIT_V8(); // Check that the MacroAssembler correctly handles the situation when removing // a branch from the link chain of a label and the two links on each side of // the removed branch cannot be linked together (out of range). // // We want to generate the following code, we test with tbz because it has a // small range: // // ~~~ // 1: B // : // : // : // 2: TBZ -------. // : | // : | out of range // : | // 3: TBZ | // | | // | in range | // V | // far: <-' // ~~~ // // If we say that the range of TBZ is 3 lines on this graph, then we can get // into a situation where the link chain gets broken. When emitting the two // TBZ instructions, we are in range of the previous branch in the chain so // we'll generate a TBZ and not a TBNZ+B sequence that can encode a bigger // range. // // However, the first TBZ (2), is out of range of the far label so a veneer // will be generated after the second TBZ (3). And this will result in a // broken chain because we can no longer link from (3) back to (1). // // ~~~ // 1: B <-. // : // : out of range // : // 2: TBZ : // : // : // : // 3: TBZ ----' // // B // veneer: // B // skip: // // far: // ~~~ // // This test makes sure the MacroAssembler is able to resolve this case by, // for instance, resolving (1) early and making it jump to instead of // . int max_range = Instruction::ImmBranchRange(TestBranchType); int inter_range = max_range / 2 + max_range / 10; SETUP_SIZE(3 * inter_range + 1000 * kInstrSize); START(); Label fail, done; Label test_1, test_2, test_3; Label far_target; __ Mov(x0, 0); // Indicates the origin of the branch. __ Mov(x1, 1); __ Mov(x10, 0); // First instruction in the label chain. __ Bind(&test_1); __ Mov(x0, 1); __ B(&far_target); GenerateLandingNops(&masm, inter_range / kInstrSize, &fail); // Will need a veneer to point to reach the target. __ Bind(&test_2); __ Mov(x0, 2); { Label tbz; __ Bind(&tbz); __ Tbz(x10, 7, &far_target); // This should be a single TBZ since the previous link is in range at this // point. CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&tbz)); } GenerateLandingNops(&masm, inter_range / kInstrSize, &fail); // Does not need a veneer to reach the target, but the initial branch // instruction is out of range. __ Bind(&test_3); __ Mov(x0, 3); { Label tbz; __ Bind(&tbz); __ Tbz(x10, 7, &far_target); // This should be a single TBZ since the previous link is in range at this // point. CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&tbz)); } // A veneer will be generated for the first TBZ, which will then remove the // label from the chain and break it because the second TBZ is out of range of // the first branch. // The MacroAssembler should be able to cope with this. GenerateLandingNops(&masm, inter_range / kInstrSize, &fail); __ B(&fail); __ Bind(&far_target); __ Cmp(x0, 1); __ B(eq, &test_2); __ Cmp(x0, 2); __ B(eq, &test_3); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0x3, x0); CHECK_EQUAL_64(0x1, x1); } TEST(branch_type) { INIT_V8(); SETUP(); Label fail, done; START(); __ Mov(x0, 0x0); __ Mov(x10, 0x7); __ Mov(x11, 0x0); // Test non taken branches. __ Cmp(x10, 0x7); __ B(&fail, ne); __ B(&fail, never); __ B(&fail, reg_zero, x10); __ B(&fail, reg_not_zero, x11); __ B(&fail, reg_bit_clear, x10, 0); __ B(&fail, reg_bit_set, x10, 3); // Test taken branches. Label l1, l2, l3, l4, l5; __ Cmp(x10, 0x7); __ B(&l1, eq); __ B(&fail); __ Bind(&l1); __ B(&l2, always); __ B(&fail); __ Bind(&l2); __ B(&l3, reg_not_zero, x10); __ B(&fail); __ Bind(&l3); __ B(&l4, reg_bit_clear, x10, 15); __ B(&fail); __ Bind(&l4); __ B(&l5, reg_bit_set, x10, 1); __ B(&fail); __ Bind(&l5); __ B(&done); __ Bind(&fail); __ Mov(x0, 0x1); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0x0, x0); } TEST(ldr_str_offset) { INIT_V8(); SETUP(); uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x19, dst_base); __ Ldr(w0, MemOperand(x17)); __ Str(w0, MemOperand(x19)); __ Ldr(w1, MemOperand(x17, 4)); __ Str(w1, MemOperand(x19, 12)); __ Ldr(x2, MemOperand(x17, 8)); __ Str(x2, MemOperand(x19, 16)); __ Ldrb(w3, MemOperand(x17, 1)); __ Strb(w3, MemOperand(x19, 25)); __ Ldrh(w4, MemOperand(x17, 2)); __ Strh(w4, MemOperand(x19, 33)); END(); RUN(); CHECK_EQUAL_64(0x76543210, x0); CHECK_EQUAL_64(0x76543210, dst[0]); CHECK_EQUAL_64(0xFEDCBA98, x1); CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]); CHECK_EQUAL_64(0x0123456789ABCDEFUL, x2); CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]); CHECK_EQUAL_64(0x32, x3); CHECK_EQUAL_64(0x3200, dst[3]); CHECK_EQUAL_64(0x7654, x4); CHECK_EQUAL_64(0x765400, dst[4]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base, x19); } TEST(ldr_str_wide) { INIT_V8(); SETUP(); uint32_t src[8192]; uint32_t dst[8192]; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); memset(src, 0xAA, 8192 * sizeof(src[0])); memset(dst, 0xAA, 8192 * sizeof(dst[0])); src[0] = 0; src[6144] = 6144; src[8191] = 8191; START(); __ Mov(x22, src_base); __ Mov(x23, dst_base); __ Mov(x24, src_base); __ Mov(x25, dst_base); __ Mov(x26, src_base); __ Mov(x27, dst_base); __ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0]))); __ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0]))); __ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex)); __ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex)); __ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex)); __ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex)); END(); RUN(); CHECK_EQUAL_32(8191, w0); CHECK_EQUAL_32(8191, dst[8191]); CHECK_EQUAL_64(src_base, x22); CHECK_EQUAL_64(dst_base, x23); CHECK_EQUAL_32(0, w1); CHECK_EQUAL_32(0, dst[0]); CHECK_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24); CHECK_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25); CHECK_EQUAL_32(6144, w2); CHECK_EQUAL_32(6144, dst[6144]); CHECK_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26); CHECK_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27); } TEST(ldr_str_preindex) { INIT_V8(); SETUP(); uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base + 16); __ Mov(x22, dst_base + 40); __ Mov(x23, src_base); __ Mov(x24, dst_base); __ Mov(x25, src_base); __ Mov(x26, dst_base); __ Ldr(w0, MemOperand(x17, 4, PreIndex)); __ Str(w0, MemOperand(x28, 12, PreIndex)); __ Ldr(x1, MemOperand(x19, 8, PreIndex)); __ Str(x1, MemOperand(x20, 16, PreIndex)); __ Ldr(w2, MemOperand(x21, -4, PreIndex)); __ Str(w2, MemOperand(x22, -4, PreIndex)); __ Ldrb(w3, MemOperand(x23, 1, PreIndex)); __ Strb(w3, MemOperand(x24, 25, PreIndex)); __ Ldrh(w4, MemOperand(x25, 3, PreIndex)); __ Strh(w4, MemOperand(x26, 41, PreIndex)); END(); RUN(); CHECK_EQUAL_64(0xFEDCBA98, x0); CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]); CHECK_EQUAL_64(0x0123456789ABCDEFUL, x1); CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]); CHECK_EQUAL_64(0x01234567, x2); CHECK_EQUAL_64(0x0123456700000000UL, dst[4]); CHECK_EQUAL_64(0x32, x3); CHECK_EQUAL_64(0x3200, dst[3]); CHECK_EQUAL_64(0x9876, x4); CHECK_EQUAL_64(0x987600, dst[5]); CHECK_EQUAL_64(src_base + 4, x17); CHECK_EQUAL_64(dst_base + 12, x28); CHECK_EQUAL_64(src_base + 8, x19); CHECK_EQUAL_64(dst_base + 16, x20); CHECK_EQUAL_64(src_base + 12, x21); CHECK_EQUAL_64(dst_base + 36, x22); CHECK_EQUAL_64(src_base + 1, x23); CHECK_EQUAL_64(dst_base + 25, x24); CHECK_EQUAL_64(src_base + 3, x25); CHECK_EQUAL_64(dst_base + 41, x26); } TEST(ldr_str_postindex) { INIT_V8(); SETUP(); uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base + 4); __ Mov(x28, dst_base + 12); __ Mov(x19, src_base + 8); __ Mov(x20, dst_base + 16); __ Mov(x21, src_base + 8); __ Mov(x22, dst_base + 32); __ Mov(x23, src_base + 1); __ Mov(x24, dst_base + 25); __ Mov(x25, src_base + 3); __ Mov(x26, dst_base + 41); __ Ldr(w0, MemOperand(x17, 4, PostIndex)); __ Str(w0, MemOperand(x28, 12, PostIndex)); __ Ldr(x1, MemOperand(x19, 8, PostIndex)); __ Str(x1, MemOperand(x20, 16, PostIndex)); __ Ldr(x2, MemOperand(x21, -8, PostIndex)); __ Str(x2, MemOperand(x22, -32, PostIndex)); __ Ldrb(w3, MemOperand(x23, 1, PostIndex)); __ Strb(w3, MemOperand(x24, 5, PostIndex)); __ Ldrh(w4, MemOperand(x25, -3, PostIndex)); __ Strh(w4, MemOperand(x26, -41, PostIndex)); END(); RUN(); CHECK_EQUAL_64(0xFEDCBA98, x0); CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]); CHECK_EQUAL_64(0x0123456789ABCDEFUL, x1); CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]); CHECK_EQUAL_64(0x0123456789ABCDEFUL, x2); CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[4]); CHECK_EQUAL_64(0x32, x3); CHECK_EQUAL_64(0x3200, dst[3]); CHECK_EQUAL_64(0x9876, x4); CHECK_EQUAL_64(0x987600, dst[5]); CHECK_EQUAL_64(src_base + 8, x17); CHECK_EQUAL_64(dst_base + 24, x28); CHECK_EQUAL_64(src_base + 16, x19); CHECK_EQUAL_64(dst_base + 32, x20); CHECK_EQUAL_64(src_base, x21); CHECK_EQUAL_64(dst_base, x22); CHECK_EQUAL_64(src_base + 2, x23); CHECK_EQUAL_64(dst_base + 30, x24); CHECK_EQUAL_64(src_base, x25); CHECK_EQUAL_64(dst_base, x26); } TEST(load_signed) { INIT_V8(); SETUP(); uint32_t src[2] = {0x80008080, 0x7FFF7F7F}; uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x24, src_base); __ Ldrsb(w0, MemOperand(x24)); __ Ldrsb(w1, MemOperand(x24, 4)); __ Ldrsh(w2, MemOperand(x24)); __ Ldrsh(w3, MemOperand(x24, 4)); __ Ldrsb(x4, MemOperand(x24)); __ Ldrsb(x5, MemOperand(x24, 4)); __ Ldrsh(x6, MemOperand(x24)); __ Ldrsh(x7, MemOperand(x24, 4)); __ Ldrsw(x8, MemOperand(x24)); __ Ldrsw(x9, MemOperand(x24, 4)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFF80, x0); CHECK_EQUAL_64(0x0000007F, x1); CHECK_EQUAL_64(0xFFFF8080, x2); CHECK_EQUAL_64(0x00007F7F, x3); CHECK_EQUAL_64(0xFFFFFFFFFFFFFF80UL, x4); CHECK_EQUAL_64(0x000000000000007FUL, x5); CHECK_EQUAL_64(0xFFFFFFFFFFFF8080UL, x6); CHECK_EQUAL_64(0x0000000000007F7FUL, x7); CHECK_EQUAL_64(0xFFFFFFFF80008080UL, x8); CHECK_EQUAL_64(0x000000007FFF7F7FUL, x9); } TEST(load_store_regoffset) { INIT_V8(); SETUP(); uint32_t src[3] = {1, 2, 3}; uint32_t dst[4] = {0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x21, src_base + 3 * sizeof(src[0])); __ Mov(x19, dst_base + 3 * sizeof(dst[0])); __ Mov(x20, dst_base + 4 * sizeof(dst[0])); __ Mov(x24, 0); __ Mov(x25, 4); __ Mov(x26, -4); __ Mov(x27, 0xFFFFFFFC); // 32-bit -4. __ Mov(x28, 0xFFFFFFFE); // 32-bit -2. __ Mov(x29, 0xFFFFFFFF); // 32-bit -1. __ Ldr(w0, MemOperand(x16, x24)); __ Ldr(x1, MemOperand(x16, x25)); __ Ldr(w2, MemOperand(x21, x26)); __ Ldr(w3, MemOperand(x21, x27, SXTW)); __ Ldr(w4, MemOperand(x21, x28, SXTW, 2)); __ Str(w0, MemOperand(x17, x24)); __ Str(x1, MemOperand(x17, x25)); __ Str(w2, MemOperand(x20, x29, SXTW, 2)); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(0x0000000300000002UL, x1); CHECK_EQUAL_64(3, x2); CHECK_EQUAL_64(3, x3); CHECK_EQUAL_64(2, x4); CHECK_EQUAL_32(1, dst[0]); CHECK_EQUAL_32(2, dst[1]); CHECK_EQUAL_32(3, dst[2]); CHECK_EQUAL_32(3, dst[3]); } TEST(load_store_float) { INIT_V8(); SETUP(); float src[3] = {1.0, 2.0, 3.0}; float dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(s0, MemOperand(x17, sizeof(src[0]))); __ Str(s0, MemOperand(x28, sizeof(dst[0]), PostIndex)); __ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(s2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); CHECK_EQUAL_FP32(2.0, s0); CHECK_EQUAL_FP32(2.0, dst[0]); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(1.0, dst[2]); CHECK_EQUAL_FP32(3.0, s2); CHECK_EQUAL_FP32(3.0, dst[1]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28); CHECK_EQUAL_64(src_base + sizeof(src[0]), x19); CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); CHECK_EQUAL_64(dst_base, x22); } TEST(load_store_double) { INIT_V8(); SETUP(); double src[3] = {1.0, 2.0, 3.0}; double dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(d0, MemOperand(x17, sizeof(src[0]))); __ Str(d0, MemOperand(x28, sizeof(dst[0]), PostIndex)); __ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(d2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); CHECK_EQUAL_FP64(2.0, d0); CHECK_EQUAL_FP64(2.0, dst[0]); CHECK_EQUAL_FP64(1.0, d1); CHECK_EQUAL_FP64(1.0, dst[2]); CHECK_EQUAL_FP64(3.0, d2); CHECK_EQUAL_FP64(3.0, dst[1]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28); CHECK_EQUAL_64(src_base + sizeof(src[0]), x19); CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); CHECK_EQUAL_64(dst_base, x22); } TEST(load_store_b) { INIT_V8(); SETUP(); uint8_t src[3] = {0x12, 0x23, 0x34}; uint8_t dst[3] = {0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(b0, MemOperand(x17, sizeof(src[0]))); __ Str(b0, MemOperand(x28, sizeof(dst[0]), PostIndex)); __ Ldr(b1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(b1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(b2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(b2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); CHECK_EQUAL_128(0, 0x23, q0); CHECK_EQUAL_64(0x23, dst[0]); CHECK_EQUAL_128(0, 0x12, q1); CHECK_EQUAL_64(0x12, dst[2]); CHECK_EQUAL_128(0, 0x34, q2); CHECK_EQUAL_64(0x34, dst[1]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28); CHECK_EQUAL_64(src_base + sizeof(src[0]), x19); CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); CHECK_EQUAL_64(dst_base, x22); } TEST(load_store_h) { INIT_V8(); SETUP(); uint16_t src[3] = {0x1234, 0x2345, 0x3456}; uint16_t dst[3] = {0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(h0, MemOperand(x17, sizeof(src[0]))); __ Str(h0, MemOperand(x28, sizeof(dst[0]), PostIndex)); __ Ldr(h1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(h1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(h2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(h2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); CHECK_EQUAL_128(0, 0x2345, q0); CHECK_EQUAL_64(0x2345, dst[0]); CHECK_EQUAL_128(0, 0x1234, q1); CHECK_EQUAL_64(0x1234, dst[2]); CHECK_EQUAL_128(0, 0x3456, q2); CHECK_EQUAL_64(0x3456, dst[1]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28); CHECK_EQUAL_64(src_base + sizeof(src[0]), x19); CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); CHECK_EQUAL_64(dst_base, x22); } TEST(load_store_q) { INIT_V8(); SETUP(); uint8_t src[48] = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x21, 0x43, 0x65, 0x87, 0xA9, 0xCB, 0xED, 0x0F, 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0, 0x24, 0x46, 0x68, 0x8A, 0xAC, 0xCE, 0xE0, 0x02, 0x42, 0x64, 0x86, 0xA8, 0xCA, 0xEC, 0x0E, 0x20}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(q0, MemOperand(x17, 16)); __ Str(q0, MemOperand(x28, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Str(q1, MemOperand(x20, 32, PreIndex)); __ Ldr(q2, MemOperand(x21, 32, PreIndex)); __ Str(q2, MemOperand(x22, 16)); END(); RUN(); CHECK_EQUAL_128(0xF0DEBC9A78563412, 0x0FEDCBA987654321, q0); CHECK_EQUAL_64(0x0FEDCBA987654321, dst[0]); CHECK_EQUAL_64(0xF0DEBC9A78563412, dst[1]); CHECK_EQUAL_128(0xEFCDAB8967452301, 0xFEDCBA9876543210, q1); CHECK_EQUAL_64(0xFEDCBA9876543210, dst[4]); CHECK_EQUAL_64(0xEFCDAB8967452301, dst[5]); CHECK_EQUAL_128(0x200EECCAA8866442, 0x02E0CEAC8A684624, q2); CHECK_EQUAL_64(0x02E0CEAC8A684624, dst[2]); CHECK_EQUAL_64(0x200EECCAA8866442, dst[3]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base + 16, x28); CHECK_EQUAL_64(src_base + 16, x19); CHECK_EQUAL_64(dst_base + 32, x20); CHECK_EQUAL_64(src_base + 32, x21); CHECK_EQUAL_64(dst_base, x22); } TEST(neon_ld1_d) { INIT_V8(); SETUP(); uint8_t src[32 + 5]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register. __ Ld1(v2.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v3.V8B(), v4.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0, 0x0706050403020100, q2); CHECK_EQUAL_128(0, 0x0807060504030201, q3); CHECK_EQUAL_128(0, 0x100F0E0D0C0B0A09, q4); CHECK_EQUAL_128(0, 0x0908070605040302, q5); CHECK_EQUAL_128(0, 0x11100F0E0D0C0B0A, q6); CHECK_EQUAL_128(0, 0x1918171615141312, q7); CHECK_EQUAL_128(0, 0x0A09080706050403, q16); CHECK_EQUAL_128(0, 0x1211100F0E0D0C0B, q17); CHECK_EQUAL_128(0, 0x1A19181716151413, q18); CHECK_EQUAL_128(0, 0x2221201F1E1D1C1B, q19); CHECK_EQUAL_128(0, 0x0B0A090807060504, q30); CHECK_EQUAL_128(0, 0x131211100F0E0D0C, q31); CHECK_EQUAL_128(0, 0x1B1A191817161514, q0); CHECK_EQUAL_128(0, 0x232221201F1E1D1C, q1); CHECK_EQUAL_128(0, 0x0C0B0A0908070605, q20); CHECK_EQUAL_128(0, 0x14131211100F0E0D, q21); CHECK_EQUAL_128(0, 0x1C1B1A1918171615, q22); CHECK_EQUAL_128(0, 0x24232221201F1E1D, q23); } TEST(neon_ld1_d_postindex) { INIT_V8(); SETUP(); uint8_t src[32 + 5]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, src_base + 5); __ Mov(x23, 1); __ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register. __ Ld1(v2.V8B(), MemOperand(x17, x23, PostIndex)); __ Ld1(v3.V8B(), v4.V8B(), MemOperand(x28, 16, PostIndex)); __ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x19, 24, PostIndex)); __ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x20, 32, PostIndex)); __ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x21, 32, PostIndex)); __ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(), MemOperand(x22, 32, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0, 0x0706050403020100, q2); CHECK_EQUAL_128(0, 0x0807060504030201, q3); CHECK_EQUAL_128(0, 0x100F0E0D0C0B0A09, q4); CHECK_EQUAL_128(0, 0x0908070605040302, q5); CHECK_EQUAL_128(0, 0x11100F0E0D0C0B0A, q6); CHECK_EQUAL_128(0, 0x1918171615141312, q7); CHECK_EQUAL_128(0, 0x0A09080706050403, q16); CHECK_EQUAL_128(0, 0x1211100F0E0D0C0B, q17); CHECK_EQUAL_128(0, 0x1A19181716151413, q18); CHECK_EQUAL_128(0, 0x2221201F1E1D1C1B, q19); CHECK_EQUAL_128(0, 0x0B0A090807060504, q30); CHECK_EQUAL_128(0, 0x131211100F0E0D0C, q31); CHECK_EQUAL_128(0, 0x1B1A191817161514, q0); CHECK_EQUAL_128(0, 0x232221201F1E1D1C, q1); CHECK_EQUAL_128(0, 0x0C0B0A0908070605, q20); CHECK_EQUAL_128(0, 0x14131211100F0E0D, q21); CHECK_EQUAL_128(0, 0x1C1B1A1918171615, q22); CHECK_EQUAL_128(0, 0x24232221201F1E1D, q23); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 16, x28); CHECK_EQUAL_64(src_base + 2 + 24, x19); CHECK_EQUAL_64(src_base + 3 + 32, x20); CHECK_EQUAL_64(src_base + 4 + 32, x21); CHECK_EQUAL_64(src_base + 5 + 32, x22); } TEST(neon_ld1_q) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld1(v2.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v3.V16B(), v4.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q2); CHECK_EQUAL_128(0x100F0E0D0C0B0A09, 0x0807060504030201, q3); CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x1817161514131211, q4); CHECK_EQUAL_128(0x11100F0E0D0C0B0A, 0x0908070605040302, q5); CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x1918171615141312, q6); CHECK_EQUAL_128(0x31302F2E2D2C2B2A, 0x2928272625242322, q7); CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x0A09080706050403, q16); CHECK_EQUAL_128(0x2221201F1E1D1C1B, 0x1A19181716151413, q17); CHECK_EQUAL_128(0x3231302F2E2D2C2B, 0x2A29282726252423, q18); CHECK_EQUAL_128(0x4241403F3E3D3C3B, 0x3A39383736353433, q19); CHECK_EQUAL_128(0x131211100F0E0D0C, 0x0B0A090807060504, q30); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x1B1A191817161514, q31); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x2B2A292827262524, q0); CHECK_EQUAL_128(0x434241403F3E3D3C, 0x3B3A393837363534, q1); } TEST(neon_ld1_q_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld1(v2.V16B(), MemOperand(x17, x22, PostIndex)); __ Ld1(v3.V16B(), v4.V16B(), MemOperand(x28, 32, PostIndex)); __ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x19, 48, PostIndex)); __ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(), MemOperand(x20, 64, PostIndex)); __ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x21, 64, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q2); CHECK_EQUAL_128(0x100F0E0D0C0B0A09, 0x0807060504030201, q3); CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x1817161514131211, q4); CHECK_EQUAL_128(0x11100F0E0D0C0B0A, 0x0908070605040302, q5); CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x1918171615141312, q6); CHECK_EQUAL_128(0x31302F2E2D2C2B2A, 0x2928272625242322, q7); CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x0A09080706050403, q16); CHECK_EQUAL_128(0x2221201F1E1D1C1B, 0x1A19181716151413, q17); CHECK_EQUAL_128(0x3231302F2E2D2C2B, 0x2A29282726252423, q18); CHECK_EQUAL_128(0x4241403F3E3D3C3B, 0x3A39383736353433, q19); CHECK_EQUAL_128(0x131211100F0E0D0C, 0x0B0A090807060504, q30); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x1B1A191817161514, q31); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x2B2A292827262524, q0); CHECK_EQUAL_128(0x434241403F3E3D3C, 0x3B3A393837363534, q1); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 32, x28); CHECK_EQUAL_64(src_base + 2 + 48, x19); CHECK_EQUAL_64(src_base + 3 + 64, x20); CHECK_EQUAL_64(src_base + 4 + 64, x21); } TEST(neon_ld1_lane) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); for (int i = 15; i >= 0; i--) { __ Ld1(v0.B(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 7; i >= 0; i--) { __ Ld1(v1.H(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 3; i >= 0; i--) { __ Ld1(v2.S(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 1; i >= 0; i--) { __ Ld1(v3.D(), i, MemOperand(x17)); __ Add(x17, x17, 1); } // Test loading a single element into an initialised register. __ Mov(x17, src_base); __ Ldr(q4, MemOperand(x17)); __ Ld1(v4.B(), 4, MemOperand(x17)); __ Ldr(q5, MemOperand(x17)); __ Ld1(v5.H(), 3, MemOperand(x17)); __ Ldr(q6, MemOperand(x17)); __ Ld1(v6.S(), 2, MemOperand(x17)); __ Ldr(q7, MemOperand(x17)); __ Ld1(v7.D(), 1, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0); CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q1); CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q2); CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q3); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q4); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q5); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q6); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7); } TEST(neon_ld2_d) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v4.V8B(), v5.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v6.V4H(), v7.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v31.V2S(), v0.V2S(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0, 0x0E0C0A0806040200, q2); CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q3); CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q4); CHECK_EQUAL_128(0, 0x100E0C0A08060402, q5); CHECK_EQUAL_128(0, 0x0F0E0B0A07060302, q6); CHECK_EQUAL_128(0, 0x11100D0C09080504, q7); CHECK_EQUAL_128(0, 0x0E0D0C0B06050403, q31); CHECK_EQUAL_128(0, 0x1211100F0A090807, q0); } TEST(neon_ld2_d_postindex) { INIT_V8(); SETUP(); uint8_t src[32 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17, x22, PostIndex)); __ Ld2(v4.V8B(), v5.V8B(), MemOperand(x28, 16, PostIndex)); __ Ld2(v5.V4H(), v6.V4H(), MemOperand(x19, 16, PostIndex)); __ Ld2(v16.V2S(), v17.V2S(), MemOperand(x20, 16, PostIndex)); __ Ld2(v31.V2S(), v0.V2S(), MemOperand(x21, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0, 0x0E0C0A0806040200, q2); CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q3); CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q4); CHECK_EQUAL_128(0, 0x0F0E0B0A07060302, q5); CHECK_EQUAL_128(0, 0x11100D0C09080504, q6); CHECK_EQUAL_128(0, 0x0E0D0C0B06050403, q16); CHECK_EQUAL_128(0, 0x1211100F0A090807, q17); CHECK_EQUAL_128(0, 0x0F0E0D0C07060504, q31); CHECK_EQUAL_128(0, 0x131211100B0A0908, q0); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 16, x28); CHECK_EQUAL_64(src_base + 2 + 16, x19); CHECK_EQUAL_64(src_base + 3 + 16, x20); CHECK_EQUAL_64(src_base + 4 + 16, x21); } TEST(neon_ld2_q) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v4.V16B(), v5.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v6.V8H(), v7.V8H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v16.V4S(), v17.V4S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2(v31.V2D(), v0.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x1E1C1A1816141210, 0x0E0C0A0806040200, q2); CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q3); CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q4); CHECK_EQUAL_128(0x201E1C1A18161412, 0x100E0C0A08060402, q5); CHECK_EQUAL_128(0x1F1E1B1A17161312, 0x0F0E0B0A07060302, q6); CHECK_EQUAL_128(0x21201D1C19181514, 0x11100D0C09080504, q7); CHECK_EQUAL_128(0x1E1D1C1B16151413, 0x0E0D0C0B06050403, q16); CHECK_EQUAL_128(0x2221201F1A191817, 0x1211100F0A090807, q17); CHECK_EQUAL_128(0x1B1A191817161514, 0x0B0A090807060504, q31); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x131211100F0E0D0C, q0); } TEST(neon_ld2_q_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17, x22, PostIndex)); __ Ld2(v4.V16B(), v5.V16B(), MemOperand(x28, 32, PostIndex)); __ Ld2(v6.V8H(), v7.V8H(), MemOperand(x19, 32, PostIndex)); __ Ld2(v16.V4S(), v17.V4S(), MemOperand(x20, 32, PostIndex)); __ Ld2(v31.V2D(), v0.V2D(), MemOperand(x21, 32, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1E1C1A1816141210, 0x0E0C0A0806040200, q2); CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q3); CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q4); CHECK_EQUAL_128(0x201E1C1A18161412, 0x100E0C0A08060402, q5); CHECK_EQUAL_128(0x1F1E1B1A17161312, 0x0F0E0B0A07060302, q6); CHECK_EQUAL_128(0x21201D1C19181514, 0x11100D0C09080504, q7); CHECK_EQUAL_128(0x1E1D1C1B16151413, 0x0E0D0C0B06050403, q16); CHECK_EQUAL_128(0x2221201F1A191817, 0x1211100F0A090807, q17); CHECK_EQUAL_128(0x1B1A191817161514, 0x0B0A090807060504, q31); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x131211100F0E0D0C, q0); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 32, x28); CHECK_EQUAL_64(src_base + 2 + 32, x19); CHECK_EQUAL_64(src_base + 3 + 32, x20); CHECK_EQUAL_64(src_base + 4 + 32, x21); } TEST(neon_ld2_lane) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); for (int i = 15; i >= 0; i--) { __ Ld2(v0.B(), v1.B(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 7; i >= 0; i--) { __ Ld2(v2.H(), v3.H(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 3; i >= 0; i--) { __ Ld2(v4.S(), v5.S(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 1; i >= 0; i--) { __ Ld2(v6.D(), v7.D(), i, MemOperand(x17)); __ Add(x17, x17, 1); } // Test loading a single element into an initialised register. __ Mov(x17, src_base); __ Mov(x4, x17); __ Ldr(q8, MemOperand(x4, 16, PostIndex)); __ Ldr(q9, MemOperand(x4)); __ Ld2(v8_.B(), v9.B(), 4, MemOperand(x17)); __ Mov(x5, x17); __ Ldr(q10, MemOperand(x5, 16, PostIndex)); __ Ldr(q11, MemOperand(x5)); __ Ld2(v10.H(), v11.H(), 3, MemOperand(x17)); __ Mov(x6, x17); __ Ldr(q12, MemOperand(x6, 16, PostIndex)); __ Ldr(q13, MemOperand(x6)); __ Ld2(v12.S(), v13.S(), 2, MemOperand(x17)); __ Mov(x7, x17); __ Ldr(q14, MemOperand(x7, 16, PostIndex)); __ Ldr(q15, MemOperand(x7)); __ Ld2(v14.D(), v15.D(), 1, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0); CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1); CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q2); CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q3); CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q4); CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q5); CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q6); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q7); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q8); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q9); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q10); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q11); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q12); CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q13); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q15); } TEST(neon_ld2_lane_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Mov(x19, src_base); __ Mov(x20, src_base); __ Mov(x21, src_base); __ Mov(x22, src_base); __ Mov(x23, src_base); __ Mov(x24, src_base); // Test loading whole register by element. for (int i = 15; i >= 0; i--) { __ Ld2(v0.B(), v1.B(), i, MemOperand(x17, 2, PostIndex)); } for (int i = 7; i >= 0; i--) { __ Ld2(v2.H(), v3.H(), i, MemOperand(x28, 4, PostIndex)); } for (int i = 3; i >= 0; i--) { __ Ld2(v4.S(), v5.S(), i, MemOperand(x19, 8, PostIndex)); } for (int i = 1; i >= 0; i--) { __ Ld2(v6.D(), v7.D(), i, MemOperand(x20, 16, PostIndex)); } // Test loading a single element into an initialised register. __ Mov(x25, 1); __ Mov(x4, x21); __ Ldr(q8, MemOperand(x4, 16, PostIndex)); __ Ldr(q9, MemOperand(x4)); __ Ld2(v8_.B(), v9.B(), 4, MemOperand(x21, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x5, x22); __ Ldr(q10, MemOperand(x5, 16, PostIndex)); __ Ldr(q11, MemOperand(x5)); __ Ld2(v10.H(), v11.H(), 3, MemOperand(x22, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x6, x23); __ Ldr(q12, MemOperand(x6, 16, PostIndex)); __ Ldr(q13, MemOperand(x6)); __ Ld2(v12.S(), v13.S(), 2, MemOperand(x23, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x7, x24); __ Ldr(q14, MemOperand(x7, 16, PostIndex)); __ Ldr(q15, MemOperand(x7)); __ Ld2(v14.D(), v15.D(), 1, MemOperand(x24, x25, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x00020406080A0C0E, 0x10121416181A1C1E, q0); CHECK_EQUAL_128(0x01030507090B0D0F, 0x11131517191B1D1F, q1); CHECK_EQUAL_128(0x0100050409080D0C, 0x1110151419181D1C, q2); CHECK_EQUAL_128(0x030207060B0A0F0E, 0x131217161B1A1F1E, q3); CHECK_EQUAL_128(0x030201000B0A0908, 0x131211101B1A1918, q4); CHECK_EQUAL_128(0x070605040F0E0D0C, 0x171615141F1E1D1C, q5); CHECK_EQUAL_128(0x0706050403020100, 0x1716151413121110, q6); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1F1E1D1C1B1A1918, q7); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q8); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q9); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q10); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q11); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q12); CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q13); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q15); CHECK_EQUAL_64(src_base + 32, x17); CHECK_EQUAL_64(src_base + 32, x28); CHECK_EQUAL_64(src_base + 32, x19); CHECK_EQUAL_64(src_base + 32, x20); CHECK_EQUAL_64(src_base + 1, x21); CHECK_EQUAL_64(src_base + 2, x22); CHECK_EQUAL_64(src_base + 3, x23); CHECK_EQUAL_64(src_base + 4, x24); } TEST(neon_ld2_alllanes) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17)); __ Add(x17, x17, 2); __ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17)); __ Add(x17, x17, 4); __ Ld2r(v8_.V2S(), v9.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17)); __ Add(x17, x17, 8); __ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4); CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5); CHECK_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6); CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0C0B0A090C0B0A09, q8); CHECK_EQUAL_128(0x0000000000000000, 0x100F0E0D100F0E0D, q9); CHECK_EQUAL_128(0x0D0C0B0A0D0C0B0A, 0x0D0C0B0A0D0C0B0A, q10); CHECK_EQUAL_128(0x11100F0E11100F0E, 0x11100F0E11100F0E, q11); CHECK_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12); CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x21201F1E1D1C1B1A, q13); } TEST(neon_ld2_alllanes_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Mov(x19, 1); __ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17, 2, PostIndex)); __ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17, x19, PostIndex)); __ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17, x19, PostIndex)); __ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17, 4, PostIndex)); __ Ld2r(v8_.V2S(), v9.V2S(), MemOperand(x17, x19, PostIndex)); __ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17, 8, PostIndex)); __ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4); CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5); CHECK_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6); CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0C0B0A090C0B0A09, q8); CHECK_EQUAL_128(0x0000000000000000, 0x100F0E0D100F0E0D, q9); CHECK_EQUAL_128(0x0D0C0B0A0D0C0B0A, 0x0D0C0B0A0D0C0B0A, q10); CHECK_EQUAL_128(0x11100F0E11100F0E, 0x11100F0E11100F0E, q11); CHECK_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12); CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x21201F1E1D1C1B1A, q13); CHECK_EQUAL_64(src_base + 34, x17); } TEST(neon_ld3_d) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v8_.V4H(), v9.V4H(), v10.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0, 0x15120F0C09060300, q2); CHECK_EQUAL_128(0, 0x1613100D0A070401, q3); CHECK_EQUAL_128(0, 0x1714110E0B080502, q4); CHECK_EQUAL_128(0, 0x1613100D0A070401, q5); CHECK_EQUAL_128(0, 0x1714110E0B080502, q6); CHECK_EQUAL_128(0, 0x1815120F0C090603, q7); CHECK_EQUAL_128(0, 0x15140F0E09080302, q8); CHECK_EQUAL_128(0, 0x171611100B0A0504, q9); CHECK_EQUAL_128(0, 0x191813120D0C0706, q10); CHECK_EQUAL_128(0, 0x1211100F06050403, q31); CHECK_EQUAL_128(0, 0x161514130A090807, q0); CHECK_EQUAL_128(0, 0x1A1918170E0D0C0B, q1); } TEST(neon_ld3_d_postindex) { INIT_V8(); SETUP(); uint8_t src[32 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17, x22, PostIndex)); __ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x28, 24, PostIndex)); __ Ld3(v8_.V4H(), v9.V4H(), v10.V4H(), MemOperand(x19, 24, PostIndex)); __ Ld3(v11.V2S(), v12.V2S(), v13.V2S(), MemOperand(x20, 24, PostIndex)); __ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x21, 24, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0, 0x15120F0C09060300, q2); CHECK_EQUAL_128(0, 0x1613100D0A070401, q3); CHECK_EQUAL_128(0, 0x1714110E0B080502, q4); CHECK_EQUAL_128(0, 0x1613100D0A070401, q5); CHECK_EQUAL_128(0, 0x1714110E0B080502, q6); CHECK_EQUAL_128(0, 0x1815120F0C090603, q7); CHECK_EQUAL_128(0, 0x15140F0E09080302, q8); CHECK_EQUAL_128(0, 0x171611100B0A0504, q9); CHECK_EQUAL_128(0, 0x191813120D0C0706, q10); CHECK_EQUAL_128(0, 0x1211100F06050403, q11); CHECK_EQUAL_128(0, 0x161514130A090807, q12); CHECK_EQUAL_128(0, 0x1A1918170E0D0C0B, q13); CHECK_EQUAL_128(0, 0x1312111007060504, q31); CHECK_EQUAL_128(0, 0x171615140B0A0908, q0); CHECK_EQUAL_128(0, 0x1B1A19180F0E0D0C, q1); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 24, x28); CHECK_EQUAL_64(src_base + 2 + 24, x19); CHECK_EQUAL_64(src_base + 3 + 24, x20); CHECK_EQUAL_64(src_base + 4 + 24, x21); } TEST(neon_ld3_q) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v8_.V8H(), v9.V8H(), v10.V8H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x2D2A2724211E1B18, 0x15120F0C09060300, q2); CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q3); CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q4); CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q5); CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q6); CHECK_EQUAL_128(0x302D2A2724211E1B, 0x1815120F0C090603, q7); CHECK_EQUAL_128(0x2D2C272621201B1A, 0x15140F0E09080302, q8); CHECK_EQUAL_128(0x2F2E292823221D1C, 0x171611100B0A0504, q9); CHECK_EQUAL_128(0x31302B2A25241F1E, 0x191813120D0C0706, q10); CHECK_EQUAL_128(0x2A2928271E1D1C1B, 0x1211100F06050403, q11); CHECK_EQUAL_128(0x2E2D2C2B2221201F, 0x161514130A090807, q12); CHECK_EQUAL_128(0x3231302F26252423, 0x1A1918170E0D0C0B, q13); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x0B0A090807060504, q31); CHECK_EQUAL_128(0x2B2A292827262524, 0x131211100F0E0D0C, q0); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x1B1A191817161514, q1); } TEST(neon_ld3_q_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17, x22, PostIndex)); __ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x28, 48, PostIndex)); __ Ld3(v8_.V8H(), v9.V8H(), v10.V8H(), MemOperand(x19, 48, PostIndex)); __ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x20, 48, PostIndex)); __ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x21, 48, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x2D2A2724211E1B18, 0x15120F0C09060300, q2); CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q3); CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q4); CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q5); CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q6); CHECK_EQUAL_128(0x302D2A2724211E1B, 0x1815120F0C090603, q7); CHECK_EQUAL_128(0x2D2C272621201B1A, 0x15140F0E09080302, q8); CHECK_EQUAL_128(0x2F2E292823221D1C, 0x171611100B0A0504, q9); CHECK_EQUAL_128(0x31302B2A25241F1E, 0x191813120D0C0706, q10); CHECK_EQUAL_128(0x2A2928271E1D1C1B, 0x1211100F06050403, q11); CHECK_EQUAL_128(0x2E2D2C2B2221201F, 0x161514130A090807, q12); CHECK_EQUAL_128(0x3231302F26252423, 0x1A1918170E0D0C0B, q13); CHECK_EQUAL_128(0x232221201F1E1D1C, 0x0B0A090807060504, q31); CHECK_EQUAL_128(0x2B2A292827262524, 0x131211100F0E0D0C, q0); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x1B1A191817161514, q1); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 48, x28); CHECK_EQUAL_64(src_base + 2 + 48, x19); CHECK_EQUAL_64(src_base + 3 + 48, x20); CHECK_EQUAL_64(src_base + 4 + 48, x21); } TEST(neon_ld3_lane) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); for (int i = 15; i >= 0; i--) { __ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 7; i >= 0; i--) { __ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 3; i >= 0; i--) { __ Ld3(v6.S(), v7.S(), v8_.S(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 1; i >= 0; i--) { __ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x17)); __ Add(x17, x17, 1); } // Test loading a single element into an initialised register. __ Mov(x17, src_base); __ Mov(x4, x17); __ Ldr(q12, MemOperand(x4, 16, PostIndex)); __ Ldr(q13, MemOperand(x4, 16, PostIndex)); __ Ldr(q14, MemOperand(x4)); __ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x17)); __ Mov(x5, x17); __ Ldr(q15, MemOperand(x5, 16, PostIndex)); __ Ldr(q16, MemOperand(x5, 16, PostIndex)); __ Ldr(q17, MemOperand(x5)); __ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x17)); __ Mov(x6, x17); __ Ldr(q18, MemOperand(x6, 16, PostIndex)); __ Ldr(q19, MemOperand(x6, 16, PostIndex)); __ Ldr(q20, MemOperand(x6)); __ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x17)); __ Mov(x7, x17); __ Ldr(q21, MemOperand(x7, 16, PostIndex)); __ Ldr(q22, MemOperand(x7, 16, PostIndex)); __ Ldr(q23, MemOperand(x7)); __ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0); CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1); CHECK_EQUAL_128(0x0203040506070809, 0x0A0B0C0D0E0F1011, q2); CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q3); CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q4); CHECK_EQUAL_128(0x0504060507060807, 0x09080A090B0A0C0B, q5); CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q6); CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q7); CHECK_EQUAL_128(0x0B0A09080C0B0A09, 0x0D0C0B0A0E0D0C0B, q8); CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q9); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q10); CHECK_EQUAL_128(0x1716151413121110, 0x1817161514131211, q11); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q12); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q13); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q14); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q15); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q16); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q17); } TEST(neon_ld3_lane_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); __ Mov(x28, src_base); __ Mov(x19, src_base); __ Mov(x20, src_base); __ Mov(x21, src_base); __ Mov(x22, src_base); __ Mov(x23, src_base); __ Mov(x24, src_base); for (int i = 15; i >= 0; i--) { __ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17, 3, PostIndex)); } for (int i = 7; i >= 0; i--) { __ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x28, 6, PostIndex)); } for (int i = 3; i >= 0; i--) { __ Ld3(v6.S(), v7.S(), v8_.S(), i, MemOperand(x19, 12, PostIndex)); } for (int i = 1; i >= 0; i--) { __ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x20, 24, PostIndex)); } // Test loading a single element into an initialised register. __ Mov(x25, 1); __ Mov(x4, x21); __ Ldr(q12, MemOperand(x4, 16, PostIndex)); __ Ldr(q13, MemOperand(x4, 16, PostIndex)); __ Ldr(q14, MemOperand(x4)); __ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x21, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x5, x22); __ Ldr(q15, MemOperand(x5, 16, PostIndex)); __ Ldr(q16, MemOperand(x5, 16, PostIndex)); __ Ldr(q17, MemOperand(x5)); __ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x22, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x6, x23); __ Ldr(q18, MemOperand(x6, 16, PostIndex)); __ Ldr(q19, MemOperand(x6, 16, PostIndex)); __ Ldr(q20, MemOperand(x6)); __ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x23, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x7, x24); __ Ldr(q21, MemOperand(x7, 16, PostIndex)); __ Ldr(q22, MemOperand(x7, 16, PostIndex)); __ Ldr(q23, MemOperand(x7)); __ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x24, x25, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x000306090C0F1215, 0x181B1E2124272A2D, q0); CHECK_EQUAL_128(0x0104070A0D101316, 0x191C1F2225282B2E, q1); CHECK_EQUAL_128(0x0205080B0E111417, 0x1A1D202326292C2F, q2); CHECK_EQUAL_128(0x010007060D0C1312, 0x19181F1E25242B2A, q3); CHECK_EQUAL_128(0x030209080F0E1514, 0x1B1A212027262D2C, q4); CHECK_EQUAL_128(0x05040B0A11101716, 0x1D1C232229282F2E, q5); CHECK_EQUAL_128(0x030201000F0E0D0C, 0x1B1A191827262524, q6); CHECK_EQUAL_128(0x0706050413121110, 0x1F1E1D1C2B2A2928, q7); CHECK_EQUAL_128(0x0B0A090817161514, 0x232221202F2E2D2C, q8); CHECK_EQUAL_128(0x0706050403020100, 0x1F1E1D1C1B1A1918, q9); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x2726252423222120, q10); CHECK_EQUAL_128(0x1716151413121110, 0x2F2E2D2C2B2A2928, q11); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q12); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q13); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q14); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q15); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q16); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q17); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q18); CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q19); CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q20); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q21); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q22); CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q23); CHECK_EQUAL_64(src_base + 48, x17); CHECK_EQUAL_64(src_base + 48, x28); CHECK_EQUAL_64(src_base + 48, x19); CHECK_EQUAL_64(src_base + 48, x20); CHECK_EQUAL_64(src_base + 1, x21); CHECK_EQUAL_64(src_base + 2, x22); CHECK_EQUAL_64(src_base + 3, x23); CHECK_EQUAL_64(src_base + 4, x24); } TEST(neon_ld3_alllanes) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17)); __ Add(x17, x17, 3); __ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3r(v6.V4H(), v7.V4H(), v8_.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17)); __ Add(x17, x17, 6); __ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17)); __ Add(x17, x17, 12); __ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4); CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5); CHECK_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6); CHECK_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0A090A090A090A09, q8); CHECK_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9); CHECK_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10); CHECK_EQUAL_128(0x0B0A0B0A0B0A0B0A, 0x0B0A0B0A0B0A0B0A, q11); CHECK_EQUAL_128(0x0000000000000000, 0x0F0E0D0C0F0E0D0C, q12); CHECK_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13); CHECK_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14); CHECK_EQUAL_128(0x100F0E0D100F0E0D, 0x100F0E0D100F0E0D, q15); CHECK_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16); CHECK_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17); CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x201F1E1D1C1B1A19, q18); CHECK_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19); CHECK_EQUAL_128(0x302F2E2D2C2B2A29, 0x302F2E2D2C2B2A29, q20); } TEST(neon_ld3_alllanes_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Mov(x19, 1); __ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17, 3, PostIndex)); __ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17, x19, PostIndex)); __ Ld3r(v6.V4H(), v7.V4H(), v8_.V4H(), MemOperand(x17, x19, PostIndex)); __ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17, 6, PostIndex)); __ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17, x19, PostIndex)); __ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17, 12, PostIndex)); __ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17, 24, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4); CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5); CHECK_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6); CHECK_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0A090A090A090A09, q8); CHECK_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9); CHECK_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10); CHECK_EQUAL_128(0x0B0A0B0A0B0A0B0A, 0x0B0A0B0A0B0A0B0A, q11); CHECK_EQUAL_128(0x0000000000000000, 0x0F0E0D0C0F0E0D0C, q12); CHECK_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13); CHECK_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14); CHECK_EQUAL_128(0x100F0E0D100F0E0D, 0x100F0E0D100F0E0D, q15); CHECK_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16); CHECK_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17); CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x201F1E1D1C1B1A19, q18); CHECK_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19); CHECK_EQUAL_128(0x302F2E2D2C2B2A29, 0x302F2E2D2C2B2A29, q20); } TEST(neon_ld4_d) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v6.V8B(), v7.V8B(), v8_.V8B(), v9.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0, 0x1C1814100C080400, q2); CHECK_EQUAL_128(0, 0x1D1915110D090501, q3); CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q4); CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q5); CHECK_EQUAL_128(0, 0x1D1915110D090501, q6); CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q7); CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q8); CHECK_EQUAL_128(0, 0x201C1814100C0804, q9); CHECK_EQUAL_128(0, 0x1B1A13120B0A0302, q10); CHECK_EQUAL_128(0, 0x1D1C15140D0C0504, q11); CHECK_EQUAL_128(0, 0x1F1E17160F0E0706, q12); CHECK_EQUAL_128(0, 0x2120191811100908, q13); CHECK_EQUAL_128(0, 0x1615141306050403, q30); CHECK_EQUAL_128(0, 0x1A1918170A090807, q31); CHECK_EQUAL_128(0, 0x1E1D1C1B0E0D0C0B, q0); CHECK_EQUAL_128(0, 0x2221201F1211100F, q1); } TEST(neon_ld4_d_postindex) { INIT_V8(); SETUP(); uint8_t src[32 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(), MemOperand(x17, x22, PostIndex)); __ Ld4(v6.V8B(), v7.V8B(), v8_.V8B(), v9.V8B(), MemOperand(x28, 32, PostIndex)); __ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(), MemOperand(x19, 32, PostIndex)); __ Ld4(v14.V2S(), v15.V2S(), v16.V2S(), v17.V2S(), MemOperand(x20, 32, PostIndex)); __ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x21, 32, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0, 0x1C1814100C080400, q2); CHECK_EQUAL_128(0, 0x1D1915110D090501, q3); CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q4); CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q5); CHECK_EQUAL_128(0, 0x1D1915110D090501, q6); CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q7); CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q8); CHECK_EQUAL_128(0, 0x201C1814100C0804, q9); CHECK_EQUAL_128(0, 0x1B1A13120B0A0302, q10); CHECK_EQUAL_128(0, 0x1D1C15140D0C0504, q11); CHECK_EQUAL_128(0, 0x1F1E17160F0E0706, q12); CHECK_EQUAL_128(0, 0x2120191811100908, q13); CHECK_EQUAL_128(0, 0x1615141306050403, q14); CHECK_EQUAL_128(0, 0x1A1918170A090807, q15); CHECK_EQUAL_128(0, 0x1E1D1C1B0E0D0C0B, q16); CHECK_EQUAL_128(0, 0x2221201F1211100F, q17); CHECK_EQUAL_128(0, 0x1716151407060504, q30); CHECK_EQUAL_128(0, 0x1B1A19180B0A0908, q31); CHECK_EQUAL_128(0, 0x1F1E1D1C0F0E0D0C, q0); CHECK_EQUAL_128(0, 0x2322212013121110, q1); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 32, x28); CHECK_EQUAL_64(src_base + 2 + 32, x19); CHECK_EQUAL_64(src_base + 3 + 32, x20); CHECK_EQUAL_64(src_base + 4 + 32, x21); } TEST(neon_ld4_q) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v6.V16B(), v7.V16B(), v8_.V16B(), v9.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4(v18.V2D(), v19.V2D(), v20.V2D(), v21.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x3C3834302C282420, 0x1C1814100C080400, q2); CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q3); CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q4); CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q5); CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q6); CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q7); CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q8); CHECK_EQUAL_128(0x403C3834302C2824, 0x201C1814100C0804, q9); CHECK_EQUAL_128(0x3B3A33322B2A2322, 0x1B1A13120B0A0302, q10); CHECK_EQUAL_128(0x3D3C35342D2C2524, 0x1D1C15140D0C0504, q11); CHECK_EQUAL_128(0x3F3E37362F2E2726, 0x1F1E17160F0E0706, q12); CHECK_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13); CHECK_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14); CHECK_EQUAL_128(0x3A3938372A292827, 0x1A1918170A090807, q15); CHECK_EQUAL_128(0x3E3D3C3B2E2D2C2B, 0x1E1D1C1B0E0D0C0B, q16); CHECK_EQUAL_128(0x4241403F3231302F, 0x2221201F1211100F, q17); CHECK_EQUAL_128(0x2B2A292827262524, 0x0B0A090807060504, q18); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x131211100F0E0D0C, q19); CHECK_EQUAL_128(0x3B3A393837363534, 0x1B1A191817161514, q20); CHECK_EQUAL_128(0x434241403F3E3D3C, 0x232221201F1E1D1C, q21); } TEST(neon_ld4_q_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 4]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base + 1); __ Mov(x19, src_base + 2); __ Mov(x20, src_base + 3); __ Mov(x21, src_base + 4); __ Mov(x22, 1); __ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17, x22, PostIndex)); __ Ld4(v6.V16B(), v7.V16B(), v8_.V16B(), v9.V16B(), MemOperand(x28, 64, PostIndex)); __ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(), MemOperand(x19, 64, PostIndex)); __ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x20, 64, PostIndex)); __ Ld4(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x21, 64, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x3C3834302C282420, 0x1C1814100C080400, q2); CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q3); CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q4); CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q5); CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q6); CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q7); CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q8); CHECK_EQUAL_128(0x403C3834302C2824, 0x201C1814100C0804, q9); CHECK_EQUAL_128(0x3B3A33322B2A2322, 0x1B1A13120B0A0302, q10); CHECK_EQUAL_128(0x3D3C35342D2C2524, 0x1D1C15140D0C0504, q11); CHECK_EQUAL_128(0x3F3E37362F2E2726, 0x1F1E17160F0E0706, q12); CHECK_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13); CHECK_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14); CHECK_EQUAL_128(0x3A3938372A292827, 0x1A1918170A090807, q15); CHECK_EQUAL_128(0x3E3D3C3B2E2D2C2B, 0x1E1D1C1B0E0D0C0B, q16); CHECK_EQUAL_128(0x4241403F3231302F, 0x2221201F1211100F, q17); CHECK_EQUAL_128(0x2B2A292827262524, 0x0B0A090807060504, q30); CHECK_EQUAL_128(0x333231302F2E2D2C, 0x131211100F0E0D0C, q31); CHECK_EQUAL_128(0x3B3A393837363534, 0x1B1A191817161514, q0); CHECK_EQUAL_128(0x434241403F3E3D3C, 0x232221201F1E1D1C, q1); CHECK_EQUAL_64(src_base + 1, x17); CHECK_EQUAL_64(src_base + 1 + 64, x28); CHECK_EQUAL_64(src_base + 2 + 64, x19); CHECK_EQUAL_64(src_base + 3 + 64, x20); CHECK_EQUAL_64(src_base + 4 + 64, x21); } TEST(neon_ld4_lane) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); for (int i = 15; i >= 0; i--) { __ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 7; i >= 0; i--) { __ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 3; i >= 0; i--) { __ Ld4(v8_.S(), v9.S(), v10.S(), v11.S(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Mov(x17, src_base); for (int i = 1; i >= 0; i--) { __ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i, MemOperand(x17)); __ Add(x17, x17, 1); } // Test loading a single element into an initialised register. __ Mov(x17, src_base); __ Mov(x4, x17); __ Ldr(q16, MemOperand(x4, 16, PostIndex)); __ Ldr(q17, MemOperand(x4, 16, PostIndex)); __ Ldr(q18, MemOperand(x4, 16, PostIndex)); __ Ldr(q19, MemOperand(x4)); __ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4, MemOperand(x17)); __ Mov(x5, x17); __ Ldr(q20, MemOperand(x5, 16, PostIndex)); __ Ldr(q21, MemOperand(x5, 16, PostIndex)); __ Ldr(q22, MemOperand(x5, 16, PostIndex)); __ Ldr(q23, MemOperand(x5)); __ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3, MemOperand(x17)); __ Mov(x6, x17); __ Ldr(q24, MemOperand(x6, 16, PostIndex)); __ Ldr(q25, MemOperand(x6, 16, PostIndex)); __ Ldr(q26, MemOperand(x6, 16, PostIndex)); __ Ldr(q27, MemOperand(x6)); __ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2, MemOperand(x17)); __ Mov(x7, x17); __ Ldr(q28, MemOperand(x7, 16, PostIndex)); __ Ldr(q29, MemOperand(x7, 16, PostIndex)); __ Ldr(q30, MemOperand(x7, 16, PostIndex)); __ Ldr(q31, MemOperand(x7)); __ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0); CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1); CHECK_EQUAL_128(0x0203040506070809, 0x0A0B0C0D0E0F1011, q2); CHECK_EQUAL_128(0x030405060708090A, 0x0B0C0D0E0F101112, q3); CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q4); CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q5); CHECK_EQUAL_128(0x0504060507060807, 0x09080A090B0A0C0B, q6); CHECK_EQUAL_128(0x0706080709080A09, 0x0B0A0C0B0D0C0E0D, q7); CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q8); CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q9); CHECK_EQUAL_128(0x0B0A09080C0B0A09, 0x0D0C0B0A0E0D0C0B, q10); CHECK_EQUAL_128(0x0F0E0D0C100F0E0D, 0x11100F0E1211100F, q11); CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q12); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q13); CHECK_EQUAL_128(0x1716151413121110, 0x1817161514131211, q14); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x201F1E1D1C1B1A19, q15); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q16); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q17); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q18); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736350333323130, q19); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q20); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q21); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q22); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x0706353433323130, q23); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q24); CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q25); CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q26); CHECK_EQUAL_128(0x3F3E3D3C0F0E0D0C, 0x3736353433323130, q27); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q29); CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3736353433323130, q31); } TEST(neon_ld4_lane_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); // Test loading whole register by element. __ Mov(x17, src_base); for (int i = 15; i >= 0; i--) { __ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x17, 4, PostIndex)); } __ Mov(x28, src_base); for (int i = 7; i >= 0; i--) { __ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i, MemOperand(x28, 8, PostIndex)); } __ Mov(x19, src_base); for (int i = 3; i >= 0; i--) { __ Ld4(v8_.S(), v9.S(), v10.S(), v11.S(), i, MemOperand(x19, 16, PostIndex)); } __ Mov(x20, src_base); for (int i = 1; i >= 0; i--) { __ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i, MemOperand(x20, 32, PostIndex)); } // Test loading a single element into an initialised register. __ Mov(x25, 1); __ Mov(x21, src_base); __ Mov(x22, src_base); __ Mov(x23, src_base); __ Mov(x24, src_base); __ Mov(x4, x21); __ Ldr(q16, MemOperand(x4, 16, PostIndex)); __ Ldr(q17, MemOperand(x4, 16, PostIndex)); __ Ldr(q18, MemOperand(x4, 16, PostIndex)); __ Ldr(q19, MemOperand(x4)); __ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4, MemOperand(x21, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x5, x22); __ Ldr(q20, MemOperand(x5, 16, PostIndex)); __ Ldr(q21, MemOperand(x5, 16, PostIndex)); __ Ldr(q22, MemOperand(x5, 16, PostIndex)); __ Ldr(q23, MemOperand(x5)); __ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3, MemOperand(x22, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x6, x23); __ Ldr(q24, MemOperand(x6, 16, PostIndex)); __ Ldr(q25, MemOperand(x6, 16, PostIndex)); __ Ldr(q26, MemOperand(x6, 16, PostIndex)); __ Ldr(q27, MemOperand(x6)); __ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2, MemOperand(x23, x25, PostIndex)); __ Add(x25, x25, 1); __ Mov(x7, x24); __ Ldr(q28, MemOperand(x7, 16, PostIndex)); __ Ldr(q29, MemOperand(x7, 16, PostIndex)); __ Ldr(q30, MemOperand(x7, 16, PostIndex)); __ Ldr(q31, MemOperand(x7)); __ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1, MemOperand(x24, x25, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0004080C1014181C, 0x2024282C3034383C, q0); CHECK_EQUAL_128(0x0105090D1115191D, 0x2125292D3135393D, q1); CHECK_EQUAL_128(0x02060A0E12161A1E, 0x22262A2E32363A3E, q2); CHECK_EQUAL_128(0x03070B0F13171B1F, 0x23272B2F33373B3F, q3); CHECK_EQUAL_128(0x0100090811101918, 0x2120292831303938, q4); CHECK_EQUAL_128(0x03020B0A13121B1A, 0x23222B2A33323B3A, q5); CHECK_EQUAL_128(0x05040D0C15141D1C, 0x25242D2C35343D3C, q6); CHECK_EQUAL_128(0x07060F0E17161F1E, 0x27262F2E37363F3E, q7); CHECK_EQUAL_128(0x0302010013121110, 0x2322212033323130, q8); CHECK_EQUAL_128(0x0706050417161514, 0x2726252437363534, q9); CHECK_EQUAL_128(0x0B0A09081B1A1918, 0x2B2A29283B3A3938, q10); CHECK_EQUAL_128(0x0F0E0D0C1F1E1D1C, 0x2F2E2D2C3F3E3D3C, q11); CHECK_EQUAL_128(0x0706050403020100, 0x2726252423222120, q12); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x2F2E2D2C2B2A2928, q13); CHECK_EQUAL_128(0x1716151413121110, 0x3736353433323130, q14); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3F3E3D3C3B3A3938, q15); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q16); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q17); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q18); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736350333323130, q19); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q20); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q21); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q22); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x0706353433323130, q23); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q24); CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q25); CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q26); CHECK_EQUAL_128(0x3F3E3D3C0F0E0D0C, 0x3736353433323130, q27); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q29); CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3736353433323130, q31); CHECK_EQUAL_64(src_base + 64, x17); CHECK_EQUAL_64(src_base + 64, x28); CHECK_EQUAL_64(src_base + 64, x19); CHECK_EQUAL_64(src_base + 64, x20); CHECK_EQUAL_64(src_base + 1, x21); CHECK_EQUAL_64(src_base + 2, x22); CHECK_EQUAL_64(src_base + 3, x23); CHECK_EQUAL_64(src_base + 4, x24); } TEST(neon_ld4_alllanes) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x17)); __ Add(x17, x17, 4); __ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4r(v8_.V4H(), v9.V4H(), v10.V4H(), v11.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(), MemOperand(x17)); __ Add(x17, x17, 8); __ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(), MemOperand(x17)); __ Add(x17, x17, 16); __ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4); CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5); CHECK_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6); CHECK_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8); CHECK_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9); CHECK_EQUAL_128(0x0000000000000000, 0x0B0A0B0A0B0A0B0A, q10); CHECK_EQUAL_128(0x0000000000000000, 0x0D0C0D0C0D0C0D0C, q11); CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12); CHECK_EQUAL_128(0x0A090A090A090A09, 0x0A090A090A090A09, q13); CHECK_EQUAL_128(0x0C0B0C0B0C0B0C0B, 0x0C0B0C0B0C0B0C0B, q14); CHECK_EQUAL_128(0x0E0D0E0D0E0D0E0D, 0x0E0D0E0D0E0D0E0D, q15); CHECK_EQUAL_128(0x0000000000000000, 0x1211100F1211100F, q16); CHECK_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17); CHECK_EQUAL_128(0x0000000000000000, 0x1A1918171A191817, q18); CHECK_EQUAL_128(0x0000000000000000, 0x1E1D1C1B1E1D1C1B, q19); CHECK_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20); CHECK_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21); CHECK_EQUAL_128(0x1B1A19181B1A1918, 0x1B1A19181B1A1918, q22); CHECK_EQUAL_128(0x1F1E1D1C1F1E1D1C, 0x1F1E1D1C1F1E1D1C, q23); CHECK_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2F2E2D2C2B2A2928, q25); CHECK_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3F3E3D3C3B3A3938, q27); } TEST(neon_ld4_alllanes_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Mov(x19, 1); __ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x17, 4, PostIndex)); __ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17, x19, PostIndex)); __ Ld4r(v8_.V4H(), v9.V4H(), v10.V4H(), v11.V4H(), MemOperand(x17, x19, PostIndex)); __ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(), MemOperand(x17, 8, PostIndex)); __ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17, x19, PostIndex)); __ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(), MemOperand(x17, 16, PostIndex)); __ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(), MemOperand(x17, 32, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1); CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2); CHECK_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3); CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4); CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5); CHECK_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6); CHECK_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7); CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8); CHECK_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9); CHECK_EQUAL_128(0x0000000000000000, 0x0B0A0B0A0B0A0B0A, q10); CHECK_EQUAL_128(0x0000000000000000, 0x0D0C0D0C0D0C0D0C, q11); CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12); CHECK_EQUAL_128(0x0A090A090A090A09, 0x0A090A090A090A09, q13); CHECK_EQUAL_128(0x0C0B0C0B0C0B0C0B, 0x0C0B0C0B0C0B0C0B, q14); CHECK_EQUAL_128(0x0E0D0E0D0E0D0E0D, 0x0E0D0E0D0E0D0E0D, q15); CHECK_EQUAL_128(0x0000000000000000, 0x1211100F1211100F, q16); CHECK_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17); CHECK_EQUAL_128(0x0000000000000000, 0x1A1918171A191817, q18); CHECK_EQUAL_128(0x0000000000000000, 0x1E1D1C1B1E1D1C1B, q19); CHECK_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20); CHECK_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21); CHECK_EQUAL_128(0x1B1A19181B1A1918, 0x1B1A19181B1A1918, q22); CHECK_EQUAL_128(0x1F1E1D1C1F1E1D1C, 0x1F1E1D1C1F1E1D1C, q23); CHECK_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2F2E2D2C2B2A2928, q25); CHECK_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3F3E3D3C3B3A3938, q27); CHECK_EQUAL_64(src_base + 64, x17); } TEST(neon_st1_lane) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, -16); __ Ldr(q0, MemOperand(x17)); for (int i = 15; i >= 0; i--) { __ St1(v0.B(), i, MemOperand(x17)); __ Add(x17, x17, 1); } __ Ldr(q1, MemOperand(x17, x19)); for (int i = 7; i >= 0; i--) { __ St1(v0.H(), i, MemOperand(x17)); __ Add(x17, x17, 2); } __ Ldr(q2, MemOperand(x17, x19)); for (int i = 3; i >= 0; i--) { __ St1(v0.S(), i, MemOperand(x17)); __ Add(x17, x17, 4); } __ Ldr(q3, MemOperand(x17, x19)); for (int i = 1; i >= 0; i--) { __ St1(v0.D(), i, MemOperand(x17)); __ Add(x17, x17, 8); } __ Ldr(q4, MemOperand(x17, x19)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q1); CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q2); CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q3); CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q4); } TEST(neon_st2_lane) { INIT_V8(); SETUP(); // Struct size * addressing modes * element sizes * vector size. uint8_t dst[2 * 2 * 4 * 16]; memset(dst, 0, sizeof(dst)); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, dst_base); __ Mov(x19, dst_base); __ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F); __ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F); // Test B stores with and without post index. for (int i = 15; i >= 0; i--) { __ St2(v0.B(), v1.B(), i, MemOperand(x19)); __ Add(x19, x19, 2); } for (int i = 15; i >= 0; i--) { __ St2(v0.B(), v1.B(), i, MemOperand(x19, 2, PostIndex)); } __ Ldr(q2, MemOperand(x17, 0 * 16)); __ Ldr(q3, MemOperand(x17, 1 * 16)); __ Ldr(q4, MemOperand(x17, 2 * 16)); __ Ldr(q5, MemOperand(x17, 3 * 16)); // Test H stores with and without post index. __ Mov(x0, 4); for (int i = 7; i >= 0; i--) { __ St2(v0.H(), v1.H(), i, MemOperand(x19)); __ Add(x19, x19, 4); } for (int i = 7; i >= 0; i--) { __ St2(v0.H(), v1.H(), i, MemOperand(x19, x0, PostIndex)); } __ Ldr(q6, MemOperand(x17, 4 * 16)); __ Ldr(q7, MemOperand(x17, 5 * 16)); __ Ldr(q16, MemOperand(x17, 6 * 16)); __ Ldr(q17, MemOperand(x17, 7 * 16)); // Test S stores with and without post index. for (int i = 3; i >= 0; i--) { __ St2(v0.S(), v1.S(), i, MemOperand(x19)); __ Add(x19, x19, 8); } for (int i = 3; i >= 0; i--) { __ St2(v0.S(), v1.S(), i, MemOperand(x19, 8, PostIndex)); } __ Ldr(q18, MemOperand(x17, 8 * 16)); __ Ldr(q19, MemOperand(x17, 9 * 16)); __ Ldr(q20, MemOperand(x17, 10 * 16)); __ Ldr(q21, MemOperand(x17, 11 * 16)); // Test D stores with and without post index. __ Mov(x0, 16); __ St2(v0.D(), v1.D(), 1, MemOperand(x19)); __ Add(x19, x19, 16); __ St2(v0.D(), v1.D(), 0, MemOperand(x19, 16, PostIndex)); __ St2(v0.D(), v1.D(), 1, MemOperand(x19, x0, PostIndex)); __ St2(v0.D(), v1.D(), 0, MemOperand(x19, x0, PostIndex)); __ Ldr(q22, MemOperand(x17, 12 * 16)); __ Ldr(q23, MemOperand(x17, 13 * 16)); __ Ldr(q24, MemOperand(x17, 14 * 16)); __ Ldr(q25, MemOperand(x17, 15 * 16)); END(); RUN(); CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q2); CHECK_EQUAL_128(0x1F0F1E0E1D0D1C0C, 0x1B0B1A0A19091808, q3); CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q4); CHECK_EQUAL_128(0x1F0F1E0E1D0D1C0C, 0x1B0B1A0A19091808, q5); CHECK_EQUAL_128(0x1617060714150405, 0x1213020310110001, q6); CHECK_EQUAL_128(0x1E1F0E0F1C1D0C0D, 0x1A1B0A0B18190809, q7); CHECK_EQUAL_128(0x1617060714150405, 0x1213020310110001, q16); CHECK_EQUAL_128(0x1E1F0E0F1C1D0C0D, 0x1A1B0A0B18190809, q17); CHECK_EQUAL_128(0x1415161704050607, 0x1011121300010203, q18); CHECK_EQUAL_128(0x1C1D1E1F0C0D0E0F, 0x18191A1B08090A0B, q19); CHECK_EQUAL_128(0x1415161704050607, 0x1011121300010203, q20); CHECK_EQUAL_128(0x1C1D1E1F0C0D0E0F, 0x18191A1B08090A0B, q21); CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22); CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q23); CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22); CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q23); } TEST(neon_st3_lane) { INIT_V8(); SETUP(); // Struct size * addressing modes * element sizes * vector size. uint8_t dst[3 * 2 * 4 * 16]; memset(dst, 0, sizeof(dst)); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, dst_base); __ Mov(x19, dst_base); __ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F); __ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F); __ Movi(v2.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F); // Test B stores with and without post index. for (int i = 15; i >= 0; i--) { __ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x19)); __ Add(x19, x19, 3); } for (int i = 15; i >= 0; i--) { __ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x19, 3, PostIndex)); } __ Ldr(q3, MemOperand(x17, 0 * 16)); __ Ldr(q4, MemOperand(x17, 1 * 16)); __ Ldr(q5, MemOperand(x17, 2 * 16)); __ Ldr(q6, MemOperand(x17, 3 * 16)); __ Ldr(q7, MemOperand(x17, 4 * 16)); __ Ldr(q16, MemOperand(x17, 5 * 16)); // Test H stores with and without post index. __ Mov(x0, 6); for (int i = 7; i >= 0; i--) { __ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x19)); __ Add(x19, x19, 6); } for (int i = 7; i >= 0; i--) { __ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x19, x0, PostIndex)); } __ Ldr(q17, MemOperand(x17, 6 * 16)); __ Ldr(q18, MemOperand(x17, 7 * 16)); __ Ldr(q19, MemOperand(x17, 8 * 16)); __ Ldr(q20, MemOperand(x17, 9 * 16)); __ Ldr(q21, MemOperand(x17, 10 * 16)); __ Ldr(q22, MemOperand(x17, 11 * 16)); // Test S stores with and without post index. for (int i = 3; i >= 0; i--) { __ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x19)); __ Add(x19, x19, 12); } for (int i = 3; i >= 0; i--) { __ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x19, 12, PostIndex)); } __ Ldr(q23, MemOperand(x17, 12 * 16)); __ Ldr(q24, MemOperand(x17, 13 * 16)); __ Ldr(q25, MemOperand(x17, 14 * 16)); __ Ldr(q26, MemOperand(x17, 15 * 16)); __ Ldr(q27, MemOperand(x17, 16 * 16)); __ Ldr(q28, MemOperand(x17, 17 * 16)); // Test D stores with and without post index. __ Mov(x0, 24); __ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x19)); __ Add(x19, x19, 24); __ St3(v0.D(), v1.D(), v2.D(), 0, MemOperand(x19, 24, PostIndex)); __ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x19, x0, PostIndex)); __ Ldr(q29, MemOperand(x17, 18 * 16)); __ Ldr(q30, MemOperand(x17, 19 * 16)); __ Ldr(q31, MemOperand(x17, 20 * 16)); END(); RUN(); CHECK_EQUAL_128(0x0524140423130322, 0x1202211101201000, q3); CHECK_EQUAL_128(0x1A0A291909281808, 0x2717072616062515, q4); CHECK_EQUAL_128(0x2F1F0F2E1E0E2D1D, 0x0D2C1C0C2B1B0B2A, q5); CHECK_EQUAL_128(0x0524140423130322, 0x1202211101201000, q6); CHECK_EQUAL_128(0x1A0A291909281808, 0x2717072616062515, q7); CHECK_EQUAL_128(0x2F1F0F2E1E0E2D1D, 0x0D2C1C0C2B1B0B2A, q16); CHECK_EQUAL_128(0x1415040522231213, 0x0203202110110001, q17); CHECK_EQUAL_128(0x0A0B282918190809, 0x2627161706072425, q18); CHECK_EQUAL_128(0x2E2F1E1F0E0F2C2D, 0x1C1D0C0D2A2B1A1B, q19); CHECK_EQUAL_128(0x1415040522231213, 0x0203202110110001, q20); CHECK_EQUAL_128(0x0A0B282918190809, 0x2627161706072425, q21); CHECK_EQUAL_128(0x2E2F1E1F0E0F2C2D, 0x1C1D0C0D2A2B1A1B, q22); CHECK_EQUAL_128(0x0405060720212223, 0x1011121300010203, q23); CHECK_EQUAL_128(0x18191A1B08090A0B, 0x2425262714151617, q24); CHECK_EQUAL_128(0x2C2D2E2F1C1D1E1F, 0x0C0D0E0F28292A2B, q25); CHECK_EQUAL_128(0x0405060720212223, 0x1011121300010203, q26); CHECK_EQUAL_128(0x18191A1B08090A0B, 0x2425262714151617, q27); CHECK_EQUAL_128(0x2C2D2E2F1C1D1E1F, 0x0C0D0E0F28292A2B, q28); } TEST(neon_st4_lane) { INIT_V8(); SETUP(); // Struct size * element sizes * vector size. uint8_t dst[4 * 4 * 16]; memset(dst, 0, sizeof(dst)); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, dst_base); __ Mov(x19, dst_base); __ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F); __ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F); __ Movi(v2.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F); __ Movi(v3.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F); // Test B stores without post index. for (int i = 15; i >= 0; i--) { __ St4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x19)); __ Add(x19, x19, 4); } __ Ldr(q4, MemOperand(x17, 0 * 16)); __ Ldr(q5, MemOperand(x17, 1 * 16)); __ Ldr(q6, MemOperand(x17, 2 * 16)); __ Ldr(q7, MemOperand(x17, 3 * 16)); // Test H stores with post index. __ Mov(x0, 8); for (int i = 7; i >= 0; i--) { __ St4(v0.H(), v1.H(), v2.H(), v3.H(), i, MemOperand(x19, x0, PostIndex)); } __ Ldr(q16, MemOperand(x17, 4 * 16)); __ Ldr(q17, MemOperand(x17, 5 * 16)); __ Ldr(q18, MemOperand(x17, 6 * 16)); __ Ldr(q19, MemOperand(x17, 7 * 16)); // Test S stores without post index. for (int i = 3; i >= 0; i--) { __ St4(v0.S(), v1.S(), v2.S(), v3.S(), i, MemOperand(x19)); __ Add(x19, x19, 16); } __ Ldr(q20, MemOperand(x17, 8 * 16)); __ Ldr(q21, MemOperand(x17, 9 * 16)); __ Ldr(q22, MemOperand(x17, 10 * 16)); __ Ldr(q23, MemOperand(x17, 11 * 16)); // Test D stores with post index. __ Mov(x0, 32); __ St4(v0.D(), v1.D(), v2.D(), v3.D(), 0, MemOperand(x19, 32, PostIndex)); __ St4(v0.D(), v1.D(), v2.D(), v3.D(), 1, MemOperand(x19, x0, PostIndex)); __ Ldr(q24, MemOperand(x17, 12 * 16)); __ Ldr(q25, MemOperand(x17, 13 * 16)); __ Ldr(q26, MemOperand(x17, 14 * 16)); __ Ldr(q27, MemOperand(x17, 15 * 16)); END(); RUN(); CHECK_EQUAL_128(0x2323130322221202, 0x2121110120201000, q4); CHECK_EQUAL_128(0x2727170726261606, 0x2525150524241404, q5); CHECK_EQUAL_128(0x2B2B1B0B2A2A1A0A, 0x2929190928281808, q6); CHECK_EQUAL_128(0x2F2F1F0F2E2E1E0E, 0x2D2D1D0D2C2C1C0C, q7); CHECK_EQUAL_128(0x2223222312130203, 0x2021202110110001, q16); CHECK_EQUAL_128(0x2627262716170607, 0x2425242514150405, q17); CHECK_EQUAL_128(0x2A2B2A2B1A1B0A0B, 0x2829282918190809, q18); CHECK_EQUAL_128(0x2E2F2E2F1E1F0E0F, 0x2C2D2C2D1C1D0C0D, q19); CHECK_EQUAL_128(0x2021222320212223, 0x1011121300010203, q20); CHECK_EQUAL_128(0x2425262724252627, 0x1415161704050607, q21); CHECK_EQUAL_128(0x28292A2B28292A2B, 0x18191A1B08090A0B, q22); CHECK_EQUAL_128(0x2C2D2E2F2C2D2E2F, 0x1C1D1E1F0C0D0E0F, q23); CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q24); CHECK_EQUAL_128(0x28292A2B2C2D2E2F, 0x28292A2B2C2D2E2F, q25); CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q26); CHECK_EQUAL_128(0x2021222324252627, 0x2021222324252627, q27); } TEST(neon_ld1_lane_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Mov(x19, src_base); __ Mov(x20, src_base); __ Mov(x21, src_base); __ Mov(x22, src_base); __ Mov(x23, src_base); __ Mov(x24, src_base); // Test loading whole register by element. for (int i = 15; i >= 0; i--) { __ Ld1(v0.B(), i, MemOperand(x17, 1, PostIndex)); } for (int i = 7; i >= 0; i--) { __ Ld1(v1.H(), i, MemOperand(x28, 2, PostIndex)); } for (int i = 3; i >= 0; i--) { __ Ld1(v2.S(), i, MemOperand(x19, 4, PostIndex)); } for (int i = 1; i >= 0; i--) { __ Ld1(v3.D(), i, MemOperand(x20, 8, PostIndex)); } // Test loading a single element into an initialised register. __ Mov(x25, 1); __ Ldr(q4, MemOperand(x21)); __ Ld1(v4.B(), 4, MemOperand(x21, x25, PostIndex)); __ Add(x25, x25, 1); __ Ldr(q5, MemOperand(x22)); __ Ld1(v5.H(), 3, MemOperand(x22, x25, PostIndex)); __ Add(x25, x25, 1); __ Ldr(q6, MemOperand(x23)); __ Ld1(v6.S(), 2, MemOperand(x23, x25, PostIndex)); __ Add(x25, x25, 1); __ Ldr(q7, MemOperand(x24)); __ Ld1(v7.D(), 1, MemOperand(x24, x25, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0); CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q1); CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q2); CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q3); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q4); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q5); CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q6); CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7); CHECK_EQUAL_64(src_base + 16, x17); CHECK_EQUAL_64(src_base + 16, x28); CHECK_EQUAL_64(src_base + 16, x19); CHECK_EQUAL_64(src_base + 16, x20); CHECK_EQUAL_64(src_base + 1, x21); CHECK_EQUAL_64(src_base + 2, x22); CHECK_EQUAL_64(src_base + 3, x23); CHECK_EQUAL_64(src_base + 4, x24); } TEST(neon_st1_lane_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, -16); __ Ldr(q0, MemOperand(x17)); for (int i = 15; i >= 0; i--) { __ St1(v0.B(), i, MemOperand(x17, 1, PostIndex)); } __ Ldr(q1, MemOperand(x17, x19)); for (int i = 7; i >= 0; i--) { __ St1(v0.H(), i, MemOperand(x17, 2, PostIndex)); } __ Ldr(q2, MemOperand(x17, x19)); for (int i = 3; i >= 0; i--) { __ St1(v0.S(), i, MemOperand(x17, 4, PostIndex)); } __ Ldr(q3, MemOperand(x17, x19)); for (int i = 1; i >= 0; i--) { __ St1(v0.D(), i, MemOperand(x17, 8, PostIndex)); } __ Ldr(q4, MemOperand(x17, x19)); END(); RUN(); CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q1); CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q2); CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q3); CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q4); } TEST(neon_ld1_alllanes) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Ld1r(v0.V8B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v1.V16B(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v2.V4H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v3.V8H(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v4.V2S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v5.V4S(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v6.V1D(), MemOperand(x17)); __ Add(x17, x17, 1); __ Ld1r(v7.V2D(), MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1); CHECK_EQUAL_128(0, 0x0403040304030403, q2); CHECK_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3); CHECK_EQUAL_128(0, 0x0807060508070605, q4); CHECK_EQUAL_128(0x0908070609080706, 0x0908070609080706, q5); CHECK_EQUAL_128(0, 0x0E0D0C0B0A090807, q6); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0F0E0D0C0B0A0908, q7); } TEST(neon_ld1_alllanes_postindex) { INIT_V8(); SETUP(); uint8_t src[64]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base + 1); __ Mov(x19, 1); __ Ld1r(v0.V8B(), MemOperand(x17, 1, PostIndex)); __ Ld1r(v1.V16B(), MemOperand(x17, x19, PostIndex)); __ Ld1r(v2.V4H(), MemOperand(x17, x19, PostIndex)); __ Ld1r(v3.V8H(), MemOperand(x17, 2, PostIndex)); __ Ld1r(v4.V2S(), MemOperand(x17, x19, PostIndex)); __ Ld1r(v5.V4S(), MemOperand(x17, 4, PostIndex)); __ Ld1r(v6.V2D(), MemOperand(x17, 8, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0, 0x0101010101010101, q0); CHECK_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1); CHECK_EQUAL_128(0, 0x0403040304030403, q2); CHECK_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3); CHECK_EQUAL_128(0, 0x0908070609080706, q4); CHECK_EQUAL_128(0x0A0908070A090807, 0x0A0908070A090807, q5); CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x1211100F0E0D0C0B, q6); CHECK_EQUAL_64(src_base + 19, x17); } TEST(neon_st1_d) { INIT_V8(); SETUP(); uint8_t src[14 * kDRegSize]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ Mov(x17, src_base); __ St1(v0.V8B(), MemOperand(x17)); __ Ldr(d16, MemOperand(x17, 8, PostIndex)); __ St1(v0.V8B(), v1.V8B(), MemOperand(x17)); __ Ldr(q17, MemOperand(x17, 16, PostIndex)); __ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17)); __ Ldr(d18, MemOperand(x17, 8, PostIndex)); __ Ldr(d19, MemOperand(x17, 8, PostIndex)); __ Ldr(d20, MemOperand(x17, 8, PostIndex)); __ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x17)); __ Ldr(q21, MemOperand(x17, 16, PostIndex)); __ Ldr(q22, MemOperand(x17, 16, PostIndex)); __ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(), MemOperand(x17)); __ Ldr(q23, MemOperand(x17, 16, PostIndex)); __ Ldr(q24, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q0); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q1); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q2); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q3); CHECK_EQUAL_128(0, 0x0706050403020100, q16); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17); CHECK_EQUAL_128(0, 0x0706050403020100, q18); CHECK_EQUAL_128(0, 0x1716151413121110, q19); CHECK_EQUAL_128(0, 0x2726252423222120, q20); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21); CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23); CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24); } TEST(neon_st1_d_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 14 * kDRegSize]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, -8); __ Mov(x19, -16); __ Mov(x20, -24); __ Mov(x21, -32); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ Mov(x17, src_base); __ St1(v0.V8B(), MemOperand(x17, 8, PostIndex)); __ Ldr(d16, MemOperand(x17, x28)); __ St1(v0.V8B(), v1.V8B(), MemOperand(x17, 16, PostIndex)); __ Ldr(q17, MemOperand(x17, x19)); __ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17, 24, PostIndex)); __ Ldr(d18, MemOperand(x17, x20)); __ Ldr(d19, MemOperand(x17, x19)); __ Ldr(d20, MemOperand(x17, x28)); __ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x17, 32, PostIndex)); __ Ldr(q21, MemOperand(x17, x21)); __ Ldr(q22, MemOperand(x17, x19)); __ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(), MemOperand(x17, 32, PostIndex)); __ Ldr(q23, MemOperand(x17, x21)); __ Ldr(q24, MemOperand(x17, x19)); END(); RUN(); CHECK_EQUAL_128(0, 0x0706050403020100, q16); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17); CHECK_EQUAL_128(0, 0x0706050403020100, q18); CHECK_EQUAL_128(0, 0x1716151413121110, q19); CHECK_EQUAL_128(0, 0x2726252423222120, q20); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21); CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23); CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24); } TEST(neon_st1_q) { INIT_V8(); SETUP(); uint8_t src[64 + 160]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St1(v0.V16B(), MemOperand(x17)); __ Ldr(q16, MemOperand(x17, 16, PostIndex)); __ St1(v0.V8H(), v1.V8H(), MemOperand(x17)); __ Ldr(q17, MemOperand(x17, 16, PostIndex)); __ Ldr(q18, MemOperand(x17, 16, PostIndex)); __ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17)); __ Ldr(q19, MemOperand(x17, 16, PostIndex)); __ Ldr(q20, MemOperand(x17, 16, PostIndex)); __ Ldr(q21, MemOperand(x17, 16, PostIndex)); __ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x17)); __ Ldr(q22, MemOperand(x17, 16, PostIndex)); __ Ldr(q23, MemOperand(x17, 16, PostIndex)); __ Ldr(q24, MemOperand(x17, 16, PostIndex)); __ Ldr(q25, MemOperand(x17)); END(); RUN(); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q16); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q17); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q18); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q19); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q20); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q21); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q22); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q23); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q24); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q25); } TEST(neon_st1_q_postindex) { INIT_V8(); SETUP(); uint8_t src[64 + 160]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, -16); __ Mov(x19, -32); __ Mov(x20, -48); __ Mov(x21, -64); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St1(v0.V16B(), MemOperand(x17, 16, PostIndex)); __ Ldr(q16, MemOperand(x17, x28)); __ St1(v0.V8H(), v1.V8H(), MemOperand(x17, 32, PostIndex)); __ Ldr(q17, MemOperand(x17, x19)); __ Ldr(q18, MemOperand(x17, x28)); __ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17, 48, PostIndex)); __ Ldr(q19, MemOperand(x17, x20)); __ Ldr(q20, MemOperand(x17, x19)); __ Ldr(q21, MemOperand(x17, x28)); __ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x17, 64, PostIndex)); __ Ldr(q22, MemOperand(x17, x21)); __ Ldr(q23, MemOperand(x17, x20)); __ Ldr(q24, MemOperand(x17, x19)); __ Ldr(q25, MemOperand(x17, x28)); END(); RUN(); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q16); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q17); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q18); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q19); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q20); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q21); CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q22); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q23); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q24); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q25); } TEST(neon_st2_d) { INIT_V8(); SETUP(); uint8_t src[4 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ St2(v0.V8B(), v1.V8B(), MemOperand(x19)); __ Add(x19, x19, 22); __ St2(v0.V4H(), v1.V4H(), MemOperand(x19)); __ Add(x19, x19, 11); __ St2(v0.V2S(), v1.V2S(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q0); CHECK_EQUAL_128(0x0504131203021110, 0x0100151413121110, q1); CHECK_EQUAL_128(0x1615140706050413, 0x1211100302010014, q2); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323117, q3); } TEST(neon_st2_d_postindex) { INIT_V8(); SETUP(); uint8_t src[4 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ St2(v0.V8B(), v1.V8B(), MemOperand(x19, x22, PostIndex)); __ St2(v0.V4H(), v1.V4H(), MemOperand(x19, 16, PostIndex)); __ St2(v0.V2S(), v1.V2S(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0); CHECK_EQUAL_128(0x0605041312111003, 0x0201001716070615, q1); CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726251716151407, q2); } TEST(neon_st2_q) { INIT_V8(); SETUP(); uint8_t src[5 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ St2(v0.V16B(), v1.V16B(), MemOperand(x19)); __ Add(x19, x19, 8); __ St2(v0.V8H(), v1.V8H(), MemOperand(x19)); __ Add(x19, x19, 22); __ St2(v0.V4S(), v1.V4S(), MemOperand(x19)); __ Add(x19, x19, 2); __ St2(v0.V2D(), v1.V2D(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1312030211100100, 0x1303120211011000, q0); CHECK_EQUAL_128(0x01000B0A19180908, 0x1716070615140504, q1); CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q2); CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0F0E0D0C0B0A0908, q3); } TEST(neon_st2_q_postindex) { INIT_V8(); SETUP(); uint8_t src[5 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ St2(v0.V16B(), v1.V16B(), MemOperand(x19, x22, PostIndex)); __ St2(v0.V8H(), v1.V8H(), MemOperand(x19, 32, PostIndex)); __ St2(v0.V4S(), v1.V4S(), MemOperand(x19, x22, PostIndex)); __ St2(v0.V2D(), v1.V2D(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0); CHECK_EQUAL_128(0x1C0D0C1B1A0B0A19, 0x1809081716070615, q1); CHECK_EQUAL_128(0x0504030201001003, 0x0201001F1E0F0E1D, q2); CHECK_EQUAL_128(0x0D0C0B0A09081716, 0x1514131211100706, q3); CHECK_EQUAL_128(0x4F4E4D4C4B4A1F1E, 0x1D1C1B1A19180F0E, q4); } TEST(neon_st3_d) { INIT_V8(); SETUP(); uint8_t src[3 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x19)); __ Add(x19, x19, 3); __ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x19)); __ Add(x19, x19, 2); __ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x2221201312111003, 0x0201000100201000, q0); CHECK_EQUAL_128(0x1F1E1D2726252417, 0x1615140706050423, q1); } TEST(neon_st3_d_postindex) { INIT_V8(); SETUP(); uint8_t src[4 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x19, x22, PostIndex)); __ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x19, 24, PostIndex)); __ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0); CHECK_EQUAL_128(0x0201002726171607, 0x0625241514050423, q1); CHECK_EQUAL_128(0x1615140706050423, 0x2221201312111003, q2); CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736352726252417, q3); } TEST(neon_st3_q) { INIT_V8(); SETUP(); uint8_t src[6 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x19)); __ Add(x19, x19, 5); __ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x19)); __ Add(x19, x19, 12); __ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x19)); __ Add(x19, x19, 22); __ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x19)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); __ Ldr(q5, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0); CHECK_EQUAL_128(0x0605042322212013, 0x1211100302010023, q1); CHECK_EQUAL_128(0x1007060504030201, 0x0025241716151407, q2); CHECK_EQUAL_128(0x0827262524232221, 0x2017161514131211, q3); CHECK_EQUAL_128(0x281F1E1D1C1B1A19, 0x180F0E0D0C0B0A09, q4); CHECK_EQUAL_128(0x5F5E5D5C5B5A5958, 0x572F2E2D2C2B2A29, q5); } TEST(neon_st3_q_postindex) { INIT_V8(); SETUP(); uint8_t src[7 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x28, x22, PostIndex)); __ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x28, 48, PostIndex)); __ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x28, x22, PostIndex)); __ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x28)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); __ Ldr(q5, MemOperand(x19, 16, PostIndex)); __ Ldr(q6, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0); CHECK_EQUAL_128(0x1809082726171607, 0x0625241514050423, q1); CHECK_EQUAL_128(0x0E2D2C1D1C0D0C2B, 0x2A1B1A0B0A292819, q2); CHECK_EQUAL_128(0x0504030201001003, 0x0201002F2E1F1E0F, q3); CHECK_EQUAL_128(0x2524232221201716, 0x1514131211100706, q4); CHECK_EQUAL_128(0x1D1C1B1A19180F0E, 0x0D0C0B0A09082726, q5); CHECK_EQUAL_128(0x6F6E6D6C6B6A2F2E, 0x2D2C2B2A29281F1E, q6); } TEST(neon_st4_d) { INIT_V8(); SETUP(); uint8_t src[4 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x28)); __ Add(x28, x28, 12); __ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(), MemOperand(x28)); __ Add(x28, x28, 15); __ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x28)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1110010032221202, 0X3121110130201000, q0); CHECK_EQUAL_128(0x1003020100322322, 0X1312030231302120, q1); CHECK_EQUAL_128(0x1407060504333231, 0X3023222120131211, q2); CHECK_EQUAL_128(0x3F3E3D3C3B373635, 0x3427262524171615, q3); } TEST(neon_st4_d_postindex) { INIT_V8(); SETUP(); uint8_t src[5 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x28, x22, PostIndex)); __ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(), MemOperand(x28, 32, PostIndex)); __ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x28)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0); CHECK_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1); CHECK_EQUAL_128(0x2221201312111003, 0x0201003736272617, q2); CHECK_EQUAL_128(0x2625241716151407, 0x0605043332313023, q3); CHECK_EQUAL_128(0x4F4E4D4C4B4A4948, 0x4746453736353427, q4); } TEST(neon_st4_q) { INIT_V8(); SETUP(); uint8_t src[7 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), MemOperand(x28)); __ Add(x28, x28, 5); __ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(), MemOperand(x28)); __ Add(x28, x28, 12); __ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(), MemOperand(x28)); __ Add(x28, x28, 22); __ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x28)); __ Add(x28, x28, 10); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); __ Ldr(q5, MemOperand(x19, 16, PostIndex)); __ Ldr(q6, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0); CHECK_EQUAL_128(0x3231302322212013, 0x1211100302010013, q1); CHECK_EQUAL_128(0x1007060504030201, 0x0015140706050433, q2); CHECK_EQUAL_128(0x3027262524232221, 0x2017161514131211, q3); CHECK_EQUAL_128(0x180F0E0D0C0B0A09, 0x0837363534333231, q4); CHECK_EQUAL_128(0x382F2E2D2C2B2A29, 0x281F1E1D1C1B1A19, q5); CHECK_EQUAL_128(0x6F6E6D6C6B6A6968, 0x673F3E3D3C3B3A39, q6); } TEST(neon_st4_q_postindex) { INIT_V8(); SETUP(); uint8_t src[9 * 16]; for (unsigned i = 0; i < sizeof(src); i++) { src[i] = i; } uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x22, 5); __ Mov(x17, src_base); __ Mov(x28, src_base); __ Ldr(q0, MemOperand(x17, 16, PostIndex)); __ Ldr(q1, MemOperand(x17, 16, PostIndex)); __ Ldr(q2, MemOperand(x17, 16, PostIndex)); __ Ldr(q3, MemOperand(x17, 16, PostIndex)); __ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), MemOperand(x28, x22, PostIndex)); __ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(), MemOperand(x28, 64, PostIndex)); __ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(), MemOperand(x28, x22, PostIndex)); __ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x28)); __ Mov(x19, src_base); __ Ldr(q0, MemOperand(x19, 16, PostIndex)); __ Ldr(q1, MemOperand(x19, 16, PostIndex)); __ Ldr(q2, MemOperand(x19, 16, PostIndex)); __ Ldr(q3, MemOperand(x19, 16, PostIndex)); __ Ldr(q4, MemOperand(x19, 16, PostIndex)); __ Ldr(q5, MemOperand(x19, 16, PostIndex)); __ Ldr(q6, MemOperand(x19, 16, PostIndex)); __ Ldr(q7, MemOperand(x19, 16, PostIndex)); __ Ldr(q8, MemOperand(x19, 16, PostIndex)); END(); RUN(); CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0); CHECK_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1); CHECK_EQUAL_128(0x1A0B0A3938292819, 0x1809083736272617, q2); CHECK_EQUAL_128(0x1E0F0E3D3C2D2C1D, 0x1C0D0C3B3A2B2A1B, q3); CHECK_EQUAL_128(0x0504030201001003, 0x0201003F3E2F2E1F, q4); CHECK_EQUAL_128(0x2524232221201716, 0x1514131211100706, q5); CHECK_EQUAL_128(0x0D0C0B0A09083736, 0x3534333231302726, q6); CHECK_EQUAL_128(0x2D2C2B2A29281F1E, 0x1D1C1B1A19180F0E, q7); CHECK_EQUAL_128(0x8F8E8D8C8B8A3F3E, 0x3D3C3B3A39382F2E, q8); } TEST(neon_destructive_minmaxp) { INIT_V8(); SETUP(); START(); __ Movi(v0.V2D(), 0, 0x2222222233333333); __ Movi(v1.V2D(), 0, 0x0000000011111111); __ Sminp(v16.V2S(), v0.V2S(), v1.V2S()); __ Mov(v17, v0); __ Sminp(v17.V2S(), v17.V2S(), v1.V2S()); __ Mov(v18, v1); __ Sminp(v18.V2S(), v0.V2S(), v18.V2S()); __ Mov(v19, v0); __ Sminp(v19.V2S(), v19.V2S(), v19.V2S()); __ Smaxp(v20.V2S(), v0.V2S(), v1.V2S()); __ Mov(v21, v0); __ Smaxp(v21.V2S(), v21.V2S(), v1.V2S()); __ Mov(v22, v1); __ Smaxp(v22.V2S(), v0.V2S(), v22.V2S()); __ Mov(v23, v0); __ Smaxp(v23.V2S(), v23.V2S(), v23.V2S()); __ Uminp(v24.V2S(), v0.V2S(), v1.V2S()); __ Mov(v25, v0); __ Uminp(v25.V2S(), v25.V2S(), v1.V2S()); __ Mov(v26, v1); __ Uminp(v26.V2S(), v0.V2S(), v26.V2S()); __ Mov(v27, v0); __ Uminp(v27.V2S(), v27.V2S(), v27.V2S()); __ Umaxp(v28.V2S(), v0.V2S(), v1.V2S()); __ Mov(v29, v0); __ Umaxp(v29.V2S(), v29.V2S(), v1.V2S()); __ Mov(v30, v1); __ Umaxp(v30.V2S(), v0.V2S(), v30.V2S()); __ Mov(v31, v0); __ Umaxp(v31.V2S(), v31.V2S(), v31.V2S()); END(); RUN(); CHECK_EQUAL_128(0, 0x0000000022222222, q16); CHECK_EQUAL_128(0, 0x0000000022222222, q17); CHECK_EQUAL_128(0, 0x0000000022222222, q18); CHECK_EQUAL_128(0, 0x2222222222222222, q19); CHECK_EQUAL_128(0, 0x1111111133333333, q20); CHECK_EQUAL_128(0, 0x1111111133333333, q21); CHECK_EQUAL_128(0, 0x1111111133333333, q22); CHECK_EQUAL_128(0, 0x3333333333333333, q23); CHECK_EQUAL_128(0, 0x0000000022222222, q24); CHECK_EQUAL_128(0, 0x0000000022222222, q25); CHECK_EQUAL_128(0, 0x0000000022222222, q26); CHECK_EQUAL_128(0, 0x2222222222222222, q27); CHECK_EQUAL_128(0, 0x1111111133333333, q28); CHECK_EQUAL_128(0, 0x1111111133333333, q29); CHECK_EQUAL_128(0, 0x1111111133333333, q30); CHECK_EQUAL_128(0, 0x3333333333333333, q31); } TEST(neon_destructive_tbl) { INIT_V8(); SETUP(); START(); __ Movi(v0.V2D(), 0x0041424334353627, 0x28291A1B1C0D0E0F); __ Movi(v1.V2D(), 0xAFAEADACABAAA9A8, 0xA7A6A5A4A3A2A1A0); __ Movi(v2.V2D(), 0xBFBEBDBCBBBAB9B8, 0xB7B6B5B4B3B2B1B0); __ Movi(v3.V2D(), 0xCFCECDCCCBCAC9C8, 0xC7C6C5C4C3C2C1C0); __ Movi(v4.V2D(), 0xDFDEDDDCDBDAD9D8, 0xD7D6D5D4D3D2D1D0); __ Movi(v16.V2D(), 0x5555555555555555, 0x5555555555555555); __ Tbl(v16.V16B(), v1.V16B(), v0.V16B()); __ Mov(v17, v0); __ Tbl(v17.V16B(), v1.V16B(), v17.V16B()); __ Mov(v18, v1); __ Tbl(v18.V16B(), v18.V16B(), v0.V16B()); __ Mov(v19, v0); __ Tbl(v19.V16B(), v19.V16B(), v19.V16B()); __ Movi(v20.V2D(), 0x5555555555555555, 0x5555555555555555); __ Tbl(v20.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v0.V16B()); __ Mov(v21, v0); __ Tbl(v21.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v21.V16B()); __ Mov(v22, v1); __ Mov(v23, v2); __ Mov(v24, v3); __ Mov(v25, v4); __ Tbl(v22.V16B(), v22.V16B(), v23.V16B(), v24.V16B(), v25.V16B(), v0.V16B()); __ Mov(v26, v0); __ Mov(v27, v1); __ Mov(v28, v2); __ Mov(v29, v3); __ Tbl(v26.V16B(), v26.V16B(), v27.V16B(), v28.V16B(), v29.V16B(), v26.V16B()); END(); RUN(); CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q16); CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q17); CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q18); CHECK_EQUAL_128(0x0F00000000000000, 0x0000000000424100, q19); CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q20); CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q21); CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q22); CHECK_EQUAL_128(0x0F000000C4C5C6B7, 0xB8B9AAABAC424100, q26); } TEST(neon_destructive_tbx) { INIT_V8(); SETUP(); START(); __ Movi(v0.V2D(), 0x0041424334353627, 0x28291A1B1C0D0E0F); __ Movi(v1.V2D(), 0xAFAEADACABAAA9A8, 0xA7A6A5A4A3A2A1A0); __ Movi(v2.V2D(), 0xBFBEBDBCBBBAB9B8, 0xB7B6B5B4B3B2B1B0); __ Movi(v3.V2D(), 0xCFCECDCCCBCAC9C8, 0xC7C6C5C4C3C2C1C0); __ Movi(v4.V2D(), 0xDFDEDDDCDBDAD9D8, 0xD7D6D5D4D3D2D1D0); __ Movi(v16.V2D(), 0x5555555555555555, 0x5555555555555555); __ Tbx(v16.V16B(), v1.V16B(), v0.V16B()); __ Mov(v17, v0); __ Tbx(v17.V16B(), v1.V16B(), v17.V16B()); __ Mov(v18, v1); __ Tbx(v18.V16B(), v18.V16B(), v0.V16B()); __ Mov(v19, v0); __ Tbx(v19.V16B(), v19.V16B(), v19.V16B()); __ Movi(v20.V2D(), 0x5555555555555555, 0x5555555555555555); __ Tbx(v20.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v0.V16B()); __ Mov(v21, v0); __ Tbx(v21.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v21.V16B()); __ Mov(v22, v1); __ Mov(v23, v2); __ Mov(v24, v3); __ Mov(v25, v4); __ Tbx(v22.V16B(), v22.V16B(), v23.V16B(), v24.V16B(), v25.V16B(), v0.V16B()); __ Mov(v26, v0); __ Mov(v27, v1); __ Mov(v28, v2); __ Mov(v29, v3); __ Tbx(v26.V16B(), v26.V16B(), v27.V16B(), v28.V16B(), v29.V16B(), v26.V16B()); END(); RUN(); CHECK_EQUAL_128(0xA055555555555555, 0x5555555555ADAEAF, q16); CHECK_EQUAL_128(0xA041424334353627, 0x28291A1B1CADAEAF, q17); CHECK_EQUAL_128(0xA0AEADACABAAA9A8, 0xA7A6A5A4A3ADAEAF, q18); CHECK_EQUAL_128(0x0F41424334353627, 0x28291A1B1C424100, q19); CHECK_EQUAL_128(0xA0555555D4D5D6C7, 0xC8C9BABBBCADAEAF, q20); CHECK_EQUAL_128(0xA0414243D4D5D6C7, 0xC8C9BABBBCADAEAF, q21); CHECK_EQUAL_128(0xA0AEADACD4D5D6C7, 0xC8C9BABBBCADAEAF, q22); CHECK_EQUAL_128(0x0F414243C4C5C6B7, 0xB8B9AAABAC424100, q26); } TEST(neon_destructive_fcvtl) { INIT_V8(); SETUP(); START(); __ Movi(v0.V2D(), 0x400000003F800000, 0xBF800000C0000000); __ Fcvtl(v16.V2D(), v0.V2S()); __ Fcvtl2(v17.V2D(), v0.V4S()); __ Mov(v18, v0); __ Mov(v19, v0); __ Fcvtl(v18.V2D(), v18.V2S()); __ Fcvtl2(v19.V2D(), v19.V4S()); __ Movi(v1.V2D(), 0x40003C003C004000, 0xC000BC00BC00C000); __ Fcvtl(v20.V4S(), v1.V4H()); __ Fcvtl2(v21.V4S(), v1.V8H()); __ Mov(v22, v1); __ Mov(v23, v1); __ Fcvtl(v22.V4S(), v22.V4H()); __ Fcvtl2(v23.V4S(), v23.V8H()); END(); RUN(); CHECK_EQUAL_128(0xBFF0000000000000, 0xC000000000000000, q16); CHECK_EQUAL_128(0x4000000000000000, 0x3FF0000000000000, q17); CHECK_EQUAL_128(0xBFF0000000000000, 0xC000000000000000, q18); CHECK_EQUAL_128(0x4000000000000000, 0x3FF0000000000000, q19); CHECK_EQUAL_128(0xC0000000BF800000, 0xBF800000C0000000, q20); CHECK_EQUAL_128(0x400000003F800000, 0x3F80000040000000, q21); CHECK_EQUAL_128(0xC0000000BF800000, 0xBF800000C0000000, q22); CHECK_EQUAL_128(0x400000003F800000, 0x3F80000040000000, q23); } TEST(ldp_stp_float) { INIT_V8(); SETUP(); float src[2] = {1.0, 2.0}; float dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); __ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex)); END(); RUN(); CHECK_EQUAL_FP32(1.0, s31); CHECK_EQUAL_FP32(2.0, s0); CHECK_EQUAL_FP32(0.0, dst[0]); CHECK_EQUAL_FP32(2.0, dst[1]); CHECK_EQUAL_FP32(1.0, dst[2]); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); CHECK_EQUAL_64(dst_base + sizeof(dst[1]), x17); } TEST(ldp_stp_double) { INIT_V8(); SETUP(); double src[2] = {1.0, 2.0}; double dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); __ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex)); END(); RUN(); CHECK_EQUAL_FP64(1.0, d31); CHECK_EQUAL_FP64(2.0, d0); CHECK_EQUAL_FP64(0.0, dst[0]); CHECK_EQUAL_FP64(2.0, dst[1]); CHECK_EQUAL_FP64(1.0, dst[2]); CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); CHECK_EQUAL_64(dst_base + sizeof(dst[1]), x17); } TEST(ldp_stp_quad) { SETUP(); uint64_t src[4] = {0x0123456789ABCDEF, 0xAAAAAAAA55555555, 0xFEDCBA9876543210, 0x55555555AAAAAAAA}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Ldp(q31, q0, MemOperand(x16, 4 * sizeof(src[0]), PostIndex)); __ Stp(q0, q31, MemOperand(x17, 2 * sizeof(dst[1]), PreIndex)); END(); RUN(); CHECK_EQUAL_128(0xAAAAAAAA55555555, 0x0123456789ABCDEF, q31); CHECK_EQUAL_128(0x55555555AAAAAAAA, 0xFEDCBA9876543210, q0); CHECK_EQUAL_64(0, dst[0]); CHECK_EQUAL_64(0, dst[1]); CHECK_EQUAL_64(0xFEDCBA9876543210, dst[2]); CHECK_EQUAL_64(0x55555555AAAAAAAA, dst[3]); CHECK_EQUAL_64(0x0123456789ABCDEF, dst[4]); CHECK_EQUAL_64(0xAAAAAAAA55555555, dst[5]); CHECK_EQUAL_64(src_base + 4 * sizeof(src[0]), x16); CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[1]), x17); } TEST(ldp_stp_offset) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL, 0xFFEEDDCCBBAA9988UL}; uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x28, src_base + 24); __ Mov(x19, dst_base + 56); __ Ldp(w0, w1, MemOperand(x16)); __ Ldp(w2, w3, MemOperand(x16, 4)); __ Ldp(x4, x5, MemOperand(x16, 8)); __ Ldp(w6, w7, MemOperand(x28, -12)); __ Ldp(x8, x9, MemOperand(x28, -16)); __ Stp(w0, w1, MemOperand(x17)); __ Stp(w2, w3, MemOperand(x17, 8)); __ Stp(x4, x5, MemOperand(x17, 16)); __ Stp(w6, w7, MemOperand(x19, -24)); __ Stp(x8, x9, MemOperand(x19, -16)); END(); RUN(); CHECK_EQUAL_64(0x44556677, x0); CHECK_EQUAL_64(0x00112233, x1); CHECK_EQUAL_64(0x0011223344556677UL, dst[0]); CHECK_EQUAL_64(0x00112233, x2); CHECK_EQUAL_64(0xCCDDEEFF, x3); CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[1]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[2]); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[3]); CHECK_EQUAL_64(0x8899AABB, x6); CHECK_EQUAL_64(0xBBAA9988, x7); CHECK_EQUAL_64(0xBBAA99888899AABBUL, dst[4]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x8); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[5]); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x9); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[6]); CHECK_EQUAL_64(src_base, x16); CHECK_EQUAL_64(dst_base, x17); CHECK_EQUAL_64(src_base + 24, x28); CHECK_EQUAL_64(dst_base + 56, x19); } TEST(ldp_stp_offset_wide) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677, 0x8899AABBCCDDEEFF, 0xFFEEDDCCBBAA9988}; uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); // Move base too far from the array to force multiple instructions // to be emitted. const int64_t base_offset = 1024; START(); __ Mov(x20, src_base - base_offset); __ Mov(x21, dst_base - base_offset); __ Mov(x28, src_base + base_offset + 24); __ Mov(x19, dst_base + base_offset + 56); __ Ldp(w0, w1, MemOperand(x20, base_offset)); __ Ldp(w2, w3, MemOperand(x20, base_offset + 4)); __ Ldp(x4, x5, MemOperand(x20, base_offset + 8)); __ Ldp(w6, w7, MemOperand(x28, -12 - base_offset)); __ Ldp(x8, x9, MemOperand(x28, -16 - base_offset)); __ Stp(w0, w1, MemOperand(x21, base_offset)); __ Stp(w2, w3, MemOperand(x21, base_offset + 8)); __ Stp(x4, x5, MemOperand(x21, base_offset + 16)); __ Stp(w6, w7, MemOperand(x19, -24 - base_offset)); __ Stp(x8, x9, MemOperand(x19, -16 - base_offset)); END(); RUN(); CHECK_EQUAL_64(0x44556677, x0); CHECK_EQUAL_64(0x00112233, x1); CHECK_EQUAL_64(0x0011223344556677UL, dst[0]); CHECK_EQUAL_64(0x00112233, x2); CHECK_EQUAL_64(0xCCDDEEFF, x3); CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[1]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[2]); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[3]); CHECK_EQUAL_64(0x8899AABB, x6); CHECK_EQUAL_64(0xBBAA9988, x7); CHECK_EQUAL_64(0xBBAA99888899AABBUL, dst[4]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x8); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[5]); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x9); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[6]); CHECK_EQUAL_64(src_base - base_offset, x20); CHECK_EQUAL_64(dst_base - base_offset, x21); CHECK_EQUAL_64(src_base + base_offset + 24, x28); CHECK_EQUAL_64(dst_base + base_offset + 56, x19); } TEST(ldp_stp_preindex) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL, 0xFFEEDDCCBBAA9988UL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x28, dst_base + 16); __ Ldp(w0, w1, MemOperand(x16, 4, PreIndex)); __ Mov(x19, x16); __ Ldp(w2, w3, MemOperand(x16, -4, PreIndex)); __ Stp(w2, w3, MemOperand(x17, 4, PreIndex)); __ Mov(x20, x17); __ Stp(w0, w1, MemOperand(x17, -4, PreIndex)); __ Ldp(x4, x5, MemOperand(x16, 8, PreIndex)); __ Mov(x21, x16); __ Ldp(x6, x7, MemOperand(x16, -8, PreIndex)); __ Stp(x7, x6, MemOperand(x28, 8, PreIndex)); __ Mov(x22, x28); __ Stp(x5, x4, MemOperand(x28, -8, PreIndex)); END(); RUN(); CHECK_EQUAL_64(0x00112233, x0); CHECK_EQUAL_64(0xCCDDEEFF, x1); CHECK_EQUAL_64(0x44556677, x2); CHECK_EQUAL_64(0x00112233, x3); CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[0]); CHECK_EQUAL_64(0x0000000000112233UL, dst[1]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5); CHECK_EQUAL_64(0x0011223344556677UL, x6); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x7); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]); CHECK_EQUAL_64(0x0011223344556677UL, dst[4]); CHECK_EQUAL_64(src_base, x16); CHECK_EQUAL_64(dst_base, x17); CHECK_EQUAL_64(dst_base + 16, x28); CHECK_EQUAL_64(src_base + 4, x19); CHECK_EQUAL_64(dst_base + 4, x20); CHECK_EQUAL_64(src_base + 8, x21); CHECK_EQUAL_64(dst_base + 24, x22); } TEST(ldp_stp_preindex_wide) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677, 0x8899AABBCCDDEEFF, 0xFFEEDDCCBBAA9988}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); // Move base too far from the array to force multiple instructions // to be emitted. const int64_t base_offset = 1024; START(); __ Mov(x24, src_base - base_offset); __ Mov(x25, dst_base + base_offset); __ Mov(x28, dst_base + base_offset + 16); __ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PreIndex)); __ Mov(x19, x24); __ Mov(x24, src_base - base_offset + 4); __ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PreIndex)); __ Stp(w2, w3, MemOperand(x25, 4 - base_offset, PreIndex)); __ Mov(x20, x25); __ Mov(x25, dst_base + base_offset + 4); __ Mov(x24, src_base - base_offset); __ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PreIndex)); __ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PreIndex)); __ Mov(x21, x24); __ Mov(x24, src_base - base_offset + 8); __ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PreIndex)); __ Stp(x7, x6, MemOperand(x28, 8 - base_offset, PreIndex)); __ Mov(x22, x28); __ Mov(x28, dst_base + base_offset + 16 + 8); __ Stp(x5, x4, MemOperand(x28, -8 - base_offset, PreIndex)); END(); RUN(); CHECK_EQUAL_64(0x00112233, x0); CHECK_EQUAL_64(0xCCDDEEFF, x1); CHECK_EQUAL_64(0x44556677, x2); CHECK_EQUAL_64(0x00112233, x3); CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[0]); CHECK_EQUAL_64(0x0000000000112233UL, dst[1]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5); CHECK_EQUAL_64(0x0011223344556677UL, x6); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x7); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]); CHECK_EQUAL_64(0x0011223344556677UL, dst[4]); CHECK_EQUAL_64(src_base, x24); CHECK_EQUAL_64(dst_base, x25); CHECK_EQUAL_64(dst_base + 16, x28); CHECK_EQUAL_64(src_base + 4, x19); CHECK_EQUAL_64(dst_base + 4, x20); CHECK_EQUAL_64(src_base + 8, x21); CHECK_EQUAL_64(dst_base + 24, x22); } TEST(ldp_stp_postindex) { INIT_V8(); SETUP(); uint64_t src[4] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL, 0xFFEEDDCCBBAA9988UL, 0x7766554433221100UL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x28, dst_base + 16); __ Ldp(w0, w1, MemOperand(x16, 4, PostIndex)); __ Mov(x19, x16); __ Ldp(w2, w3, MemOperand(x16, -4, PostIndex)); __ Stp(w2, w3, MemOperand(x17, 4, PostIndex)); __ Mov(x20, x17); __ Stp(w0, w1, MemOperand(x17, -4, PostIndex)); __ Ldp(x4, x5, MemOperand(x16, 8, PostIndex)); __ Mov(x21, x16); __ Ldp(x6, x7, MemOperand(x16, -8, PostIndex)); __ Stp(x7, x6, MemOperand(x28, 8, PostIndex)); __ Mov(x22, x28); __ Stp(x5, x4, MemOperand(x28, -8, PostIndex)); END(); RUN(); CHECK_EQUAL_64(0x44556677, x0); CHECK_EQUAL_64(0x00112233, x1); CHECK_EQUAL_64(0x00112233, x2); CHECK_EQUAL_64(0xCCDDEEFF, x3); CHECK_EQUAL_64(0x4455667700112233UL, dst[0]); CHECK_EQUAL_64(0x0000000000112233UL, dst[1]); CHECK_EQUAL_64(0x0011223344556677UL, x4); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x5); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x6); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x7); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]); CHECK_EQUAL_64(0x0011223344556677UL, dst[4]); CHECK_EQUAL_64(src_base, x16); CHECK_EQUAL_64(dst_base, x17); CHECK_EQUAL_64(dst_base + 16, x28); CHECK_EQUAL_64(src_base + 4, x19); CHECK_EQUAL_64(dst_base + 4, x20); CHECK_EQUAL_64(src_base + 8, x21); CHECK_EQUAL_64(dst_base + 24, x22); } TEST(ldp_stp_postindex_wide) { INIT_V8(); SETUP(); uint64_t src[4] = {0x0011223344556677, 0x8899AABBCCDDEEFF, 0xFFEEDDCCBBAA9988, 0x7766554433221100}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); // Move base too far from the array to force multiple instructions // to be emitted. const int64_t base_offset = 1024; START(); __ Mov(x24, src_base); __ Mov(x25, dst_base); __ Mov(x28, dst_base + 16); __ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PostIndex)); __ Mov(x19, x24); __ Sub(x24, x24, base_offset); __ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PostIndex)); __ Stp(w2, w3, MemOperand(x25, 4 - base_offset, PostIndex)); __ Mov(x20, x25); __ Sub(x24, x24, base_offset); __ Add(x25, x25, base_offset); __ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PostIndex)); __ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PostIndex)); __ Mov(x21, x24); __ Sub(x24, x24, base_offset); __ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PostIndex)); __ Stp(x7, x6, MemOperand(x28, 8 - base_offset, PostIndex)); __ Mov(x22, x28); __ Add(x28, x28, base_offset); __ Stp(x5, x4, MemOperand(x28, -8 - base_offset, PostIndex)); END(); RUN(); CHECK_EQUAL_64(0x44556677, x0); CHECK_EQUAL_64(0x00112233, x1); CHECK_EQUAL_64(0x00112233, x2); CHECK_EQUAL_64(0xCCDDEEFF, x3); CHECK_EQUAL_64(0x4455667700112233UL, dst[0]); CHECK_EQUAL_64(0x0000000000112233UL, dst[1]); CHECK_EQUAL_64(0x0011223344556677UL, x4); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x5); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x6); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x7); CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]); CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]); CHECK_EQUAL_64(0x0011223344556677UL, dst[4]); CHECK_EQUAL_64(src_base + base_offset, x24); CHECK_EQUAL_64(dst_base - base_offset, x25); CHECK_EQUAL_64(dst_base - base_offset + 16, x28); CHECK_EQUAL_64(src_base + base_offset + 4, x19); CHECK_EQUAL_64(dst_base - base_offset + 4, x20); CHECK_EQUAL_64(src_base + base_offset + 8, x21); CHECK_EQUAL_64(dst_base - base_offset + 24, x22); } TEST(ldp_sign_extend) { INIT_V8(); SETUP(); uint32_t src[2] = {0x80000000, 0x7FFFFFFF}; uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x24, src_base); __ Ldpsw(x0, x1, MemOperand(x24)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFF80000000UL, x0); CHECK_EQUAL_64(0x000000007FFFFFFFUL, x1); } TEST(ldur_stur) { INIT_V8(); SETUP(); int64_t src[2] = {0x0123456789ABCDEFUL, 0x0123456789ABCDEFUL}; int64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x28, dst_base); __ Mov(x19, src_base + 16); __ Mov(x20, dst_base + 32); __ Mov(x21, dst_base + 40); __ Ldr(w0, MemOperand(x17, 1)); __ Str(w0, MemOperand(x28, 2)); __ Ldr(x1, MemOperand(x17, 3)); __ Str(x1, MemOperand(x28, 9)); __ Ldr(w2, MemOperand(x19, -9)); __ Str(w2, MemOperand(x20, -5)); __ Ldrb(w3, MemOperand(x19, -1)); __ Strb(w3, MemOperand(x21, -1)); END(); RUN(); CHECK_EQUAL_64(0x6789ABCD, x0); CHECK_EQUAL_64(0x6789ABCD0000L, dst[0]); CHECK_EQUAL_64(0xABCDEF0123456789L, x1); CHECK_EQUAL_64(0xCDEF012345678900L, dst[1]); CHECK_EQUAL_64(0x000000AB, dst[2]); CHECK_EQUAL_64(0xABCDEF01, x2); CHECK_EQUAL_64(0x00ABCDEF01000000L, dst[3]); CHECK_EQUAL_64(0x00000001, x3); CHECK_EQUAL_64(0x0100000000000000L, dst[4]); CHECK_EQUAL_64(src_base, x17); CHECK_EQUAL_64(dst_base, x28); CHECK_EQUAL_64(src_base + 16, x19); CHECK_EQUAL_64(dst_base + 32, x20); } TEST(ldr_pcrel_large_offset) { INIT_V8(); SETUP_SIZE(1 * MB); START(); __ Ldr(x1, isolate->factory()->undefined_value()); { v8::internal::PatchingAssembler::BlockPoolsScope scope(&masm); int start = __ pc_offset(); while (__ pc_offset() - start < 600 * KB) { __ Nop(); } } __ Ldr(x2, isolate->factory()->undefined_value()); END(); RUN(); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x1); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x2); } TEST(ldr_literal) { INIT_V8(); SETUP(); START(); __ Ldr(x2, isolate->factory()->undefined_value()); END(); RUN(); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x2); } #ifdef DEBUG // These tests rely on functions available in debug mode. enum LiteralPoolEmitOutcome { EmitExpected, NoEmitExpected }; enum LiteralPoolEmissionAlignment { EmitAtUnaligned, EmitAtAligned }; static void LdrLiteralRangeHelper( size_t range, LiteralPoolEmitOutcome outcome, LiteralPoolEmissionAlignment unaligned_emission) { SETUP_SIZE(static_cast(range + 1024)); const size_t first_pool_entries = 2; const size_t first_pool_size_bytes = first_pool_entries * kInt64Size; START(); // Force a pool dump so the pool starts off empty. __ ForceConstantPoolEmissionWithJump(); CHECK_CONSTANT_POOL_SIZE(0); // Emit prepadding to influence alignment of the pool. bool currently_aligned = IsAligned(__ pc_offset(), kInt64Size); if ((unaligned_emission == EmitAtUnaligned && currently_aligned) || (unaligned_emission == EmitAtAligned && !currently_aligned)) { __ Nop(); } int initial_pc_offset = __ pc_offset(); __ Ldr(x0, isolate->factory()->undefined_value()); __ Ldr(x1, isolate->factory()->the_hole_value()); CHECK_CONSTANT_POOL_SIZE(first_pool_size_bytes); size_t expected_pool_size = 0; auto PoolSizeAt = [&](int pc_offset) { // To determine padding, consider the size of the prologue of the pool, // and the jump around the pool, which we always need. size_t prologue_size = 2 * kInstrSize + kInstrSize; size_t pc = pc_offset + prologue_size; const size_t padding = IsAligned(pc, kInt64Size) ? 0 : kInt32Size; CHECK_EQ(padding == 0, unaligned_emission == EmitAtAligned); return prologue_size + first_pool_size_bytes + padding; }; int pc_offset_before_emission = -1; bool pool_was_emitted = false; while (__ pc_offset() - initial_pc_offset < static_cast(range)) { pc_offset_before_emission = __ pc_offset() + kInstrSize; __ Nop(); if (__ GetConstantPoolEntriesSizeForTesting() == 0) { pool_was_emitted = true; break; } } if (outcome == EmitExpected) { if (!pool_was_emitted) { FATAL( "Pool was not emitted up to pc_offset %d which corresponds to a " "distance to the first constant of %d bytes", __ pc_offset(), __ pc_offset() - initial_pc_offset); } // Check that the size of the emitted constant pool is as expected. expected_pool_size = PoolSizeAt(pc_offset_before_emission); CHECK_EQ(pc_offset_before_emission + expected_pool_size, __ pc_offset()); } else { CHECK_EQ(outcome, NoEmitExpected); if (pool_was_emitted) { FATAL("Pool was unexpectedly emitted at pc_offset %d ", pc_offset_before_emission); } CHECK_CONSTANT_POOL_SIZE(first_pool_size_bytes); CHECK_EQ(pc_offset_before_emission, __ pc_offset()); } // Force a pool flush to check that a second pool functions correctly. __ ForceConstantPoolEmissionWithJump(); CHECK_CONSTANT_POOL_SIZE(0); // These loads should be after the pool (and will require a new one). const int second_pool_entries = 2; __ Ldr(x4, isolate->factory()->true_value()); __ Ldr(x5, isolate->factory()->false_value()); CHECK_CONSTANT_POOL_SIZE(second_pool_entries * kInt64Size); END(); if (outcome == EmitExpected) { Address pool_start = code->InstructionStart() + pc_offset_before_emission; Instruction* branch = reinterpret_cast(pool_start); CHECK(branch->IsImmBranch()); CHECK_EQ(expected_pool_size, branch->ImmPCOffset()); Instruction* marker = reinterpret_cast(pool_start + kInstrSize); CHECK(marker->IsLdrLiteralX()); size_t pool_data_start_offset = pc_offset_before_emission + kInstrSize; size_t padding = IsAligned(pool_data_start_offset, kInt64Size) ? 0 : kInt32Size; size_t marker_size = kInstrSize; CHECK_EQ((first_pool_size_bytes + marker_size + padding) / kInt32Size, marker->ImmLLiteral()); } RUN(); // Check that the literals loaded correctly. CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x0); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->the_hole_value(), x1); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->true_value(), x4); CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->false_value(), x5); } TEST(ldr_literal_range_max_dist_emission_1) { INIT_V8(); LdrLiteralRangeHelper( MacroAssembler::GetApproxMaxDistToConstPoolForTesting() + MacroAssembler::GetCheckConstPoolIntervalForTesting(), EmitExpected, EmitAtAligned); } TEST(ldr_literal_range_max_dist_emission_2) { INIT_V8(); LdrLiteralRangeHelper( MacroAssembler::GetApproxMaxDistToConstPoolForTesting() + MacroAssembler::GetCheckConstPoolIntervalForTesting(), EmitExpected, EmitAtUnaligned); } TEST(ldr_literal_range_max_dist_no_emission_1) { INIT_V8(); LdrLiteralRangeHelper( MacroAssembler::GetApproxMaxDistToConstPoolForTesting() - MacroAssembler::GetCheckConstPoolIntervalForTesting(), NoEmitExpected, EmitAtUnaligned); } TEST(ldr_literal_range_max_dist_no_emission_2) { INIT_V8(); LdrLiteralRangeHelper( MacroAssembler::GetApproxMaxDistToConstPoolForTesting() - MacroAssembler::GetCheckConstPoolIntervalForTesting(), NoEmitExpected, EmitAtAligned); } #endif TEST(add_sub_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x0); __ Mov(x1, 0x1111); __ Mov(x2, 0xFFFFFFFFFFFFFFFFL); __ Mov(x3, 0x8000000000000000L); __ Add(x10, x0, Operand(0x123)); __ Add(x11, x1, Operand(0x122000)); __ Add(x12, x0, Operand(0xABC << 12)); __ Add(x13, x2, Operand(1)); __ Add(w14, w0, Operand(0x123)); __ Add(w15, w1, Operand(0x122000)); __ Add(w16, w0, Operand(0xABC << 12)); __ Add(w17, w2, Operand(1)); __ Sub(x20, x0, Operand(0x1)); __ Sub(x21, x1, Operand(0x111)); __ Sub(x22, x1, Operand(0x1 << 12)); __ Sub(x23, x3, Operand(1)); __ Sub(w24, w0, Operand(0x1)); __ Sub(w25, w1, Operand(0x111)); __ Sub(w26, w1, Operand(0x1 << 12)); __ Sub(w27, w3, Operand(1)); END(); RUN(); CHECK_EQUAL_64(0x123, x10); CHECK_EQUAL_64(0x123111, x11); CHECK_EQUAL_64(0xABC000, x12); CHECK_EQUAL_64(0x0, x13); CHECK_EQUAL_32(0x123, w14); CHECK_EQUAL_32(0x123111, w15); CHECK_EQUAL_32(0xABC000, w16); CHECK_EQUAL_32(0x0, w17); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x20); CHECK_EQUAL_64(0x1000, x21); CHECK_EQUAL_64(0x111, x22); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFL, x23); CHECK_EQUAL_32(0xFFFFFFFF, w24); CHECK_EQUAL_32(0x1000, w25); CHECK_EQUAL_32(0x111, w26); CHECK_EQUAL_32(0xFFFFFFFF, w27); } TEST(add_sub_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x0); __ Mov(x1, 0x1); __ Add(x10, x0, Operand(0x1234567890ABCDEFUL)); __ Add(x11, x1, Operand(0xFFFFFFFF)); __ Add(w12, w0, Operand(0x12345678)); __ Add(w13, w1, Operand(0xFFFFFFFF)); __ Add(w28, w0, Operand(kWMinInt)); __ Sub(w19, w0, Operand(kWMinInt)); __ Sub(x20, x0, Operand(0x1234567890ABCDEFUL)); __ Sub(w21, w0, Operand(0x12345678)); END(); RUN(); CHECK_EQUAL_64(0x1234567890ABCDEFUL, x10); CHECK_EQUAL_64(0x100000000UL, x11); CHECK_EQUAL_32(0x12345678, w12); CHECK_EQUAL_64(0x0, x13); CHECK_EQUAL_32(kWMinInt, w28); CHECK_EQUAL_32(kWMinInt, w19); CHECK_EQUAL_64(-0x1234567890ABCDEFLL, x20); CHECK_EQUAL_32(-0x12345678, w21); } TEST(add_sub_shifted) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x2, 0xFEDCBA9876543210L); __ Mov(x3, 0xFFFFFFFFFFFFFFFFL); __ Add(x10, x1, Operand(x2)); __ Add(x11, x0, Operand(x1, LSL, 8)); __ Add(x12, x0, Operand(x1, LSR, 8)); __ Add(x13, x0, Operand(x1, ASR, 8)); __ Add(x14, x0, Operand(x2, ASR, 8)); __ Add(w15, w0, Operand(w1, ASR, 8)); __ Add(w28, w3, Operand(w1, ROR, 8)); __ Add(x19, x3, Operand(x1, ROR, 8)); __ Sub(x20, x3, Operand(x2)); __ Sub(x21, x3, Operand(x1, LSL, 8)); __ Sub(x22, x3, Operand(x1, LSR, 8)); __ Sub(x23, x3, Operand(x1, ASR, 8)); __ Sub(x24, x3, Operand(x2, ASR, 8)); __ Sub(w25, w3, Operand(w1, ASR, 8)); __ Sub(w26, w3, Operand(w1, ROR, 8)); __ Sub(x27, x3, Operand(x1, ROR, 8)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x10); CHECK_EQUAL_64(0x23456789ABCDEF00L, x11); CHECK_EQUAL_64(0x000123456789ABCDL, x12); CHECK_EQUAL_64(0x000123456789ABCDL, x13); CHECK_EQUAL_64(0xFFFEDCBA98765432L, x14); CHECK_EQUAL_64(0xFF89ABCD, x15); CHECK_EQUAL_64(0xEF89ABCC, x28); CHECK_EQUAL_64(0xEF0123456789ABCCL, x19); CHECK_EQUAL_64(0x0123456789ABCDEFL, x20); CHECK_EQUAL_64(0xDCBA9876543210FFL, x21); CHECK_EQUAL_64(0xFFFEDCBA98765432L, x22); CHECK_EQUAL_64(0xFFFEDCBA98765432L, x23); CHECK_EQUAL_64(0x000123456789ABCDL, x24); CHECK_EQUAL_64(0x00765432, x25); CHECK_EQUAL_64(0x10765432, x26); CHECK_EQUAL_64(0x10FEDCBA98765432L, x27); } TEST(add_sub_extended) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x2, 0xFEDCBA9876543210L); __ Mov(w3, 0x80); __ Add(x10, x0, Operand(x1, UXTB, 0)); __ Add(x11, x0, Operand(x1, UXTB, 1)); __ Add(x12, x0, Operand(x1, UXTH, 2)); __ Add(x13, x0, Operand(x1, UXTW, 4)); __ Add(x14, x0, Operand(x1, SXTB, 0)); __ Add(x15, x0, Operand(x1, SXTB, 1)); __ Add(x16, x0, Operand(x1, SXTH, 2)); __ Add(x17, x0, Operand(x1, SXTW, 3)); __ Add(x4, x0, Operand(x2, SXTB, 0)); __ Add(x19, x0, Operand(x2, SXTB, 1)); __ Add(x20, x0, Operand(x2, SXTH, 2)); __ Add(x21, x0, Operand(x2, SXTW, 3)); __ Add(x22, x1, Operand(x2, SXTB, 1)); __ Sub(x23, x1, Operand(x2, SXTB, 1)); __ Add(w24, w1, Operand(w2, UXTB, 2)); __ Add(w25, w0, Operand(w1, SXTB, 0)); __ Add(w26, w0, Operand(w1, SXTB, 1)); __ Add(w27, w2, Operand(w1, SXTW, 3)); __ Add(w28, w0, Operand(w1, SXTW, 3)); __ Add(x29, x0, Operand(w1, SXTW, 3)); __ Sub(x30, x0, Operand(w3, SXTB, 1)); END(); RUN(); CHECK_EQUAL_64(0xEFL, x10); CHECK_EQUAL_64(0x1DEL, x11); CHECK_EQUAL_64(0x337BCL, x12); CHECK_EQUAL_64(0x89ABCDEF0L, x13); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFEFL, x14); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFDEL, x15); CHECK_EQUAL_64(0xFFFFFFFFFFFF37BCL, x16); CHECK_EQUAL_64(0xFFFFFFFC4D5E6F78L, x17); CHECK_EQUAL_64(0x10L, x4); CHECK_EQUAL_64(0x20L, x19); CHECK_EQUAL_64(0xC840L, x20); CHECK_EQUAL_64(0x3B2A19080L, x21); CHECK_EQUAL_64(0x0123456789ABCE0FL, x22); CHECK_EQUAL_64(0x0123456789ABCDCFL, x23); CHECK_EQUAL_32(0x89ABCE2F, w24); CHECK_EQUAL_32(0xFFFFFFEF, w25); CHECK_EQUAL_32(0xFFFFFFDE, w26); CHECK_EQUAL_32(0xC3B2A188, w27); CHECK_EQUAL_32(0x4D5E6F78, w28); CHECK_EQUAL_64(0xFFFFFFFC4D5E6F78L, x29); CHECK_EQUAL_64(256, x30); } TEST(add_sub_negative) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 4687); __ Mov(x2, 0x1122334455667788); __ Mov(w3, 0x11223344); __ Mov(w4, 400000); __ Add(x10, x0, -42); __ Add(x11, x1, -687); __ Add(x12, x2, -0x88); __ Sub(x13, x0, -600); __ Sub(x14, x1, -313); __ Sub(x15, x2, -0x555); __ Add(w19, w3, -0x344); __ Add(w20, w4, -2000); __ Sub(w21, w3, -0xBC); __ Sub(w22, w4, -2000); END(); RUN(); CHECK_EQUAL_64(-42, x10); CHECK_EQUAL_64(4000, x11); CHECK_EQUAL_64(0x1122334455667700, x12); CHECK_EQUAL_64(600, x13); CHECK_EQUAL_64(5000, x14); CHECK_EQUAL_64(0x1122334455667CDD, x15); CHECK_EQUAL_32(0x11223000, w19); CHECK_EQUAL_32(398000, w20); CHECK_EQUAL_32(0x11223400, w21); CHECK_EQUAL_32(402000, w22); } TEST(add_sub_zero) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); Label blob1; __ Bind(&blob1); __ Add(x0, x0, 0); __ Sub(x1, x1, 0); __ Sub(x2, x2, xzr); CHECK_EQ(0u, __ SizeOfCodeGeneratedSince(&blob1)); Label blob2; __ Bind(&blob2); __ Add(w3, w3, 0); CHECK_NE(0u, __ SizeOfCodeGeneratedSince(&blob2)); Label blob3; __ Bind(&blob3); __ Sub(w3, w3, wzr); CHECK_NE(0u, __ SizeOfCodeGeneratedSince(&blob3)); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(0, x1); CHECK_EQUAL_64(0, x2); } TEST(preshift_immediates) { INIT_V8(); SETUP(); START(); // Test operations involving immediates that could be generated using a // pre-shifted encodable immediate followed by a post-shift applied to // the arithmetic or logical operation. // Save sp. __ Mov(x29, sp); // Set the registers to known values. __ Mov(x0, 0x1000); __ Mov(sp, 0x1000); // Arithmetic ops. __ Add(x1, x0, 0x1F7DE); __ Add(w2, w0, 0xFFFFFF1); __ Adds(x3, x0, 0x18001); __ Adds(w4, w0, 0xFFFFFF1); __ Add(x5, x0, 0x10100); __ Sub(w6, w0, 0xFFFFFF1); __ Subs(x7, x0, 0x18001); __ Subs(w8, w0, 0xFFFFFF1); // Logical ops. __ And(x9, x0, 0x1F7DE); __ Orr(w10, w0, 0xFFFFFF1); __ Eor(x11, x0, 0x18001); // Ops using the stack pointer. __ Add(sp, sp, 0x1F7F0); __ Mov(x12, sp); __ Mov(sp, 0x1000); __ Adds(x13, sp, 0x1F7F0); __ Orr(sp, x0, 0x1F7F0); __ Mov(x14, sp); __ Mov(sp, 0x1000); __ Add(sp, sp, 0x10100); __ Mov(x15, sp); // Restore sp. __ Mov(sp, x29); END(); RUN(); CHECK_EQUAL_64(0x1000, x0); CHECK_EQUAL_64(0x207DE, x1); CHECK_EQUAL_64(0x10000FF1, x2); CHECK_EQUAL_64(0x19001, x3); CHECK_EQUAL_64(0x10000FF1, x4); CHECK_EQUAL_64(0x11100, x5); CHECK_EQUAL_64(0xF000100F, x6); CHECK_EQUAL_64(0xFFFFFFFFFFFE8FFF, x7); CHECK_EQUAL_64(0xF000100F, x8); CHECK_EQUAL_64(0x1000, x9); CHECK_EQUAL_64(0xFFFFFF1, x10); CHECK_EQUAL_64(0x207F0, x12); CHECK_EQUAL_64(0x207F0, x13); CHECK_EQUAL_64(0x1F7F0, x14); CHECK_EQUAL_64(0x11100, x15); } TEST(claim_drop_zero) { INIT_V8(); SETUP(); START(); Label start; __ Bind(&start); __ Claim(0); __ Drop(0); __ Claim(xzr, 8); __ Drop(xzr, 8); __ Claim(xzr, 0); __ Drop(xzr, 0); __ Claim(x7, 0); __ Drop(x7, 0); CHECK_EQ(0u, __ SizeOfCodeGeneratedSince(&start)); END(); RUN(); } TEST(neg) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xF123456789ABCDEFL); // Immediate. __ Neg(x1, 0x123); __ Neg(w2, 0x123); // Shifted. __ Neg(x3, Operand(x0, LSL, 1)); __ Neg(w4, Operand(w0, LSL, 2)); __ Neg(x5, Operand(x0, LSR, 3)); __ Neg(w6, Operand(w0, LSR, 4)); __ Neg(x7, Operand(x0, ASR, 5)); __ Neg(w8, Operand(w0, ASR, 6)); // Extended. __ Neg(w9, Operand(w0, UXTB)); __ Neg(x10, Operand(x0, SXTB, 1)); __ Neg(w11, Operand(w0, UXTH, 2)); __ Neg(x12, Operand(x0, SXTH, 3)); __ Neg(w13, Operand(w0, UXTW, 4)); __ Neg(x14, Operand(x0, SXTW, 4)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFFFFFFEDDUL, x1); CHECK_EQUAL_64(0xFFFFFEDD, x2); CHECK_EQUAL_64(0x1DB97530ECA86422UL, x3); CHECK_EQUAL_64(0xD950C844, x4); CHECK_EQUAL_64(0xE1DB97530ECA8643UL, x5); CHECK_EQUAL_64(0xF7654322, x6); CHECK_EQUAL_64(0x0076E5D4C3B2A191UL, x7); CHECK_EQUAL_64(0x01D950C9, x8); CHECK_EQUAL_64(0xFFFFFF11, x9); CHECK_EQUAL_64(0x0000000000000022UL, x10); CHECK_EQUAL_64(0xFFFCC844, x11); CHECK_EQUAL_64(0x0000000000019088UL, x12); CHECK_EQUAL_64(0x65432110, x13); CHECK_EQUAL_64(0x0000000765432110UL, x14); } template static void AdcsSbcsHelper(Op op, T left, T right, int carry, T expected, StatusFlags expected_flags) { int reg_size = sizeof(T) * 8; auto left_reg = Register::Create(0, reg_size); auto right_reg = Register::Create(1, reg_size); auto result_reg = Register::Create(2, reg_size); SETUP(); START(); __ Mov(left_reg, left); __ Mov(right_reg, right); __ Mov(x10, (carry ? CFlag : NoFlag)); __ Msr(NZCV, x10); (masm.*op)(result_reg, left_reg, right_reg); END(); RUN(); CHECK_EQUAL_64(left, left_reg.X()); CHECK_EQUAL_64(right, right_reg.X()); CHECK_EQUAL_64(expected, result_reg.X()); CHECK_EQUAL_NZCV(expected_flags); } TEST(adcs_sbcs_x) { INIT_V8(); uint64_t inputs[] = { 0x0000000000000000, 0x0000000000000001, 0x7FFFFFFFFFFFFFFE, 0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, }; static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]); struct Expected { uint64_t carry0_result; StatusFlags carry0_flags; uint64_t carry1_result; StatusFlags carry1_flags; }; static const Expected expected_adcs_x[input_count][input_count] = { {{0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag}, {0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}, {0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x8000000000000000, NFlag, 0x8000000000000001, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}}, {{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}, {0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0x8000000000000002, NFlag, 0x8000000000000003, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}}, {{0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0xFFFFFFFFFFFFFFFC, NVFlag, 0xFFFFFFFFFFFFFFFD, NVFlag}, {0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}}, {{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag}, {0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag}, {0xFFFFFFFFFFFFFFFE, NVFlag, 0xFFFFFFFFFFFFFFFF, NVFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag}}, {{0x8000000000000000, NFlag, 0x8000000000000001, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag}, {0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag}, {0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}}, {{0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0x8000000000000002, NFlag, 0x8000000000000003, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag}, {0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}}, {{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0xFFFFFFFFFFFFFFFC, NCFlag, 0xFFFFFFFFFFFFFFFD, NCFlag}, {0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag}}, {{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}, {0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag}, {0xFFFFFFFFFFFFFFFE, NCFlag, 0xFFFFFFFFFFFFFFFF, NCFlag}}}; static const Expected expected_sbcs_x[input_count][input_count] = { {{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0x8000000000000000, NFlag, 0x8000000000000001, NFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag}, {0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}, {0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag}}, {{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x8000000000000002, NFlag, 0x8000000000000003, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag}, {0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}}, {{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag}, {0xFFFFFFFFFFFFFFFC, NVFlag, 0xFFFFFFFFFFFFFFFD, NVFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}, {0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag}}, {{0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0xFFFFFFFFFFFFFFFE, NVFlag, 0xFFFFFFFFFFFFFFFF, NVFlag}, {0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag}, {0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag}, {0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}}, {{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag}, {0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag}, {0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}, {0x8000000000000000, NFlag, 0x8000000000000001, NFlag}}, {{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag}, {0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0x8000000000000002, NFlag, 0x8000000000000003, NFlag}, {0x8000000000000001, NFlag, 0x8000000000000002, NFlag}}, {{0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag}, {0xFFFFFFFFFFFFFFFC, NCFlag, 0xFFFFFFFFFFFFFFFD, NCFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}, {0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}}, {{0xFFFFFFFFFFFFFFFE, NCFlag, 0xFFFFFFFFFFFFFFFF, NCFlag}, {0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag}, {0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}, {0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}, {0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag}, {0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}, {0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}, {0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}}}; for (size_t left = 0; left < input_count; left++) { for (size_t right = 0; right < input_count; right++) { const Expected& expected = expected_adcs_x[left][right]; AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0, expected.carry0_result, expected.carry0_flags); AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1, expected.carry1_result, expected.carry1_flags); } } for (size_t left = 0; left < input_count; left++) { for (size_t right = 0; right < input_count; right++) { const Expected& expected = expected_sbcs_x[left][right]; AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0, expected.carry0_result, expected.carry0_flags); AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1, expected.carry1_result, expected.carry1_flags); } } } TEST(adcs_sbcs_w) { INIT_V8(); uint32_t inputs[] = { 0x00000000, 0x00000001, 0x7FFFFFFE, 0x7FFFFFFF, 0x80000000, 0x80000001, 0xFFFFFFFE, 0xFFFFFFFF, }; static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]); struct Expected { uint32_t carry0_result; StatusFlags carry0_flags; uint32_t carry1_result; StatusFlags carry1_flags; }; static const Expected expected_adcs_w[input_count][input_count] = { {{0x00000000, ZFlag, 0x00000001, NoFlag}, {0x00000001, NoFlag, 0x00000002, NoFlag}, {0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x80000000, NFlag, 0x80000001, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}}, {{0x00000001, NoFlag, 0x00000002, NoFlag}, {0x00000002, NoFlag, 0x00000003, NoFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x80000000, NVFlag, 0x80000001, NVFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0x80000002, NFlag, 0x80000003, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}}, {{0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0xFFFFFFFC, NVFlag, 0xFFFFFFFD, NVFlag}, {0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}}, {{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x80000000, NVFlag, 0x80000001, NVFlag}, {0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag}, {0xFFFFFFFE, NVFlag, 0xFFFFFFFF, NVFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag}}, {{0x80000000, NFlag, 0x80000001, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x00000000, ZCVFlag, 0x00000001, CVFlag}, {0x00000001, CVFlag, 0x00000002, CVFlag}, {0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}}, {{0x80000001, NFlag, 0x80000002, NFlag}, {0x80000002, NFlag, 0x80000003, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0x00000001, CVFlag, 0x00000002, CVFlag}, {0x00000002, CVFlag, 0x00000003, CVFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x80000000, NCFlag, 0x80000001, NCFlag}}, {{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0xFFFFFFFC, NCFlag, 0xFFFFFFFD, NCFlag}, {0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag}}, {{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x80000000, NCFlag, 0x80000001, NCFlag}, {0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag}, {0xFFFFFFFE, NCFlag, 0xFFFFFFFF, NCFlag}}}; static const Expected expected_sbcs_w[input_count][input_count] = { {{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0x80000000, NFlag, 0x80000001, NFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag}, {0x00000001, NoFlag, 0x00000002, NoFlag}, {0x00000000, ZFlag, 0x00000001, NoFlag}}, {{0x00000000, ZCFlag, 0x00000001, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x80000002, NFlag, 0x80000003, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0x80000000, NVFlag, 0x80000001, NVFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x00000002, NoFlag, 0x00000003, NoFlag}, {0x00000001, NoFlag, 0x00000002, NoFlag}}, {{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag}, {0xFFFFFFFC, NVFlag, 0xFFFFFFFD, NVFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}, {0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag}}, {{0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0xFFFFFFFE, NVFlag, 0xFFFFFFFF, NVFlag}, {0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag}, {0x80000000, NVFlag, 0x80000001, NVFlag}, {0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}}, {{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag}, {0x00000001, CVFlag, 0x00000002, CVFlag}, {0x00000000, ZCVFlag, 0x00000001, CVFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}, {0x80000000, NFlag, 0x80000001, NFlag}}, {{0x80000000, NCFlag, 0x80000001, NCFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x00000002, CVFlag, 0x00000003, CVFlag}, {0x00000001, CVFlag, 0x00000002, CVFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0x80000002, NFlag, 0x80000003, NFlag}, {0x80000001, NFlag, 0x80000002, NFlag}}, {{0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag}, {0xFFFFFFFC, NCFlag, 0xFFFFFFFD, NCFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}, {0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}}, {{0xFFFFFFFE, NCFlag, 0xFFFFFFFF, NCFlag}, {0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag}, {0x80000000, NCFlag, 0x80000001, NCFlag}, {0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}, {0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag}, {0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}, {0x00000000, ZCFlag, 0x00000001, CFlag}, {0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}}}; for (size_t left = 0; left < input_count; left++) { for (size_t right = 0; right < input_count; right++) { const Expected& expected = expected_adcs_w[left][right]; AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0, expected.carry0_result, expected.carry0_flags); AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1, expected.carry1_result, expected.carry1_flags); } } for (size_t left = 0; left < input_count; left++) { for (size_t right = 0; right < input_count; right++) { const Expected& expected = expected_sbcs_w[left][right]; AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0, expected.carry0_result, expected.carry0_flags); AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1, expected.carry1_result, expected.carry1_flags); } } } TEST(adc_sbc_shift) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x2, 0x0123456789ABCDEFL); __ Mov(x3, 0xFEDCBA9876543210L); __ Mov(x4, 0xFFFFFFFFFFFFFFFFL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adc(x5, x2, Operand(x3)); __ Adc(x6, x0, Operand(x1, LSL, 60)); __ Sbc(x7, x4, Operand(x3, LSR, 4)); __ Adc(x8, x2, Operand(x3, ASR, 4)); __ Adc(x9, x2, Operand(x3, ROR, 8)); __ Adc(w10, w2, Operand(w3)); __ Adc(w11, w0, Operand(w1, LSL, 30)); __ Sbc(w12, w4, Operand(w3, LSR, 4)); __ Adc(w13, w2, Operand(w3, ASR, 4)); __ Adc(w14, w2, Operand(w3, ROR, 8)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x28, x2, Operand(x3)); __ Adc(x19, x0, Operand(x1, LSL, 60)); __ Sbc(x20, x4, Operand(x3, LSR, 4)); __ Adc(x21, x2, Operand(x3, ASR, 4)); __ Adc(x22, x2, Operand(x3, ROR, 8)); __ Adc(w23, w2, Operand(w3)); __ Adc(w24, w0, Operand(w1, LSL, 30)); __ Sbc(w25, w4, Operand(w3, LSR, 4)); __ Adc(w26, w2, Operand(w3, ASR, 4)); __ Adc(w27, w2, Operand(w3, ROR, 8)); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x5); CHECK_EQUAL_64(1LL << 60, x6); CHECK_EQUAL_64(0xF0123456789ABCDDL, x7); CHECK_EQUAL_64(0x0111111111111110L, x8); CHECK_EQUAL_64(0x1222222222222221L, x9); CHECK_EQUAL_32(0xFFFFFFFF, w10); CHECK_EQUAL_32(1 << 30, w11); CHECK_EQUAL_32(0xF89ABCDD, w12); CHECK_EQUAL_32(0x91111110, w13); CHECK_EQUAL_32(0x9A222221, w14); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFLL + 1, x28); CHECK_EQUAL_64((1LL << 60) + 1, x19); CHECK_EQUAL_64(0xF0123456789ABCDDL + 1, x20); CHECK_EQUAL_64(0x0111111111111110L + 1, x21); CHECK_EQUAL_64(0x1222222222222221L + 1, x22); CHECK_EQUAL_32(0xFFFFFFFFULL + 1, w23); CHECK_EQUAL_32((1 << 30) + 1, w24); CHECK_EQUAL_32(0xF89ABCDD + 1, w25); CHECK_EQUAL_32(0x91111110 + 1, w26); CHECK_EQUAL_32(0x9A222221 + 1, w27); } TEST(adc_sbc_extend) { INIT_V8(); SETUP(); START(); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x2, 0x0123456789ABCDEFL); __ Adc(x10, x1, Operand(w2, UXTB, 1)); __ Adc(x11, x1, Operand(x2, SXTH, 2)); __ Sbc(x12, x1, Operand(w2, UXTW, 4)); __ Adc(x13, x1, Operand(x2, UXTX, 4)); __ Adc(w14, w1, Operand(w2, UXTB, 1)); __ Adc(w15, w1, Operand(w2, SXTH, 2)); __ Adc(w9, w1, Operand(w2, UXTW, 4)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x20, x1, Operand(w2, UXTB, 1)); __ Adc(x21, x1, Operand(x2, SXTH, 2)); __ Sbc(x22, x1, Operand(w2, UXTW, 4)); __ Adc(x23, x1, Operand(x2, UXTX, 4)); __ Adc(w24, w1, Operand(w2, UXTB, 1)); __ Adc(w25, w1, Operand(w2, SXTH, 2)); __ Adc(w26, w1, Operand(w2, UXTW, 4)); END(); RUN(); CHECK_EQUAL_64(0x1DF, x10); CHECK_EQUAL_64(0xFFFFFFFFFFFF37BDL, x11); CHECK_EQUAL_64(0xFFFFFFF765432110L, x12); CHECK_EQUAL_64(0x123456789ABCDEF1L, x13); CHECK_EQUAL_32(0x1DF, w14); CHECK_EQUAL_32(0xFFFF37BD, w15); CHECK_EQUAL_32(0x9ABCDEF1, w9); CHECK_EQUAL_64(0x1DF + 1, x20); CHECK_EQUAL_64(0xFFFFFFFFFFFF37BDL + 1, x21); CHECK_EQUAL_64(0xFFFFFFF765432110L + 1, x22); CHECK_EQUAL_64(0x123456789ABCDEF1L + 1, x23); CHECK_EQUAL_32(0x1DF + 1, w24); CHECK_EQUAL_32(0xFFFF37BD + 1, w25); CHECK_EQUAL_32(0x9ABCDEF1 + 1, w26); // Check that adc correctly sets the condition flags. START(); __ Mov(x0, 0xFF); __ Mov(x1, 0xFFFFFFFFFFFFFFFFL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, SXTX, 1)); END(); RUN(); CHECK_EQUAL_NZCV(CFlag); START(); __ Mov(x0, 0x7FFFFFFFFFFFFFFFL); __ Mov(x1, 1); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, UXTB, 2)); END(); RUN(); CHECK_EQUAL_NZCV(NVFlag); START(); __ Mov(x0, 0x7FFFFFFFFFFFFFFFL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(1)); END(); RUN(); CHECK_EQUAL_NZCV(NVFlag); } TEST(adc_sbc_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adc(x7, x0, Operand(0x1234567890ABCDEFUL)); __ Adc(w8, w0, Operand(0xFFFFFFFF)); __ Sbc(x9, x0, Operand(0x1234567890ABCDEFUL)); __ Sbc(w10, w0, Operand(0xFFFFFFFF)); __ Ngc(x11, Operand(0xFFFFFFFF00000000UL)); __ Ngc(w12, Operand(0xFFFF0000)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x28, x0, Operand(0x1234567890ABCDEFUL)); __ Adc(w19, w0, Operand(0xFFFFFFFF)); __ Sbc(x20, x0, Operand(0x1234567890ABCDEFUL)); __ Sbc(w21, w0, Operand(0xFFFFFFFF)); __ Ngc(x22, Operand(0xFFFFFFFF00000000UL)); __ Ngc(w23, Operand(0xFFFF0000)); END(); RUN(); CHECK_EQUAL_64(0x1234567890ABCDEFUL, x7); CHECK_EQUAL_64(0xFFFFFFFF, x8); CHECK_EQUAL_64(0xEDCBA9876F543210UL, x9); CHECK_EQUAL_64(0, x10); CHECK_EQUAL_64(0xFFFFFFFF, x11); CHECK_EQUAL_64(0xFFFF, x12); CHECK_EQUAL_64(0x1234567890ABCDEFUL + 1, x28); CHECK_EQUAL_64(0, x19); CHECK_EQUAL_64(0xEDCBA9876F543211UL, x20); CHECK_EQUAL_64(1, x21); CHECK_EQUAL_64(0x100000000UL, x22); CHECK_EQUAL_64(0x10000, x23); } TEST(flags) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x1111111111111111L); __ Neg(x10, Operand(x0)); __ Neg(x11, Operand(x1)); __ Neg(w12, Operand(w1)); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Ngc(x13, Operand(x0)); // Set the C flag. __ Cmp(x0, Operand(x0)); __ Ngc(w14, Operand(w0)); END(); RUN(); CHECK_EQUAL_64(0, x10); CHECK_EQUAL_64(-0x1111111111111111L, x11); CHECK_EQUAL_32(-0x11111111, w12); CHECK_EQUAL_64(-1L, x13); CHECK_EQUAL_32(0, w14); START(); __ Mov(x0, 0); __ Cmp(x0, Operand(x0)); END(); RUN(); CHECK_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 0); __ Cmp(w0, Operand(w0)); END(); RUN(); CHECK_EQUAL_NZCV(ZCFlag); START(); __ Mov(x0, 0); __ Mov(x1, 0x1111111111111111L); __ Cmp(x0, Operand(x1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); START(); __ Mov(w0, 0); __ Mov(w1, 0x11111111); __ Cmp(w0, Operand(w1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); START(); __ Mov(x1, 0x1111111111111111L); __ Cmp(x1, Operand(0)); END(); RUN(); CHECK_EQUAL_NZCV(CFlag); START(); __ Mov(w1, 0x11111111); __ Cmp(w1, Operand(0)); END(); RUN(); CHECK_EQUAL_NZCV(CFlag); START(); __ Mov(x0, 1); __ Mov(x1, 0x7FFFFFFFFFFFFFFFL); __ Cmn(x1, Operand(x0)); END(); RUN(); CHECK_EQUAL_NZCV(NVFlag); START(); __ Mov(w0, 1); __ Mov(w1, 0x7FFFFFFF); __ Cmn(w1, Operand(w0)); END(); RUN(); CHECK_EQUAL_NZCV(NVFlag); START(); __ Mov(x0, 1); __ Mov(x1, 0xFFFFFFFFFFFFFFFFL); __ Cmn(x1, Operand(x0)); END(); RUN(); CHECK_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 1); __ Mov(w1, 0xFFFFFFFF); __ Cmn(w1, Operand(w0)); END(); RUN(); CHECK_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 0); __ Mov(w1, 1); // Clear the C flag. __ Adds(w0, w0, Operand(0)); __ Ngcs(w0, Operand(w1)); END(); RUN(); CHECK_EQUAL_NZCV(NFlag); START(); __ Mov(w0, 0); __ Mov(w1, 0); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Ngcs(w0, Operand(w1)); END(); RUN(); CHECK_EQUAL_NZCV(ZCFlag); } TEST(cmp_shift) { INIT_V8(); SETUP(); START(); __ Mov(x28, 0xF0000000); __ Mov(x19, 0xF000000010000000UL); __ Mov(x20, 0xF0000000F0000000UL); __ Mov(x21, 0x7800000078000000UL); __ Mov(x22, 0x3C0000003C000000UL); __ Mov(x23, 0x8000000780000000UL); __ Mov(x24, 0x0000000F00000000UL); __ Mov(x25, 0x00000003C0000000UL); __ Mov(x26, 0x8000000780000000UL); __ Mov(x27, 0xC0000003); __ Cmp(w20, Operand(w21, LSL, 1)); __ Mrs(x0, NZCV); __ Cmp(x20, Operand(x22, LSL, 2)); __ Mrs(x1, NZCV); __ Cmp(w19, Operand(w23, LSR, 3)); __ Mrs(x2, NZCV); __ Cmp(x28, Operand(x24, LSR, 4)); __ Mrs(x3, NZCV); __ Cmp(w20, Operand(w25, ASR, 2)); __ Mrs(x4, NZCV); __ Cmp(x20, Operand(x26, ASR, 3)); __ Mrs(x5, NZCV); __ Cmp(w27, Operand(w22, ROR, 28)); __ Mrs(x6, NZCV); __ Cmp(x20, Operand(x21, ROR, 31)); __ Mrs(x7, NZCV); END(); RUN(); CHECK_EQUAL_32(ZCFlag, w0); CHECK_EQUAL_32(ZCFlag, w1); CHECK_EQUAL_32(ZCFlag, w2); CHECK_EQUAL_32(ZCFlag, w3); CHECK_EQUAL_32(ZCFlag, w4); CHECK_EQUAL_32(ZCFlag, w5); CHECK_EQUAL_32(ZCFlag, w6); CHECK_EQUAL_32(ZCFlag, w7); } TEST(cmp_extend) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0x2); __ Mov(w21, 0x1); __ Mov(x22, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x23, 0xFF); __ Mov(x24, 0xFFFFFFFFFFFFFFFEUL); __ Mov(x25, 0xFFFF); __ Mov(x26, 0xFFFFFFFF); __ Cmp(w20, Operand(w21, LSL, 1)); __ Mrs(x0, NZCV); __ Cmp(x22, Operand(x23, SXTB, 0)); __ Mrs(x1, NZCV); __ Cmp(x24, Operand(x23, SXTB, 1)); __ Mrs(x2, NZCV); __ Cmp(x24, Operand(x23, UXTB, 1)); __ Mrs(x3, NZCV); __ Cmp(w22, Operand(w25, UXTH)); __ Mrs(x4, NZCV); __ Cmp(x22, Operand(x25, SXTH)); __ Mrs(x5, NZCV); __ Cmp(x22, Operand(x26, UXTW)); __ Mrs(x6, NZCV); __ Cmp(x24, Operand(x26, SXTW, 1)); __ Mrs(x7, NZCV); END(); RUN(); CHECK_EQUAL_32(ZCFlag, w0); CHECK_EQUAL_32(ZCFlag, w1); CHECK_EQUAL_32(ZCFlag, w2); CHECK_EQUAL_32(NCFlag, w3); CHECK_EQUAL_32(NCFlag, w4); CHECK_EQUAL_32(ZCFlag, w5); CHECK_EQUAL_32(NCFlag, w6); CHECK_EQUAL_32(ZCFlag, w7); } TEST(ccmp) { INIT_V8(); SETUP(); START(); __ Mov(w16, 0); __ Mov(w17, 1); __ Cmp(w16, w16); __ Ccmp(w16, w17, NCFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w16, w16); __ Ccmp(w16, w17, NCFlag, ne); __ Mrs(x1, NZCV); __ Cmp(x16, x16); __ Ccmn(x16, 2, NZCVFlag, eq); __ Mrs(x2, NZCV); __ Cmp(x16, x16); __ Ccmn(x16, 2, NZCVFlag, ne); __ Mrs(x3, NZCV); __ ccmp(x16, x16, NZCVFlag, al); __ Mrs(x4, NZCV); __ ccmp(x16, x16, NZCVFlag, nv); __ Mrs(x5, NZCV); END(); RUN(); CHECK_EQUAL_32(NFlag, w0); CHECK_EQUAL_32(NCFlag, w1); CHECK_EQUAL_32(NoFlag, w2); CHECK_EQUAL_32(NZCVFlag, w3); CHECK_EQUAL_32(ZCFlag, w4); CHECK_EQUAL_32(ZCFlag, w5); } TEST(ccmp_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0); __ Cmp(w20, Operand(w20)); __ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x20, Operand(0xFFFFFFFFFFFFFFFFUL), NZCVFlag, eq); __ Mrs(x1, NZCV); END(); RUN(); CHECK_EQUAL_32(NFlag, w0); CHECK_EQUAL_32(NoFlag, w1); } TEST(ccmp_shift_extend) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0x2); __ Mov(w21, 0x1); __ Mov(x22, 0xFFFFFFFFFFFFFFFFUL); __ Mov(x23, 0xFF); __ Mov(x24, 0xFFFFFFFFFFFFFFFEUL); __ Cmp(w20, Operand(w20)); __ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq); __ Mrs(x1, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq); __ Mrs(x2, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq); __ Mrs(x3, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne); __ Mrs(x4, NZCV); END(); RUN(); CHECK_EQUAL_32(ZCFlag, w0); CHECK_EQUAL_32(ZCFlag, w1); CHECK_EQUAL_32(ZCFlag, w2); CHECK_EQUAL_32(NCFlag, w3); CHECK_EQUAL_32(NZCVFlag, w4); } TEST(csel) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x24, 0x0000000F0000000FUL); __ Mov(x25, 0x0000001F0000001FUL); __ Mov(x26, 0); __ Mov(x27, 0); __ Cmp(w16, 0); __ Csel(w0, w24, w25, eq); __ Csel(w1, w24, w25, ne); __ Csinc(w2, w24, w25, mi); __ Csinc(w3, w24, w25, pl); __ csel(w13, w24, w25, al); __ csel(x14, x24, x25, nv); __ Cmp(x16, 1); __ Csinv(x4, x24, x25, gt); __ Csinv(x5, x24, x25, le); __ Csneg(x6, x24, x25, hs); __ Csneg(x7, x24, x25, lo); __ Cset(w8, ne); __ Csetm(w9, ne); __ Cinc(x10, x25, ne); __ Cinv(x11, x24, ne); __ Cneg(x12, x24, ne); __ csel(w15, w24, w25, al); __ csel(x28, x24, x25, nv); __ CzeroX(x24, ne); __ CzeroX(x25, eq); __ CmovX(x26, x25, ne); __ CmovX(x27, x25, eq); END(); RUN(); CHECK_EQUAL_64(0x0000000F, x0); CHECK_EQUAL_64(0x0000001F, x1); CHECK_EQUAL_64(0x00000020, x2); CHECK_EQUAL_64(0x0000000F, x3); CHECK_EQUAL_64(0xFFFFFFE0FFFFFFE0UL, x4); CHECK_EQUAL_64(0x0000000F0000000FUL, x5); CHECK_EQUAL_64(0xFFFFFFE0FFFFFFE1UL, x6); CHECK_EQUAL_64(0x0000000F0000000FUL, x7); CHECK_EQUAL_64(0x00000001, x8); CHECK_EQUAL_64(0xFFFFFFFF, x9); CHECK_EQUAL_64(0x0000001F00000020UL, x10); CHECK_EQUAL_64(0xFFFFFFF0FFFFFFF0UL, x11); CHECK_EQUAL_64(0xFFFFFFF0FFFFFFF1UL, x12); CHECK_EQUAL_64(0x0000000F, x13); CHECK_EQUAL_64(0x0000000F0000000FUL, x14); CHECK_EQUAL_64(0x0000000F, x15); CHECK_EQUAL_64(0x0000000F0000000FUL, x28); CHECK_EQUAL_64(0, x24); CHECK_EQUAL_64(0x0000001F0000001FUL, x25); CHECK_EQUAL_64(0x0000001F0000001FUL, x26); CHECK_EQUAL_64(0, x27); } TEST(csel_imm) { INIT_V8(); SETUP(); START(); __ Mov(x28, 0); __ Mov(x19, 0x80000000); __ Mov(x20, 0x8000000000000000UL); __ Cmp(x28, Operand(0)); __ Csel(w0, w19, -2, ne); __ Csel(w1, w19, -1, ne); __ Csel(w2, w19, 0, ne); __ Csel(w3, w19, 1, ne); __ Csel(w4, w19, 2, ne); __ Csel(w5, w19, Operand(w19, ASR, 31), ne); __ Csel(w6, w19, Operand(w19, ROR, 1), ne); __ Csel(w7, w19, 3, eq); __ Csel(x8, x20, -2, ne); __ Csel(x9, x20, -1, ne); __ Csel(x10, x20, 0, ne); __ Csel(x11, x20, 1, ne); __ Csel(x12, x20, 2, ne); __ Csel(x13, x20, Operand(x20, ASR, 63), ne); __ Csel(x14, x20, Operand(x20, ROR, 1), ne); __ Csel(x15, x20, 3, eq); END(); RUN(); CHECK_EQUAL_32(-2, w0); CHECK_EQUAL_32(-1, w1); CHECK_EQUAL_32(0, w2); CHECK_EQUAL_32(1, w3); CHECK_EQUAL_32(2, w4); CHECK_EQUAL_32(-1, w5); CHECK_EQUAL_32(0x40000000, w6); CHECK_EQUAL_32(0x80000000, w7); CHECK_EQUAL_64(-2, x8); CHECK_EQUAL_64(-1, x9); CHECK_EQUAL_64(0, x10); CHECK_EQUAL_64(1, x11); CHECK_EQUAL_64(2, x12); CHECK_EQUAL_64(-1, x13); CHECK_EQUAL_64(0x4000000000000000UL, x14); CHECK_EQUAL_64(0x8000000000000000UL, x15); } TEST(lslv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789ABCDEFUL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ lslv(x0, x0, xzr); __ Lsl(x16, x0, x1); __ Lsl(x17, x0, x2); __ Lsl(x28, x0, x3); __ Lsl(x19, x0, x4); __ Lsl(x20, x0, x5); __ Lsl(x21, x0, x6); __ Lsl(w22, w0, w1); __ Lsl(w23, w0, w2); __ Lsl(w24, w0, w3); __ Lsl(w25, w0, w4); __ Lsl(w26, w0, w5); __ Lsl(w27, w0, w6); END(); RUN(); CHECK_EQUAL_64(value, x0); CHECK_EQUAL_64(value << (shift[0] & 63), x16); CHECK_EQUAL_64(value << (shift[1] & 63), x17); CHECK_EQUAL_64(value << (shift[2] & 63), x28); CHECK_EQUAL_64(value << (shift[3] & 63), x19); CHECK_EQUAL_64(value << (shift[4] & 63), x20); CHECK_EQUAL_64(value << (shift[5] & 63), x21); CHECK_EQUAL_32(value << (shift[0] & 31), w22); CHECK_EQUAL_32(value << (shift[1] & 31), w23); CHECK_EQUAL_32(value << (shift[2] & 31), w24); CHECK_EQUAL_32(value << (shift[3] & 31), w25); CHECK_EQUAL_32(value << (shift[4] & 31), w26); CHECK_EQUAL_32(value << (shift[5] & 31), w27); } TEST(lsrv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789ABCDEFUL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ lsrv(x0, x0, xzr); __ Lsr(x16, x0, x1); __ Lsr(x17, x0, x2); __ Lsr(x28, x0, x3); __ Lsr(x19, x0, x4); __ Lsr(x20, x0, x5); __ Lsr(x21, x0, x6); __ Lsr(w22, w0, w1); __ Lsr(w23, w0, w2); __ Lsr(w24, w0, w3); __ Lsr(w25, w0, w4); __ Lsr(w26, w0, w5); __ Lsr(w27, w0, w6); END(); RUN(); CHECK_EQUAL_64(value, x0); CHECK_EQUAL_64(value >> (shift[0] & 63), x16); CHECK_EQUAL_64(value >> (shift[1] & 63), x17); CHECK_EQUAL_64(value >> (shift[2] & 63), x28); CHECK_EQUAL_64(value >> (shift[3] & 63), x19); CHECK_EQUAL_64(value >> (shift[4] & 63), x20); CHECK_EQUAL_64(value >> (shift[5] & 63), x21); value &= 0xFFFFFFFFUL; CHECK_EQUAL_32(value >> (shift[0] & 31), w22); CHECK_EQUAL_32(value >> (shift[1] & 31), w23); CHECK_EQUAL_32(value >> (shift[2] & 31), w24); CHECK_EQUAL_32(value >> (shift[3] & 31), w25); CHECK_EQUAL_32(value >> (shift[4] & 31), w26); CHECK_EQUAL_32(value >> (shift[5] & 31), w27); } TEST(asrv) { INIT_V8(); SETUP(); int64_t value = 0xFEDCBA98FEDCBA98UL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ asrv(x0, x0, xzr); __ Asr(x16, x0, x1); __ Asr(x17, x0, x2); __ Asr(x28, x0, x3); __ Asr(x19, x0, x4); __ Asr(x20, x0, x5); __ Asr(x21, x0, x6); __ Asr(w22, w0, w1); __ Asr(w23, w0, w2); __ Asr(w24, w0, w3); __ Asr(w25, w0, w4); __ Asr(w26, w0, w5); __ Asr(w27, w0, w6); END(); RUN(); CHECK_EQUAL_64(value, x0); CHECK_EQUAL_64(value >> (shift[0] & 63), x16); CHECK_EQUAL_64(value >> (shift[1] & 63), x17); CHECK_EQUAL_64(value >> (shift[2] & 63), x28); CHECK_EQUAL_64(value >> (shift[3] & 63), x19); CHECK_EQUAL_64(value >> (shift[4] & 63), x20); CHECK_EQUAL_64(value >> (shift[5] & 63), x21); int32_t value32 = static_cast(value & 0xFFFFFFFFUL); CHECK_EQUAL_32(value32 >> (shift[0] & 31), w22); CHECK_EQUAL_32(value32 >> (shift[1] & 31), w23); CHECK_EQUAL_32(value32 >> (shift[2] & 31), w24); CHECK_EQUAL_32(value32 >> (shift[3] & 31), w25); CHECK_EQUAL_32(value32 >> (shift[4] & 31), w26); CHECK_EQUAL_32(value32 >> (shift[5] & 31), w27); } TEST(rorv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789ABCDEFUL; int shift[] = {4, 8, 12, 16, 24, 36}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ rorv(x0, x0, xzr); __ Ror(x16, x0, x1); __ Ror(x17, x0, x2); __ Ror(x28, x0, x3); __ Ror(x19, x0, x4); __ Ror(x20, x0, x5); __ Ror(x21, x0, x6); __ Ror(w22, w0, w1); __ Ror(w23, w0, w2); __ Ror(w24, w0, w3); __ Ror(w25, w0, w4); __ Ror(w26, w0, w5); __ Ror(w27, w0, w6); END(); RUN(); CHECK_EQUAL_64(value, x0); CHECK_EQUAL_64(0xF0123456789ABCDEUL, x16); CHECK_EQUAL_64(0xEF0123456789ABCDUL, x17); CHECK_EQUAL_64(0xDEF0123456789ABCUL, x28); CHECK_EQUAL_64(0xCDEF0123456789ABUL, x19); CHECK_EQUAL_64(0xABCDEF0123456789UL, x20); CHECK_EQUAL_64(0x789ABCDEF0123456UL, x21); CHECK_EQUAL_32(0xF89ABCDE, w22); CHECK_EQUAL_32(0xEF89ABCD, w23); CHECK_EQUAL_32(0xDEF89ABC, w24); CHECK_EQUAL_32(0xCDEF89AB, w25); CHECK_EQUAL_32(0xABCDEF89, w26); CHECK_EQUAL_32(0xF89ABCDE, w27); } TEST(bfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x10, 0x8888888888888888L); __ Mov(x11, 0x8888888888888888L); __ Mov(x12, 0x8888888888888888L); __ Mov(x13, 0x8888888888888888L); __ Mov(w20, 0x88888888); __ Mov(w21, 0x88888888); __ bfm(x10, x1, 16, 31); __ bfm(x11, x1, 32, 15); __ bfm(w20, w1, 16, 23); __ bfm(w21, w1, 24, 15); // Aliases. __ Bfi(x12, x1, 16, 8); __ Bfxil(x13, x1, 16, 8); END(); RUN(); CHECK_EQUAL_64(0x88888888888889ABL, x10); CHECK_EQUAL_64(0x8888CDEF88888888L, x11); CHECK_EQUAL_32(0x888888AB, w20); CHECK_EQUAL_32(0x88CDEF88, w21); CHECK_EQUAL_64(0x8888888888EF8888L, x12); CHECK_EQUAL_64(0x88888888888888ABL, x13); } TEST(sbfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x2, 0xFEDCBA9876543210L); __ sbfm(x10, x1, 16, 31); __ sbfm(x11, x1, 32, 15); __ sbfm(x12, x1, 32, 47); __ sbfm(x13, x1, 48, 35); __ sbfm(w14, w1, 16, 23); __ sbfm(w15, w1, 24, 15); __ sbfm(w16, w2, 16, 23); __ sbfm(w17, w2, 24, 15); // Aliases. __ Asr(x3, x1, 32); __ Asr(x19, x2, 32); __ Sbfiz(x20, x1, 8, 16); __ Sbfiz(x21, x2, 8, 16); __ Sbfx(x22, x1, 8, 16); __ Sbfx(x23, x2, 8, 16); __ Sxtb(x24, w1); __ Sxtb(x25, x2); __ Sxth(x26, w1); __ Sxth(x27, x2); __ Sxtw(x28, w1); __ Sxtw(x29, x2); END(); RUN(); CHECK_EQUAL_64(0xFFFFFFFFFFFF89ABL, x10); CHECK_EQUAL_64(0xFFFFCDEF00000000L, x11); CHECK_EQUAL_64(0x4567L, x12); CHECK_EQUAL_64(0x789ABCDEF0000L, x13); CHECK_EQUAL_32(0xFFFFFFAB, w14); CHECK_EQUAL_32(0xFFCDEF00, w15); CHECK_EQUAL_32(0x54, w16); CHECK_EQUAL_32(0x00321000, w17); CHECK_EQUAL_64(0x01234567L, x3); CHECK_EQUAL_64(0xFFFFFFFFFEDCBA98L, x19); CHECK_EQUAL_64(0xFFFFFFFFFFCDEF00L, x20); CHECK_EQUAL_64(0x321000L, x21); CHECK_EQUAL_64(0xFFFFFFFFFFFFABCDL, x22); CHECK_EQUAL_64(0x5432L, x23); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFEFL, x24); CHECK_EQUAL_64(0x10, x25); CHECK_EQUAL_64(0xFFFFFFFFFFFFCDEFL, x26); CHECK_EQUAL_64(0x3210, x27); CHECK_EQUAL_64(0xFFFFFFFF89ABCDEFL, x28); CHECK_EQUAL_64(0x76543210, x29); } TEST(ubfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x2, 0xFEDCBA9876543210L); __ Mov(x10, 0x8888888888888888L); __ Mov(x11, 0x8888888888888888L); __ ubfm(x10, x1, 16, 31); __ ubfm(x11, x1, 32, 15); __ ubfm(x12, x1, 32, 47); __ ubfm(x13, x1, 48, 35); __ ubfm(w25, w1, 16, 23); __ ubfm(w26, w1, 24, 15); __ ubfm(w27, w2, 16, 23); __ ubfm(w28, w2, 24, 15); // Aliases __ Lsl(x15, x1, 63); __ Lsl(x16, x1, 0); __ Lsr(x17, x1, 32); __ Ubfiz(x3, x1, 8, 16); __ Ubfx(x19, x1, 8, 16); __ Uxtb(x20, x1); __ Uxth(x21, x1); __ Uxtw(x22, x1); END(); RUN(); CHECK_EQUAL_64(0x00000000000089ABL, x10); CHECK_EQUAL_64(0x0000CDEF00000000L, x11); CHECK_EQUAL_64(0x4567L, x12); CHECK_EQUAL_64(0x789ABCDEF0000L, x13); CHECK_EQUAL_32(0x000000AB, w25); CHECK_EQUAL_32(0x00CDEF00, w26); CHECK_EQUAL_32(0x54, w27); CHECK_EQUAL_32(0x00321000, w28); CHECK_EQUAL_64(0x8000000000000000L, x15); CHECK_EQUAL_64(0x0123456789ABCDEFL, x16); CHECK_EQUAL_64(0x01234567L, x17); CHECK_EQUAL_64(0xCDEF00L, x3); CHECK_EQUAL_64(0xABCDL, x19); CHECK_EQUAL_64(0xEFL, x20); CHECK_EQUAL_64(0xCDEFL, x21); CHECK_EQUAL_64(0x89ABCDEFL, x22); } TEST(extr) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789ABCDEFL); __ Mov(x2, 0xFEDCBA9876543210L); __ Extr(w10, w1, w2, 0); __ Extr(x11, x1, x2, 0); __ Extr(w12, w1, w2, 1); __ Extr(x13, x2, x1, 2); __ Ror(w20, w1, 0); __ Ror(x21, x1, 0); __ Ror(w22, w2, 17); __ Ror(w23, w1, 31); __ Ror(x24, x2, 1); __ Ror(x25, x1, 63); END(); RUN(); CHECK_EQUAL_64(0x76543210, x10); CHECK_EQUAL_64(0xFEDCBA9876543210L, x11); CHECK_EQUAL_64(0xBB2A1908, x12); CHECK_EQUAL_64(0x0048D159E26AF37BUL, x13); CHECK_EQUAL_64(0x89ABCDEF, x20); CHECK_EQUAL_64(0x0123456789ABCDEFL, x21); CHECK_EQUAL_64(0x19083B2A, x22); CHECK_EQUAL_64(0x13579BDF, x23); CHECK_EQUAL_64(0x7F6E5D4C3B2A1908UL, x24); CHECK_EQUAL_64(0x02468ACF13579BDEUL, x25); } TEST(fmov_imm) { INIT_V8(); SETUP(); START(); __ Fmov(s11, 1.0); __ Fmov(d22, -13.0); __ Fmov(s1, 255.0); __ Fmov(d2, 12.34567); __ Fmov(s3, 0.0); __ Fmov(d4, 0.0); __ Fmov(s5, kFP32PositiveInfinity); __ Fmov(d6, kFP64NegativeInfinity); END(); RUN(); CHECK_EQUAL_FP32(1.0, s11); CHECK_EQUAL_FP64(-13.0, d22); CHECK_EQUAL_FP32(255.0, s1); CHECK_EQUAL_FP64(12.34567, d2); CHECK_EQUAL_FP32(0.0, s3); CHECK_EQUAL_FP64(0.0, d4); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d6); } TEST(fmov_reg) { INIT_V8(); SETUP(); START(); __ Fmov(s20, 1.0); __ Fmov(w10, s20); __ Fmov(s30, w10); __ Fmov(s5, s20); __ Fmov(d1, -13.0); __ Fmov(x1, d1); __ Fmov(d2, x1); __ Fmov(d4, d1); __ Fmov(d6, base::bit_cast(0x0123456789ABCDEFL)); __ Fmov(s6, s6); END(); RUN(); CHECK_EQUAL_32(base::bit_cast(1.0f), w10); CHECK_EQUAL_FP32(1.0, s30); CHECK_EQUAL_FP32(1.0, s5); CHECK_EQUAL_64(base::bit_cast(-13.0), x1); CHECK_EQUAL_FP64(-13.0, d2); CHECK_EQUAL_FP64(-13.0, d4); CHECK_EQUAL_FP32(base::bit_cast(0x89ABCDEF), s6); } TEST(fadd) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 1.0f); __ Fmov(s19, 0.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fadd(s0, s17, s18); __ Fadd(s1, s18, s19); __ Fadd(s2, s14, s18); __ Fadd(s3, s15, s18); __ Fadd(s4, s16, s18); __ Fadd(s5, s15, s16); __ Fadd(s6, s16, s15); __ Fadd(d7, d30, d31); __ Fadd(d8, d29, d31); __ Fadd(d9, d26, d31); __ Fadd(d10, d27, d31); __ Fadd(d11, d28, d31); __ Fadd(d12, d27, d28); __ Fadd(d13, d28, d27); END(); RUN(); CHECK_EQUAL_FP32(4.25, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(1.0, s2); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s3); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s4); CHECK_EQUAL_FP32(kFP32DefaultNaN, s5); CHECK_EQUAL_FP32(kFP32DefaultNaN, s6); CHECK_EQUAL_FP64(0.25, d7); CHECK_EQUAL_FP64(2.25, d8); CHECK_EQUAL_FP64(2.25, d9); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d10); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d11); CHECK_EQUAL_FP64(kFP64DefaultNaN, d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); } TEST(fsub) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 1.0f); __ Fmov(s19, 0.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fsub(s0, s17, s18); __ Fsub(s1, s18, s19); __ Fsub(s2, s14, s18); __ Fsub(s3, s18, s15); __ Fsub(s4, s18, s16); __ Fsub(s5, s15, s15); __ Fsub(s6, s16, s16); __ Fsub(d7, d30, d31); __ Fsub(d8, d29, d31); __ Fsub(d9, d26, d31); __ Fsub(d10, d31, d27); __ Fsub(d11, d31, d28); __ Fsub(d12, d27, d27); __ Fsub(d13, d28, d28); END(); RUN(); CHECK_EQUAL_FP32(2.25, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(-1.0, s2); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s3); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s4); CHECK_EQUAL_FP32(kFP32DefaultNaN, s5); CHECK_EQUAL_FP32(kFP32DefaultNaN, s6); CHECK_EQUAL_FP64(-4.25, d7); CHECK_EQUAL_FP64(-2.25, d8); CHECK_EQUAL_FP64(-2.25, d9); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11); CHECK_EQUAL_FP64(kFP64DefaultNaN, d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); } TEST(fmul) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 2.0f); __ Fmov(s19, 0.0f); __ Fmov(s20, -2.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fmul(s0, s17, s18); __ Fmul(s1, s18, s19); __ Fmul(s2, s14, s14); __ Fmul(s3, s15, s20); __ Fmul(s4, s16, s20); __ Fmul(s5, s15, s19); __ Fmul(s6, s19, s16); __ Fmul(d7, d30, d31); __ Fmul(d8, d29, d31); __ Fmul(d9, d26, d26); __ Fmul(d10, d27, d30); __ Fmul(d11, d28, d30); __ Fmul(d12, d27, d29); __ Fmul(d13, d29, d28); END(); RUN(); CHECK_EQUAL_FP32(6.5, s0); CHECK_EQUAL_FP32(0.0, s1); CHECK_EQUAL_FP32(0.0, s2); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s3); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s4); CHECK_EQUAL_FP32(kFP32DefaultNaN, s5); CHECK_EQUAL_FP32(kFP32DefaultNaN, s6); CHECK_EQUAL_FP64(-4.5, d7); CHECK_EQUAL_FP64(0.0, d8); CHECK_EQUAL_FP64(0.0, d9); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11); CHECK_EQUAL_FP64(kFP64DefaultNaN, d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); } static void FmaddFmsubHelper(double n, double m, double a, double fmadd, double fmsub, double fnmadd, double fnmsub) { SETUP(); START(); __ Fmov(d0, n); __ Fmov(d1, m); __ Fmov(d2, a); __ Fmadd(d28, d0, d1, d2); __ Fmsub(d29, d0, d1, d2); __ Fnmadd(d30, d0, d1, d2); __ Fnmsub(d31, d0, d1, d2); END(); RUN(); CHECK_EQUAL_FP64(fmadd, d28); CHECK_EQUAL_FP64(fmsub, d29); CHECK_EQUAL_FP64(fnmadd, d30); CHECK_EQUAL_FP64(fnmsub, d31); } TEST(fmadd_fmsub_double) { INIT_V8(); // It's hard to check the result of fused operations because the only way to // calculate the result is using fma, which is what the simulator uses anyway. // TODO(jbramley): Add tests to check behaviour against a hardware trace. // Basic operation. FmaddFmsubHelper(1.0, 2.0, 3.0, 5.0, 1.0, -5.0, -1.0); FmaddFmsubHelper(-1.0, 2.0, 3.0, 1.0, 5.0, -1.0, -5.0); // Check the sign of exact zeroes. // n m a fmadd fmsub fnmadd fnmsub FmaddFmsubHelper(-0.0, +0.0, -0.0, -0.0, +0.0, +0.0, +0.0); FmaddFmsubHelper(+0.0, +0.0, -0.0, +0.0, -0.0, +0.0, +0.0); FmaddFmsubHelper(+0.0, +0.0, +0.0, +0.0, +0.0, -0.0, +0.0); FmaddFmsubHelper(-0.0, +0.0, +0.0, +0.0, +0.0, +0.0, -0.0); FmaddFmsubHelper(+0.0, -0.0, -0.0, -0.0, +0.0, +0.0, +0.0); FmaddFmsubHelper(-0.0, -0.0, -0.0, +0.0, -0.0, +0.0, +0.0); FmaddFmsubHelper(-0.0, -0.0, +0.0, +0.0, +0.0, -0.0, +0.0); FmaddFmsubHelper(+0.0, -0.0, +0.0, +0.0, +0.0, +0.0, -0.0); // Check NaN generation. FmaddFmsubHelper(kFP64PositiveInfinity, 0.0, 42.0, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(0.0, kFP64PositiveInfinity, 42.0, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64PositiveInfinity, 1.0, kFP64PositiveInfinity, kFP64PositiveInfinity, // inf + ( inf * 1) = inf kFP64DefaultNaN, // inf + (-inf * 1) = NaN kFP64NegativeInfinity, // -inf + (-inf * 1) = -inf kFP64DefaultNaN); // -inf + ( inf * 1) = NaN FmaddFmsubHelper(kFP64NegativeInfinity, 1.0, kFP64PositiveInfinity, kFP64DefaultNaN, // inf + (-inf * 1) = NaN kFP64PositiveInfinity, // inf + ( inf * 1) = inf kFP64DefaultNaN, // -inf + ( inf * 1) = NaN kFP64NegativeInfinity); // -inf + (-inf * 1) = -inf } static void FmaddFmsubHelper(float n, float m, float a, float fmadd, float fmsub, float fnmadd, float fnmsub) { SETUP(); START(); __ Fmov(s0, n); __ Fmov(s1, m); __ Fmov(s2, a); __ Fmadd(s28, s0, s1, s2); __ Fmsub(s29, s0, s1, s2); __ Fnmadd(s30, s0, s1, s2); __ Fnmsub(s31, s0, s1, s2); END(); RUN(); CHECK_EQUAL_FP32(fmadd, s28); CHECK_EQUAL_FP32(fmsub, s29); CHECK_EQUAL_FP32(fnmadd, s30); CHECK_EQUAL_FP32(fnmsub, s31); } TEST(fmadd_fmsub_float) { INIT_V8(); // It's hard to check the result of fused operations because the only way to // calculate the result is using fma, which is what the simulator uses anyway. // TODO(jbramley): Add tests to check behaviour against a hardware trace. // Basic operation. FmaddFmsubHelper(1.0f, 2.0f, 3.0f, 5.0f, 1.0f, -5.0f, -1.0f); FmaddFmsubHelper(-1.0f, 2.0f, 3.0f, 1.0f, 5.0f, -1.0f, -5.0f); // Check the sign of exact zeroes. // n m a fmadd fmsub fnmadd fnmsub FmaddFmsubHelper(-0.0f, +0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f); FmaddFmsubHelper(+0.0f, +0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f); FmaddFmsubHelper(+0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f); FmaddFmsubHelper(-0.0f, +0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f); FmaddFmsubHelper(+0.0f, -0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f); FmaddFmsubHelper(-0.0f, -0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f); FmaddFmsubHelper(-0.0f, -0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f); FmaddFmsubHelper(+0.0f, -0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f); // Check NaN generation. FmaddFmsubHelper(kFP32PositiveInfinity, 0.0f, 42.0f, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(0.0f, kFP32PositiveInfinity, 42.0f, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32PositiveInfinity, 1.0f, kFP32PositiveInfinity, kFP32PositiveInfinity, // inf + ( inf * 1) = inf kFP32DefaultNaN, // inf + (-inf * 1) = NaN kFP32NegativeInfinity, // -inf + (-inf * 1) = -inf kFP32DefaultNaN); // -inf + ( inf * 1) = NaN FmaddFmsubHelper(kFP32NegativeInfinity, 1.0f, kFP32PositiveInfinity, kFP32DefaultNaN, // inf + (-inf * 1) = NaN kFP32PositiveInfinity, // inf + ( inf * 1) = inf kFP32DefaultNaN, // -inf + ( inf * 1) = NaN kFP32NegativeInfinity); // -inf + (-inf * 1) = -inf } TEST(fmadd_fmsub_double_nans) { INIT_V8(); // Make sure that NaN propagation works correctly. double s1 = base::bit_cast(0x7FF5555511111111); double s2 = base::bit_cast(0x7FF5555522222222); double sa = base::bit_cast(0x7FF55555AAAAAAAA); double q1 = base::bit_cast(0x7FFAAAAA11111111); double q2 = base::bit_cast(0x7FFAAAAA22222222); double qa = base::bit_cast(0x7FFAAAAAAAAAAAAA); CHECK(IsSignallingNaN(s1)); CHECK(IsSignallingNaN(s2)); CHECK(IsSignallingNaN(sa)); CHECK(IsQuietNaN(q1)); CHECK(IsQuietNaN(q2)); CHECK(IsQuietNaN(qa)); // The input NaNs after passing through ProcessNaN. double s1_proc = base::bit_cast(0x7FFD555511111111); double s2_proc = base::bit_cast(0x7FFD555522222222); double sa_proc = base::bit_cast(0x7FFD5555AAAAAAAA); double q1_proc = q1; double q2_proc = q2; double qa_proc = qa; CHECK(IsQuietNaN(s1_proc)); CHECK(IsQuietNaN(s2_proc)); CHECK(IsQuietNaN(sa_proc)); CHECK(IsQuietNaN(q1_proc)); CHECK(IsQuietNaN(q2_proc)); CHECK(IsQuietNaN(qa_proc)); // Negated NaNs as it would be done on ARMv8 hardware. double s1_proc_neg = base::bit_cast(0xFFFD555511111111); double sa_proc_neg = base::bit_cast(0xFFFD5555AAAAAAAA); double q1_proc_neg = base::bit_cast(0xFFFAAAAA11111111); double qa_proc_neg = base::bit_cast(0xFFFAAAAAAAAAAAAA); CHECK(IsQuietNaN(s1_proc_neg)); CHECK(IsQuietNaN(sa_proc_neg)); CHECK(IsQuietNaN(q1_proc_neg)); CHECK(IsQuietNaN(qa_proc_neg)); // Quiet NaNs are propagated. FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc); FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); // Signalling NaNs are propagated, and made quiet. FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // Signalling NaNs take precedence over quiet NaNs. FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a. FmaddFmsubHelper(0, kFP64PositiveInfinity, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64PositiveInfinity, 0, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(0, kFP64NegativeInfinity, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64NegativeInfinity, 0, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); } TEST(fmadd_fmsub_float_nans) { INIT_V8(); // Make sure that NaN propagation works correctly. float s1 = base::bit_cast(0x7F951111); float s2 = base::bit_cast(0x7F952222); float sa = base::bit_cast(0x7F95AAAA); float q1 = base::bit_cast(0x7FEA1111); float q2 = base::bit_cast(0x7FEA2222); float qa = base::bit_cast(0x7FEAAAAA); CHECK(IsSignallingNaN(s1)); CHECK(IsSignallingNaN(s2)); CHECK(IsSignallingNaN(sa)); CHECK(IsQuietNaN(q1)); CHECK(IsQuietNaN(q2)); CHECK(IsQuietNaN(qa)); // The input NaNs after passing through ProcessNaN. float s1_proc = base::bit_cast(0x7FD51111); float s2_proc = base::bit_cast(0x7FD52222); float sa_proc = base::bit_cast(0x7FD5AAAA); float q1_proc = q1; float q2_proc = q2; float qa_proc = qa; CHECK(IsQuietNaN(s1_proc)); CHECK(IsQuietNaN(s2_proc)); CHECK(IsQuietNaN(sa_proc)); CHECK(IsQuietNaN(q1_proc)); CHECK(IsQuietNaN(q2_proc)); CHECK(IsQuietNaN(qa_proc)); // Negated NaNs as it would be done on ARMv8 hardware. float s1_proc_neg = base::bit_cast(0xFFD51111); float sa_proc_neg = base::bit_cast(0xFFD5AAAA); float q1_proc_neg = base::bit_cast(0xFFEA1111); float qa_proc_neg = base::bit_cast(0xFFEAAAAA); CHECK(IsQuietNaN(s1_proc_neg)); CHECK(IsQuietNaN(sa_proc_neg)); CHECK(IsQuietNaN(q1_proc_neg)); CHECK(IsQuietNaN(qa_proc_neg)); // Quiet NaNs are propagated. FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc); FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); // Signalling NaNs are propagated, and made quiet. FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // Signalling NaNs take precedence over quiet NaNs. FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a. FmaddFmsubHelper(0, kFP32PositiveInfinity, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32PositiveInfinity, 0, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(0, kFP32NegativeInfinity, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32NegativeInfinity, 0, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); } TEST(fdiv) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 2.0f); __ Fmov(s19, 2.0f); __ Fmov(s20, -2.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fdiv(s0, s17, s18); __ Fdiv(s1, s18, s19); __ Fdiv(s2, s14, s18); __ Fdiv(s3, s18, s15); __ Fdiv(s4, s18, s16); __ Fdiv(s5, s15, s16); __ Fdiv(s6, s14, s14); __ Fdiv(d7, d31, d30); __ Fdiv(d8, d29, d31); __ Fdiv(d9, d26, d31); __ Fdiv(d10, d31, d27); __ Fdiv(d11, d31, d28); __ Fdiv(d12, d28, d27); __ Fdiv(d13, d29, d29); END(); RUN(); CHECK_EQUAL_FP32(1.625f, s0); CHECK_EQUAL_FP32(1.0f, s1); CHECK_EQUAL_FP32(-0.0f, s2); CHECK_EQUAL_FP32(0.0f, s3); CHECK_EQUAL_FP32(-0.0f, s4); CHECK_EQUAL_FP32(kFP32DefaultNaN, s5); CHECK_EQUAL_FP32(kFP32DefaultNaN, s6); CHECK_EQUAL_FP64(-1.125, d7); CHECK_EQUAL_FP64(0.0, d8); CHECK_EQUAL_FP64(-0.0, d9); CHECK_EQUAL_FP64(0.0, d10); CHECK_EQUAL_FP64(-0.0, d11); CHECK_EQUAL_FP64(kFP64DefaultNaN, d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); } static float MinMaxHelper(float n, float m, bool min, float quiet_nan_substitute = 0.0) { uint32_t raw_n = base::bit_cast(n); uint32_t raw_m = base::bit_cast(m); if (std::isnan(n) && ((raw_n & kSQuietNanMask) == 0)) { // n is signalling NaN. return base::bit_cast(raw_n | static_cast(kSQuietNanMask)); } else if (std::isnan(m) && ((raw_m & kSQuietNanMask) == 0)) { // m is signalling NaN. return base::bit_cast(raw_m | static_cast(kSQuietNanMask)); } else if (quiet_nan_substitute == 0.0) { if (std::isnan(n)) { // n is quiet NaN. return n; } else if (std::isnan(m)) { // m is quiet NaN. return m; } } else { // Substitute n or m if one is quiet, but not both. if (std::isnan(n) && !std::isnan(m)) { // n is quiet NaN: replace with substitute. n = quiet_nan_substitute; } else if (!std::isnan(n) && std::isnan(m)) { // m is quiet NaN: replace with substitute. m = quiet_nan_substitute; } } if ((n == 0.0) && (m == 0.0) && (copysign(1.0, n) != copysign(1.0, m))) { return min ? -0.0 : 0.0; } return min ? fminf(n, m) : fmaxf(n, m); } static double MinMaxHelper(double n, double m, bool min, double quiet_nan_substitute = 0.0) { uint64_t raw_n = base::bit_cast(n); uint64_t raw_m = base::bit_cast(m); if (std::isnan(n) && ((raw_n & kDQuietNanMask) == 0)) { // n is signalling NaN. return base::bit_cast(raw_n | kDQuietNanMask); } else if (std::isnan(m) && ((raw_m & kDQuietNanMask) == 0)) { // m is signalling NaN. return base::bit_cast(raw_m | kDQuietNanMask); } else if (quiet_nan_substitute == 0.0) { if (std::isnan(n)) { // n is quiet NaN. return n; } else if (std::isnan(m)) { // m is quiet NaN. return m; } } else { // Substitute n or m if one is quiet, but not both. if (std::isnan(n) && !std::isnan(m)) { // n is quiet NaN: replace with substitute. n = quiet_nan_substitute; } else if (!std::isnan(n) && std::isnan(m)) { // m is quiet NaN: replace with substitute. m = quiet_nan_substitute; } } if ((n == 0.0) && (m == 0.0) && (copysign(1.0, n) != copysign(1.0, m))) { return min ? -0.0 : 0.0; } return min ? fmin(n, m) : fmax(n, m); } static void FminFmaxDoubleHelper(double n, double m, double min, double max, double minnm, double maxnm) { SETUP(); START(); __ Fmov(d0, n); __ Fmov(d1, m); __ Fmin(d28, d0, d1); __ Fmax(d29, d0, d1); __ Fminnm(d30, d0, d1); __ Fmaxnm(d31, d0, d1); END(); RUN(); CHECK_EQUAL_FP64(min, d28); CHECK_EQUAL_FP64(max, d29); CHECK_EQUAL_FP64(minnm, d30); CHECK_EQUAL_FP64(maxnm, d31); } TEST(fmax_fmin_d) { INIT_V8(); // Use non-standard NaNs to check that the payload bits are preserved. double snan = base::bit_cast(0x7FF5555512345678); double qnan = base::bit_cast(0x7FFAAAAA87654321); double snan_processed = base::bit_cast(0x7FFD555512345678); double qnan_processed = qnan; CHECK(IsSignallingNaN(snan)); CHECK(IsQuietNaN(qnan)); CHECK(IsQuietNaN(snan_processed)); CHECK(IsQuietNaN(qnan_processed)); // Bootstrap tests. FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0); FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1); FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64NegativeInfinity, kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64PositiveInfinity); FminFmaxDoubleHelper(snan, 0, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(0, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(qnan, 0, qnan_processed, qnan_processed, 0, 0); FminFmaxDoubleHelper(0, qnan, qnan_processed, qnan_processed, 0, 0); FminFmaxDoubleHelper(qnan, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(snan, qnan, snan_processed, snan_processed, snan_processed, snan_processed); // Iterate over all combinations of inputs. double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0, -DBL_MAX, -DBL_MIN, -1.0, -0.0, kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64QuietNaN, kFP64SignallingNaN }; const int count = sizeof(inputs) / sizeof(inputs[0]); for (int in = 0; in < count; in++) { double n = inputs[in]; for (int im = 0; im < count; im++) { double m = inputs[im]; FminFmaxDoubleHelper(n, m, MinMaxHelper(n, m, true), MinMaxHelper(n, m, false), MinMaxHelper(n, m, true, kFP64PositiveInfinity), MinMaxHelper(n, m, false, kFP64NegativeInfinity)); } } } static void FminFmaxFloatHelper(float n, float m, float min, float max, float minnm, float maxnm) { SETUP(); START(); __ Fmov(s0, n); __ Fmov(s1, m); __ Fmin(s28, s0, s1); __ Fmax(s29, s0, s1); __ Fminnm(s30, s0, s1); __ Fmaxnm(s31, s0, s1); END(); RUN(); CHECK_EQUAL_FP32(min, s28); CHECK_EQUAL_FP32(max, s29); CHECK_EQUAL_FP32(minnm, s30); CHECK_EQUAL_FP32(maxnm, s31); } TEST(fmax_fmin_s) { INIT_V8(); // Use non-standard NaNs to check that the payload bits are preserved. float snan = base::bit_cast(0x7F951234); float qnan = base::bit_cast(0x7FEA8765); float snan_processed = base::bit_cast(0x7FD51234); float qnan_processed = qnan; CHECK(IsSignallingNaN(snan)); CHECK(IsQuietNaN(qnan)); CHECK(IsQuietNaN(snan_processed)); CHECK(IsQuietNaN(qnan_processed)); // Bootstrap tests. FminFmaxFloatHelper(0, 0, 0, 0, 0, 0); FminFmaxFloatHelper(0, 1, 0, 1, 0, 1); FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32NegativeInfinity, kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32PositiveInfinity); FminFmaxFloatHelper(snan, 0, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(0, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(qnan, 0, qnan_processed, qnan_processed, 0, 0); FminFmaxFloatHelper(0, qnan, qnan_processed, qnan_processed, 0, 0); FminFmaxFloatHelper(qnan, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(snan, qnan, snan_processed, snan_processed, snan_processed, snan_processed); // Iterate over all combinations of inputs. float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0, -FLT_MAX, -FLT_MIN, -1.0, -0.0, kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32QuietNaN, kFP32SignallingNaN }; const int count = sizeof(inputs) / sizeof(inputs[0]); for (int in = 0; in < count; in++) { float n = inputs[in]; for (int im = 0; im < count; im++) { float m = inputs[im]; FminFmaxFloatHelper(n, m, MinMaxHelper(n, m, true), MinMaxHelper(n, m, false), MinMaxHelper(n, m, true, kFP32PositiveInfinity), MinMaxHelper(n, m, false, kFP32NegativeInfinity)); } } } TEST(fccmp) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 0.0); __ Fmov(s17, 0.5); __ Fmov(d18, -0.5); __ Fmov(d19, -1.0); __ Mov(x20, 0); __ Cmp(x20, 0); __ Fccmp(s16, s16, NoFlag, eq); __ Mrs(x0, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s16, VFlag, ne); __ Mrs(x1, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s17, CFlag, ge); __ Mrs(x2, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s17, CVFlag, lt); __ Mrs(x3, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d18, ZFlag, le); __ Mrs(x4, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d18, ZVFlag, gt); __ Mrs(x5, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d19, ZCVFlag, ls); __ Mrs(x6, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d19, NFlag, hi); __ Mrs(x7, NZCV); __ fccmp(s16, s16, NFlag, al); __ Mrs(x8, NZCV); __ fccmp(d18, d18, NFlag, nv); __ Mrs(x9, NZCV); END(); RUN(); CHECK_EQUAL_32(ZCFlag, w0); CHECK_EQUAL_32(VFlag, w1); CHECK_EQUAL_32(NFlag, w2); CHECK_EQUAL_32(CVFlag, w3); CHECK_EQUAL_32(ZCFlag, w4); CHECK_EQUAL_32(ZVFlag, w5); CHECK_EQUAL_32(CFlag, w6); CHECK_EQUAL_32(NFlag, w7); CHECK_EQUAL_32(ZCFlag, w8); CHECK_EQUAL_32(ZCFlag, w9); } TEST(fcmp) { INIT_V8(); SETUP(); START(); // Some of these tests require a floating-point scratch register assigned to // the macro assembler, but most do not. { // We're going to mess around with the available scratch registers in this // test. A UseScratchRegisterScope will make sure that they are restored to // the default values once we're finished. UseScratchRegisterScope temps(&masm); masm.FPTmpList()->set_bits(0); __ Fmov(s8, 0.0); __ Fmov(s9, 0.5); __ Mov(w19, 0x7F800001); // Single precision NaN. __ Fmov(s18, w19); __ Fcmp(s8, s8); __ Mrs(x0, NZCV); __ Fcmp(s8, s9); __ Mrs(x1, NZCV); __ Fcmp(s9, s8); __ Mrs(x2, NZCV); __ Fcmp(s8, s18); __ Mrs(x3, NZCV); __ Fcmp(s18, s18); __ Mrs(x4, NZCV); __ Fcmp(s8, 0.0); __ Mrs(x5, NZCV); masm.FPTmpList()->set_bits(DoubleRegList{d0}.bits()); __ Fcmp(s8, 255.0); masm.FPTmpList()->set_bits(0); __ Mrs(x6, NZCV); __ Fmov(d19, 0.0); __ Fmov(d20, 0.5); __ Mov(x21, 0x7FF0000000000001UL); // Double precision NaN. __ Fmov(d21, x21); __ Fcmp(d19, d19); __ Mrs(x10, NZCV); __ Fcmp(d19, d20); __ Mrs(x11, NZCV); __ Fcmp(d20, d19); __ Mrs(x12, NZCV); __ Fcmp(d19, d21); __ Mrs(x13, NZCV); __ Fcmp(d21, d21); __ Mrs(x14, NZCV); __ Fcmp(d19, 0.0); __ Mrs(x15, NZCV); masm.FPTmpList()->set_bits(DoubleRegList{d0}.bits()); __ Fcmp(d19, 12.3456); masm.FPTmpList()->set_bits(0); __ Mrs(x16, NZCV); } END(); RUN(); CHECK_EQUAL_32(ZCFlag, w0); CHECK_EQUAL_32(NFlag, w1); CHECK_EQUAL_32(CFlag, w2); CHECK_EQUAL_32(CVFlag, w3); CHECK_EQUAL_32(CVFlag, w4); CHECK_EQUAL_32(ZCFlag, w5); CHECK_EQUAL_32(NFlag, w6); CHECK_EQUAL_32(ZCFlag, w10); CHECK_EQUAL_32(NFlag, w11); CHECK_EQUAL_32(CFlag, w12); CHECK_EQUAL_32(CVFlag, w13); CHECK_EQUAL_32(CVFlag, w14); CHECK_EQUAL_32(ZCFlag, w15); CHECK_EQUAL_32(NFlag, w16); } TEST(fcsel) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Fmov(s16, 1.0); __ Fmov(s17, 2.0); __ Fmov(d18, 3.0); __ Fmov(d19, 4.0); __ Cmp(x16, 0); __ Fcsel(s0, s16, s17, eq); __ Fcsel(s1, s16, s17, ne); __ Fcsel(d2, d18, d19, eq); __ Fcsel(d3, d18, d19, ne); __ fcsel(s4, s16, s17, al); __ fcsel(d5, d18, d19, nv); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(2.0, s1); CHECK_EQUAL_FP64(3.0, d2); CHECK_EQUAL_FP64(4.0, d3); CHECK_EQUAL_FP32(1.0, s4); CHECK_EQUAL_FP64(3.0, d5); } TEST(fneg) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 0.0); __ Fmov(s18, kFP32PositiveInfinity); __ Fmov(d19, 1.0); __ Fmov(d20, 0.0); __ Fmov(d21, kFP64PositiveInfinity); __ Fneg(s0, s16); __ Fneg(s1, s0); __ Fneg(s2, s17); __ Fneg(s3, s2); __ Fneg(s4, s18); __ Fneg(s5, s4); __ Fneg(d6, d19); __ Fneg(d7, d6); __ Fneg(d8, d20); __ Fneg(d9, d8); __ Fneg(d10, d21); __ Fneg(d11, d10); END(); RUN(); CHECK_EQUAL_FP32(-1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(-0.0, s2); CHECK_EQUAL_FP32(0.0, s3); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s4); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5); CHECK_EQUAL_FP64(-1.0, d6); CHECK_EQUAL_FP64(1.0, d7); CHECK_EQUAL_FP64(-0.0, d8); CHECK_EQUAL_FP64(0.0, d9); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11); } TEST(fabs) { INIT_V8(); SETUP(); START(); __ Fmov(s16, -1.0); __ Fmov(s17, -0.0); __ Fmov(s18, kFP32NegativeInfinity); __ Fmov(d19, -1.0); __ Fmov(d20, -0.0); __ Fmov(d21, kFP64NegativeInfinity); __ Fabs(s0, s16); __ Fabs(s1, s0); __ Fabs(s2, s17); __ Fabs(s3, s18); __ Fabs(d4, d19); __ Fabs(d5, d4); __ Fabs(d6, d20); __ Fabs(d7, d21); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(0.0, s2); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s3); CHECK_EQUAL_FP64(1.0, d4); CHECK_EQUAL_FP64(1.0, d5); CHECK_EQUAL_FP64(0.0, d6); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d7); } TEST(fsqrt) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 0.0); __ Fmov(s17, 1.0); __ Fmov(s18, 0.25); __ Fmov(s19, 65536.0); __ Fmov(s20, -0.0); __ Fmov(s21, kFP32PositiveInfinity); __ Fmov(s22, -1.0); __ Fmov(d23, 0.0); __ Fmov(d24, 1.0); __ Fmov(d25, 0.25); __ Fmov(d26, 4294967296.0); __ Fmov(d27, -0.0); __ Fmov(d28, kFP64PositiveInfinity); __ Fmov(d29, -1.0); __ Fsqrt(s0, s16); __ Fsqrt(s1, s17); __ Fsqrt(s2, s18); __ Fsqrt(s3, s19); __ Fsqrt(s4, s20); __ Fsqrt(s5, s21); __ Fsqrt(s6, s22); __ Fsqrt(d7, d23); __ Fsqrt(d8, d24); __ Fsqrt(d9, d25); __ Fsqrt(d10, d26); __ Fsqrt(d11, d27); __ Fsqrt(d12, d28); __ Fsqrt(d13, d29); END(); RUN(); CHECK_EQUAL_FP32(0.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(0.5, s2); CHECK_EQUAL_FP32(256.0, s3); CHECK_EQUAL_FP32(-0.0, s4); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5); CHECK_EQUAL_FP32(kFP32DefaultNaN, s6); CHECK_EQUAL_FP64(0.0, d7); CHECK_EQUAL_FP64(1.0, d8); CHECK_EQUAL_FP64(0.5, d9); CHECK_EQUAL_FP64(65536.0, d10); CHECK_EQUAL_FP64(-0.0, d11); CHECK_EQUAL_FP64(kFP32PositiveInfinity, d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); } TEST(frinta) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, -0.2); __ Frinta(s0, s16); __ Frinta(s1, s17); __ Frinta(s2, s18); __ Frinta(s3, s19); __ Frinta(s4, s20); __ Frinta(s5, s21); __ Frinta(s6, s22); __ Frinta(s7, s23); __ Frinta(s8, s24); __ Frinta(s9, s25); __ Frinta(s10, s26); __ Frinta(s11, s27); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Fmov(d27, -0.2); __ Frinta(d12, d16); __ Frinta(d13, d17); __ Frinta(d14, d18); __ Frinta(d15, d19); __ Frinta(d16, d20); __ Frinta(d17, d21); __ Frinta(d18, d22); __ Frinta(d19, d23); __ Frinta(d20, d24); __ Frinta(d21, d25); __ Frinta(d22, d26); __ Frinta(d23, d27); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(2.0, s2); CHECK_EQUAL_FP32(2.0, s3); CHECK_EQUAL_FP32(3.0, s4); CHECK_EQUAL_FP32(-2.0, s5); CHECK_EQUAL_FP32(-3.0, s6); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8); CHECK_EQUAL_FP32(0.0, s9); CHECK_EQUAL_FP32(-0.0, s10); CHECK_EQUAL_FP32(-0.0, s11); CHECK_EQUAL_FP64(1.0, d12); CHECK_EQUAL_FP64(1.0, d13); CHECK_EQUAL_FP64(2.0, d14); CHECK_EQUAL_FP64(2.0, d15); CHECK_EQUAL_FP64(3.0, d16); CHECK_EQUAL_FP64(-2.0, d17); CHECK_EQUAL_FP64(-3.0, d18); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20); CHECK_EQUAL_FP64(0.0, d21); CHECK_EQUAL_FP64(-0.0, d22); CHECK_EQUAL_FP64(-0.0, d23); } TEST(frintm) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, -0.2); __ Frintm(s0, s16); __ Frintm(s1, s17); __ Frintm(s2, s18); __ Frintm(s3, s19); __ Frintm(s4, s20); __ Frintm(s5, s21); __ Frintm(s6, s22); __ Frintm(s7, s23); __ Frintm(s8, s24); __ Frintm(s9, s25); __ Frintm(s10, s26); __ Frintm(s11, s27); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Fmov(d27, -0.2); __ Frintm(d12, d16); __ Frintm(d13, d17); __ Frintm(d14, d18); __ Frintm(d15, d19); __ Frintm(d16, d20); __ Frintm(d17, d21); __ Frintm(d18, d22); __ Frintm(d19, d23); __ Frintm(d20, d24); __ Frintm(d21, d25); __ Frintm(d22, d26); __ Frintm(d23, d27); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(1.0, s2); CHECK_EQUAL_FP32(1.0, s3); CHECK_EQUAL_FP32(2.0, s4); CHECK_EQUAL_FP32(-2.0, s5); CHECK_EQUAL_FP32(-3.0, s6); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8); CHECK_EQUAL_FP32(0.0, s9); CHECK_EQUAL_FP32(-0.0, s10); CHECK_EQUAL_FP32(-1.0, s11); CHECK_EQUAL_FP64(1.0, d12); CHECK_EQUAL_FP64(1.0, d13); CHECK_EQUAL_FP64(1.0, d14); CHECK_EQUAL_FP64(1.0, d15); CHECK_EQUAL_FP64(2.0, d16); CHECK_EQUAL_FP64(-2.0, d17); CHECK_EQUAL_FP64(-3.0, d18); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20); CHECK_EQUAL_FP64(0.0, d21); CHECK_EQUAL_FP64(-0.0, d22); CHECK_EQUAL_FP64(-1.0, d23); } TEST(frintn) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, -0.2); __ Frintn(s0, s16); __ Frintn(s1, s17); __ Frintn(s2, s18); __ Frintn(s3, s19); __ Frintn(s4, s20); __ Frintn(s5, s21); __ Frintn(s6, s22); __ Frintn(s7, s23); __ Frintn(s8, s24); __ Frintn(s9, s25); __ Frintn(s10, s26); __ Frintn(s11, s27); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Fmov(d27, -0.2); __ Frintn(d12, d16); __ Frintn(d13, d17); __ Frintn(d14, d18); __ Frintn(d15, d19); __ Frintn(d16, d20); __ Frintn(d17, d21); __ Frintn(d18, d22); __ Frintn(d19, d23); __ Frintn(d20, d24); __ Frintn(d21, d25); __ Frintn(d22, d26); __ Frintn(d23, d27); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(2.0, s2); CHECK_EQUAL_FP32(2.0, s3); CHECK_EQUAL_FP32(2.0, s4); CHECK_EQUAL_FP32(-2.0, s5); CHECK_EQUAL_FP32(-2.0, s6); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8); CHECK_EQUAL_FP32(0.0, s9); CHECK_EQUAL_FP32(-0.0, s10); CHECK_EQUAL_FP32(-0.0, s11); CHECK_EQUAL_FP64(1.0, d12); CHECK_EQUAL_FP64(1.0, d13); CHECK_EQUAL_FP64(2.0, d14); CHECK_EQUAL_FP64(2.0, d15); CHECK_EQUAL_FP64(2.0, d16); CHECK_EQUAL_FP64(-2.0, d17); CHECK_EQUAL_FP64(-2.0, d18); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20); CHECK_EQUAL_FP64(0.0, d21); CHECK_EQUAL_FP64(-0.0, d22); CHECK_EQUAL_FP64(-0.0, d23); } TEST(frintp) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, -0.2); __ Frintp(s0, s16); __ Frintp(s1, s17); __ Frintp(s2, s18); __ Frintp(s3, s19); __ Frintp(s4, s20); __ Frintp(s5, s21); __ Frintp(s6, s22); __ Frintp(s7, s23); __ Frintp(s8, s24); __ Frintp(s9, s25); __ Frintp(s10, s26); __ Frintp(s11, s27); __ Fmov(d16, -0.5); __ Fmov(d17, -0.8); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Fmov(d27, -0.2); __ Frintp(d12, d16); __ Frintp(d13, d17); __ Frintp(d14, d18); __ Frintp(d15, d19); __ Frintp(d16, d20); __ Frintp(d17, d21); __ Frintp(d18, d22); __ Frintp(d19, d23); __ Frintp(d20, d24); __ Frintp(d21, d25); __ Frintp(d22, d26); __ Frintp(d23, d27); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(2.0, s1); CHECK_EQUAL_FP32(2.0, s2); CHECK_EQUAL_FP32(2.0, s3); CHECK_EQUAL_FP32(3.0, s4); CHECK_EQUAL_FP32(-1.0, s5); CHECK_EQUAL_FP32(-2.0, s6); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8); CHECK_EQUAL_FP32(0.0, s9); CHECK_EQUAL_FP32(-0.0, s10); CHECK_EQUAL_FP32(-0.0, s11); CHECK_EQUAL_FP64(-0.0, d12); CHECK_EQUAL_FP64(-0.0, d13); CHECK_EQUAL_FP64(2.0, d14); CHECK_EQUAL_FP64(2.0, d15); CHECK_EQUAL_FP64(3.0, d16); CHECK_EQUAL_FP64(-1.0, d17); CHECK_EQUAL_FP64(-2.0, d18); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20); CHECK_EQUAL_FP64(0.0, d21); CHECK_EQUAL_FP64(-0.0, d22); CHECK_EQUAL_FP64(-0.0, d23); } TEST(frintz) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Frintz(s0, s16); __ Frintz(s1, s17); __ Frintz(s2, s18); __ Frintz(s3, s19); __ Frintz(s4, s20); __ Frintz(s5, s21); __ Frintz(s6, s22); __ Frintz(s7, s23); __ Frintz(s8, s24); __ Frintz(s9, s25); __ Frintz(s10, s26); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Frintz(d11, d16); __ Frintz(d12, d17); __ Frintz(d13, d18); __ Frintz(d14, d19); __ Frintz(d15, d20); __ Frintz(d16, d21); __ Frintz(d17, d22); __ Frintz(d18, d23); __ Frintz(d19, d24); __ Frintz(d20, d25); __ Frintz(d21, d26); END(); RUN(); CHECK_EQUAL_FP32(1.0, s0); CHECK_EQUAL_FP32(1.0, s1); CHECK_EQUAL_FP32(1.0, s2); CHECK_EQUAL_FP32(1.0, s3); CHECK_EQUAL_FP32(2.0, s4); CHECK_EQUAL_FP32(-1.0, s5); CHECK_EQUAL_FP32(-2.0, s6); CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7); CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8); CHECK_EQUAL_FP32(0.0, s9); CHECK_EQUAL_FP32(-0.0, s10); CHECK_EQUAL_FP64(1.0, d11); CHECK_EQUAL_FP64(1.0, d12); CHECK_EQUAL_FP64(1.0, d13); CHECK_EQUAL_FP64(1.0, d14); CHECK_EQUAL_FP64(2.0, d15); CHECK_EQUAL_FP64(-1.0, d16); CHECK_EQUAL_FP64(-2.0, d17); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d18); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d19); CHECK_EQUAL_FP64(0.0, d20); CHECK_EQUAL_FP64(-0.0, d21); } TEST(fcvt_ds) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, FLT_MAX); __ Fmov(s28, FLT_MIN); __ Fmov(s29, base::bit_cast(0x7FC12345)); // Quiet NaN. __ Fmov(s30, base::bit_cast(0x7F812345)); // Signalling NaN. __ Fcvt(d0, s16); __ Fcvt(d1, s17); __ Fcvt(d2, s18); __ Fcvt(d3, s19); __ Fcvt(d4, s20); __ Fcvt(d5, s21); __ Fcvt(d6, s22); __ Fcvt(d7, s23); __ Fcvt(d8, s24); __ Fcvt(d9, s25); __ Fcvt(d10, s26); __ Fcvt(d11, s27); __ Fcvt(d12, s28); __ Fcvt(d13, s29); __ Fcvt(d14, s30); END(); RUN(); CHECK_EQUAL_FP64(1.0f, d0); CHECK_EQUAL_FP64(1.1f, d1); CHECK_EQUAL_FP64(1.5f, d2); CHECK_EQUAL_FP64(1.9f, d3); CHECK_EQUAL_FP64(2.5f, d4); CHECK_EQUAL_FP64(-1.5f, d5); CHECK_EQUAL_FP64(-2.5f, d6); CHECK_EQUAL_FP64(kFP64PositiveInfinity, d7); CHECK_EQUAL_FP64(kFP64NegativeInfinity, d8); CHECK_EQUAL_FP64(0.0f, d9); CHECK_EQUAL_FP64(-0.0f, d10); CHECK_EQUAL_FP64(FLT_MAX, d11); CHECK_EQUAL_FP64(FLT_MIN, d12); // Check that the NaN payload is preserved according to ARM64 conversion // rules: // - The sign bit is preserved. // - The top bit of the mantissa is forced to 1 (making it a quiet NaN). // - The remaining mantissa bits are copied until they run out. // - The low-order bits that haven't already been assigned are set to 0. CHECK_EQUAL_FP64(base::bit_cast(0x7FF82468A0000000), d13); CHECK_EQUAL_FP64(base::bit_cast(0x7FF82468A0000000), d14); } TEST(fcvt_sd) { INIT_V8(); // There are a huge number of corner-cases to check, so this test iterates // through a list. The list is then negated and checked again (since the sign // is irrelevant in ties-to-even rounding), so the list shouldn't include any // negative values. // // Note that this test only checks ties-to-even rounding, because that is all // that the simulator supports. struct { double in; float expected; } test[] = { // Check some simple conversions. {0.0, 0.0f}, {1.0, 1.0f}, {1.5, 1.5f}, {2.0, 2.0f}, {FLT_MAX, FLT_MAX}, // - The smallest normalized float. {pow(2.0, -126), powf(2, -126)}, // - Normal floats that need (ties-to-even) rounding. // For normalized numbers: // bit 29 (0x0000000020000000) is the lowest-order bit which will // fit in the float's mantissa. {base::bit_cast(0x3FF0000000000000), base::bit_cast(0x3F800000)}, {base::bit_cast(0x3FF0000000000001), base::bit_cast(0x3F800000)}, {base::bit_cast(0x3FF0000010000000), base::bit_cast(0x3F800000)}, {base::bit_cast(0x3FF0000010000001), base::bit_cast(0x3F800001)}, {base::bit_cast(0x3FF0000020000000), base::bit_cast(0x3F800001)}, {base::bit_cast(0x3FF0000020000001), base::bit_cast(0x3F800001)}, {base::bit_cast(0x3FF0000030000000), base::bit_cast(0x3F800002)}, {base::bit_cast(0x3FF0000030000001), base::bit_cast(0x3F800002)}, {base::bit_cast(0x3FF0000040000000), base::bit_cast(0x3F800002)}, {base::bit_cast(0x3FF0000040000001), base::bit_cast(0x3F800002)}, {base::bit_cast(0x3FF0000050000000), base::bit_cast(0x3F800002)}, {base::bit_cast(0x3FF0000050000001), base::bit_cast(0x3F800003)}, {base::bit_cast(0x3FF0000060000000), base::bit_cast(0x3F800003)}, // - A mantissa that overflows into the exponent during rounding. {base::bit_cast(0x3FEFFFFFF0000000), base::bit_cast(0x3F800000)}, // - The largest double that rounds to a normal float. {base::bit_cast(0x47EFFFFFEFFFFFFF), base::bit_cast(0x7F7FFFFF)}, // Doubles that are too big for a float. {kFP64PositiveInfinity, kFP32PositiveInfinity}, {DBL_MAX, kFP32PositiveInfinity}, // - The smallest exponent that's too big for a float. {pow(2.0, 128), kFP32PositiveInfinity}, // - This exponent is in range, but the value rounds to infinity. {base::bit_cast(0x47EFFFFFF0000000), kFP32PositiveInfinity}, // Doubles that are too small for a float. // - The smallest (subnormal) double. {DBL_MIN, 0.0}, // - The largest double which is too small for a subnormal float. {base::bit_cast(0x3690000000000000), base::bit_cast(0x00000000)}, // Normal doubles that become subnormal floats. // - The largest subnormal float. {base::bit_cast(0x380FFFFFC0000000), base::bit_cast(0x007FFFFF)}, // - The smallest subnormal float. {base::bit_cast(0x36A0000000000000), base::bit_cast(0x00000001)}, // - Subnormal floats that need (ties-to-even) rounding. // For these subnormals: // bit 34 (0x0000000400000000) is the lowest-order bit which will // fit in the float's mantissa. {base::bit_cast(0x37C159E000000000), base::bit_cast(0x00045678)}, {base::bit_cast(0x37C159E000000001), base::bit_cast(0x00045678)}, {base::bit_cast(0x37C159E200000000), base::bit_cast(0x00045678)}, {base::bit_cast(0x37C159E200000001), base::bit_cast(0x00045679)}, {base::bit_cast(0x37C159E400000000), base::bit_cast(0x00045679)}, {base::bit_cast(0x37C159E400000001), base::bit_cast(0x00045679)}, {base::bit_cast(0x37C159E600000000), base::bit_cast(0x0004567A)}, {base::bit_cast(0x37C159E600000001), base::bit_cast(0x0004567A)}, {base::bit_cast(0x37C159E800000000), base::bit_cast(0x0004567A)}, {base::bit_cast(0x37C159E800000001), base::bit_cast(0x0004567A)}, {base::bit_cast(0x37C159EA00000000), base::bit_cast(0x0004567A)}, {base::bit_cast(0x37C159EA00000001), base::bit_cast(0x0004567B)}, {base::bit_cast(0x37C159EC00000000), base::bit_cast(0x0004567B)}, // - The smallest double which rounds up to become a subnormal float. {base::bit_cast(0x3690000000000001), base::bit_cast(0x00000001)}, // Check NaN payload preservation. {base::bit_cast(0x7FF82468A0000000), base::bit_cast(0x7FC12345)}, {base::bit_cast(0x7FF82468BFFFFFFF), base::bit_cast(0x7FC12345)}, // - Signalling NaNs become quiet NaNs. {base::bit_cast(0x7FF02468A0000000), base::bit_cast(0x7FC12345)}, {base::bit_cast(0x7FF02468BFFFFFFF), base::bit_cast(0x7FC12345)}, {base::bit_cast(0x7FF000001FFFFFFF), base::bit_cast(0x7FC00000)}, }; int count = sizeof(test) / sizeof(test[0]); for (int i = 0; i < count; i++) { double in = test[i].in; float expected = test[i].expected; // We only expect positive input. CHECK_EQ(std::signbit(in), 0); CHECK_EQ(std::signbit(expected), 0); SETUP(); START(); __ Fmov(d10, in); __ Fcvt(s20, d10); __ Fmov(d11, -in); __ Fcvt(s21, d11); END(); RUN(); CHECK_EQUAL_FP32(expected, s20); CHECK_EQUAL_FP32(-expected, s21); } } TEST(fcvtas) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 2.5); __ Fmov(s3, -2.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 2.5); __ Fmov(d11, -2.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 2.5); __ Fmov(s17, 1.1); __ Fmov(s19, -2.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 2.5); __ Fmov(d26, -2.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtas(w0, s0); __ Fcvtas(w1, s1); __ Fcvtas(w2, s2); __ Fcvtas(w3, s3); __ Fcvtas(w4, s4); __ Fcvtas(w5, s5); __ Fcvtas(w6, s6); __ Fcvtas(w7, s7); __ Fcvtas(w8, d8); __ Fcvtas(w9, d9); __ Fcvtas(w10, d10); __ Fcvtas(w11, d11); __ Fcvtas(w12, d12); __ Fcvtas(w13, d13); __ Fcvtas(w14, d14); __ Fcvtas(w15, d15); __ Fcvtas(x17, s17); __ Fcvtas(x19, s19); __ Fcvtas(x20, s20); __ Fcvtas(x21, s21); __ Fcvtas(x22, s22); __ Fcvtas(x23, s23); __ Fcvtas(x24, d24); __ Fcvtas(x25, d25); __ Fcvtas(x26, d26); __ Fcvtas(x27, d27); __ Fcvtas(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtas(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtas(x29, d29); __ Fcvtas(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(3, x2); CHECK_EQUAL_64(0xFFFFFFFD, x3); CHECK_EQUAL_64(0x7FFFFFFF, x4); CHECK_EQUAL_64(0x80000000, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0x80000080, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(3, x10); CHECK_EQUAL_64(0xFFFFFFFD, x11); CHECK_EQUAL_64(0x7FFFFFFF, x12); CHECK_EQUAL_64(0x80000000, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x80000001, x15); CHECK_EQUAL_64(3, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFDUL, x19); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x8000000000000000UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x8000008000000000UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(3, x25); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFDUL, x26); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0x8000000000000000UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x8000000000000400UL, x30); } TEST(fcvtau) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 2.5); __ Fmov(s3, -2.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0xFFFFFF00); // Largest float < UINT32_MAX. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 2.5); __ Fmov(d11, -2.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, 0xFFFFFFFE); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 2.5); __ Fmov(s19, -2.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0xFFFFFF0000000000UL); // Largest float < UINT64_MAX. __ Fmov(d24, 1.1); __ Fmov(d25, 2.5); __ Fmov(d26, -2.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0xFFFFFFFFFFFFF800UL); // Largest double < UINT64_MAX. __ Fmov(s30, 0x100000000UL); __ Fcvtau(w0, s0); __ Fcvtau(w1, s1); __ Fcvtau(w2, s2); __ Fcvtau(w3, s3); __ Fcvtau(w4, s4); __ Fcvtau(w5, s5); __ Fcvtau(w6, s6); __ Fcvtau(w8, d8); __ Fcvtau(w9, d9); __ Fcvtau(w10, d10); __ Fcvtau(w11, d11); __ Fcvtau(w12, d12); __ Fcvtau(w13, d13); __ Fcvtau(w14, d14); __ Fcvtau(w15, d15); __ Fcvtau(x16, s16); __ Fcvtau(x17, s17); __ Fcvtau(x7, s18); __ Fcvtau(x19, s19); __ Fcvtau(x20, s20); __ Fcvtau(x21, s21); __ Fcvtau(x22, s22); __ Fcvtau(x24, d24); __ Fcvtau(x25, d25); __ Fcvtau(x26, d26); __ Fcvtau(x27, d27); __ Fcvtau(x28, d28); __ Fcvtau(x29, d29); __ Fcvtau(w30, s30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(3, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(0xFFFFFFFF, x4); CHECK_EQUAL_64(0, x5); CHECK_EQUAL_64(0xFFFFFF00, x6); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(3, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0xFFFFFFFF, x12); CHECK_EQUAL_64(0, x13); CHECK_EQUAL_64(0xFFFFFFFE, x14); CHECK_EQUAL_64(1, x16); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(3, x7); CHECK_EQUAL_64(0, x19); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0, x21); CHECK_EQUAL_64(0xFFFFFF0000000000UL, x22); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(3, x25); CHECK_EQUAL_64(0, x26); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0, x28); CHECK_EQUAL_64(0xFFFFFFFFFFFFF800UL, x29); CHECK_EQUAL_64(0xFFFFFFFF, x30); } TEST(fcvtms) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 1.5); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtms(w0, s0); __ Fcvtms(w1, s1); __ Fcvtms(w2, s2); __ Fcvtms(w3, s3); __ Fcvtms(w4, s4); __ Fcvtms(w5, s5); __ Fcvtms(w6, s6); __ Fcvtms(w7, s7); __ Fcvtms(w8, d8); __ Fcvtms(w9, d9); __ Fcvtms(w10, d10); __ Fcvtms(w11, d11); __ Fcvtms(w12, d12); __ Fcvtms(w13, d13); __ Fcvtms(w14, d14); __ Fcvtms(w15, d15); __ Fcvtms(x17, s17); __ Fcvtms(x19, s19); __ Fcvtms(x20, s20); __ Fcvtms(x21, s21); __ Fcvtms(x22, s22); __ Fcvtms(x23, s23); __ Fcvtms(x24, d24); __ Fcvtms(x25, d25); __ Fcvtms(x26, d26); __ Fcvtms(x27, d27); __ Fcvtms(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtms(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtms(x29, d29); __ Fcvtms(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0xFFFFFFFE, x3); CHECK_EQUAL_64(0x7FFFFFFF, x4); CHECK_EQUAL_64(0x80000000, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0x80000080, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(1, x10); CHECK_EQUAL_64(0xFFFFFFFE, x11); CHECK_EQUAL_64(0x7FFFFFFF, x12); CHECK_EQUAL_64(0x80000000, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x80000001, x15); CHECK_EQUAL_64(1, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x19); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x8000000000000000UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x8000008000000000UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(1, x25); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x26); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0x8000000000000000UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x8000000000000400UL, x30); } TEST(fcvtmu) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 1.5); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtmu(w0, s0); __ Fcvtmu(w1, s1); __ Fcvtmu(w2, s2); __ Fcvtmu(w3, s3); __ Fcvtmu(w4, s4); __ Fcvtmu(w5, s5); __ Fcvtmu(w6, s6); __ Fcvtmu(w7, s7); __ Fcvtmu(w8, d8); __ Fcvtmu(w9, d9); __ Fcvtmu(w10, d10); __ Fcvtmu(w11, d11); __ Fcvtmu(w12, d12); __ Fcvtmu(w13, d13); __ Fcvtmu(w14, d14); __ Fcvtmu(w15, d15); __ Fcvtmu(x17, s17); __ Fcvtmu(x19, s19); __ Fcvtmu(x20, s20); __ Fcvtmu(x21, s21); __ Fcvtmu(x22, s22); __ Fcvtmu(x23, s23); __ Fcvtmu(x24, d24); __ Fcvtmu(x25, d25); __ Fcvtmu(x26, d26); __ Fcvtmu(x27, d27); __ Fcvtmu(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtmu(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtmu(x29, d29); __ Fcvtmu(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(0xFFFFFFFF, x4); CHECK_EQUAL_64(0, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(1, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0xFFFFFFFF, x12); CHECK_EQUAL_64(0, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x0, x15); CHECK_EQUAL_64(1, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0x0UL, x19); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x0UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x0UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(1, x25); CHECK_EQUAL_64(0x0UL, x26); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0x0UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x0UL, x30); } TEST(fcvtn) { INIT_V8(); SETUP(); START(); double src[2] = {1.0f, 1.0f}; uintptr_t src_base = reinterpret_cast(src); __ Mov(x0, src_base); __ Ldr(q0, MemOperand(x0, 0)); __ Fcvtn(q0.V2S(), q0.V2D()); END(); RUN(); // Ensure top half is cleared. CHECK_EQUAL_128(0, 0x3f800000'3f800000, q0); } TEST(fcvtns) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 1.5); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtns(w0, s0); __ Fcvtns(w1, s1); __ Fcvtns(w2, s2); __ Fcvtns(w3, s3); __ Fcvtns(w4, s4); __ Fcvtns(w5, s5); __ Fcvtns(w6, s6); __ Fcvtns(w7, s7); __ Fcvtns(w8, d8); __ Fcvtns(w9, d9); __ Fcvtns(w10, d10); __ Fcvtns(w11, d11); __ Fcvtns(w12, d12); __ Fcvtns(w13, d13); __ Fcvtns(w14, d14); __ Fcvtns(w15, d15); __ Fcvtns(x17, s17); __ Fcvtns(x19, s19); __ Fcvtns(x20, s20); __ Fcvtns(x21, s21); __ Fcvtns(x22, s22); __ Fcvtns(x23, s23); __ Fcvtns(x24, d24); __ Fcvtns(x25, d25); __ Fcvtns(x26, d26); __ Fcvtns(x27, d27); // __ Fcvtns(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtns(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtns(x29, d29); __ Fcvtns(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(2, x2); CHECK_EQUAL_64(0xFFFFFFFE, x3); CHECK_EQUAL_64(0x7FFFFFFF, x4); CHECK_EQUAL_64(0x80000000, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0x80000080, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(2, x10); CHECK_EQUAL_64(0xFFFFFFFE, x11); CHECK_EQUAL_64(0x7FFFFFFF, x12); CHECK_EQUAL_64(0x80000000, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x80000001, x15); CHECK_EQUAL_64(2, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x19); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x8000000000000000UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x8000008000000000UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(2, x25); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x26); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27); // CHECK_EQUAL_64(0x8000000000000000UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x8000000000000400UL, x30); } TEST(fcvtnu) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0xFFFFFF00); // Largest float < UINT32_MAX. __ Fmov(s7, 1.5); __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, 0xFFFFFFFE); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0xFFFFFF0000000000UL); // Largest float < UINT64_MAX. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0xFFFFFFFFFFFFF800UL); // Largest double < UINT64_MAX. __ Fmov(s30, 0x100000000UL); __ Fcvtnu(w0, s0); __ Fcvtnu(w1, s1); __ Fcvtnu(w2, s2); __ Fcvtnu(w3, s3); __ Fcvtnu(w4, s4); __ Fcvtnu(w5, s5); __ Fcvtnu(w6, s6); __ Fcvtnu(x7, s7); __ Fcvtnu(w8, d8); __ Fcvtnu(w9, d9); __ Fcvtnu(w10, d10); __ Fcvtnu(w11, d11); __ Fcvtnu(w12, d12); __ Fcvtnu(w13, d13); __ Fcvtnu(w14, d14); __ Fcvtnu(w15, d15); __ Fcvtnu(x16, s16); __ Fcvtnu(x17, s17); __ Fcvtnu(x19, s19); __ Fcvtnu(x20, s20); __ Fcvtnu(x21, s21); __ Fcvtnu(x22, s22); __ Fcvtnu(x24, d24); __ Fcvtnu(x25, d25); __ Fcvtnu(x26, d26); __ Fcvtnu(x27, d27); // __ Fcvtnu(x28, d28); __ Fcvtnu(x29, d29); __ Fcvtnu(w30, s30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(2, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(0xFFFFFFFF, x4); CHECK_EQUAL_64(0, x5); CHECK_EQUAL_64(0xFFFFFF00, x6); CHECK_EQUAL_64(2, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(2, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0xFFFFFFFF, x12); CHECK_EQUAL_64(0, x13); CHECK_EQUAL_64(0xFFFFFFFE, x14); CHECK_EQUAL_64(1, x16); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0, x19); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0, x21); CHECK_EQUAL_64(0xFFFFFF0000000000UL, x22); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(2, x25); CHECK_EQUAL_64(0, x26); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27); // CHECK_EQUAL_64(0, x28); CHECK_EQUAL_64(0xFFFFFFFFFFFFF800UL, x29); CHECK_EQUAL_64(0xFFFFFFFF, x30); } TEST(fcvtzs) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 1.5); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtzs(w0, s0); __ Fcvtzs(w1, s1); __ Fcvtzs(w2, s2); __ Fcvtzs(w3, s3); __ Fcvtzs(w4, s4); __ Fcvtzs(w5, s5); __ Fcvtzs(w6, s6); __ Fcvtzs(w7, s7); __ Fcvtzs(w8, d8); __ Fcvtzs(w9, d9); __ Fcvtzs(w10, d10); __ Fcvtzs(w11, d11); __ Fcvtzs(w12, d12); __ Fcvtzs(w13, d13); __ Fcvtzs(w14, d14); __ Fcvtzs(w15, d15); __ Fcvtzs(x17, s17); __ Fcvtzs(x19, s19); __ Fcvtzs(x20, s20); __ Fcvtzs(x21, s21); __ Fcvtzs(x22, s22); __ Fcvtzs(x23, s23); __ Fcvtzs(x24, d24); __ Fcvtzs(x25, d25); __ Fcvtzs(x26, d26); __ Fcvtzs(x27, d27); __ Fcvtzs(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtmu(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtzs(x29, d29); __ Fcvtzs(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0xFFFFFFFF, x3); CHECK_EQUAL_64(0x7FFFFFFF, x4); CHECK_EQUAL_64(0x80000000, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0x80000080, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(1, x10); CHECK_EQUAL_64(0xFFFFFFFF, x11); CHECK_EQUAL_64(0x7FFFFFFF, x12); CHECK_EQUAL_64(0x80000000, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x80000001, x15); CHECK_EQUAL_64(1, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x19); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x8000000000000000UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x8000008000000000UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(1, x25); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x26); CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0x8000000000000000UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x8000000000000400UL, x30); } static void FjcvtzsHelper(uint64_t value, uint64_t expected, uint32_t expected_z) { SETUP(); START(); __ Fmov(d0, base::bit_cast(value)); __ Fjcvtzs(w0, d0); __ Mrs(x1, NZCV); END(); if (CpuFeatures::IsSupported(JSCVT)) { RUN(); CHECK_EQUAL_64(expected, x0); CHECK_EQUAL_32(expected_z, w1); } } TEST(fjcvtzs) { // Simple values. FjcvtzsHelper(0x0000000000000000, 0, ZFlag); // 0.0 FjcvtzsHelper(0x0010000000000000, 0, NoFlag); // The smallest normal value. FjcvtzsHelper(0x3fdfffffffffffff, 0, NoFlag); // The value just below 0.5. FjcvtzsHelper(0x3fe0000000000000, 0, NoFlag); // 0.5 FjcvtzsHelper(0x3fe0000000000001, 0, NoFlag); // The value just above 0.5. FjcvtzsHelper(0x3fefffffffffffff, 0, NoFlag); // The value just below 1.0. FjcvtzsHelper(0x3ff0000000000000, 1, ZFlag); // 1.0 FjcvtzsHelper(0x3ff0000000000001, 1, NoFlag); // The value just above 1.0. FjcvtzsHelper(0x3ff8000000000000, 1, NoFlag); // 1.5 FjcvtzsHelper(0x4024000000000000, 10, ZFlag); // 10 FjcvtzsHelper(0x7fefffffffffffff, 0, NoFlag); // The largest finite value. // Infinity. FjcvtzsHelper(0x7ff0000000000000, 0, NoFlag); // NaNs. // - Quiet NaNs FjcvtzsHelper(0x7ff923456789abcd, 0, NoFlag); FjcvtzsHelper(0x7ff8000000000000, 0, NoFlag); // - Signalling NaNs FjcvtzsHelper(0x7ff123456789abcd, 0, NoFlag); FjcvtzsHelper(0x7ff0000000000001, 0, NoFlag); // Subnormals. // - A recognisable bit pattern. FjcvtzsHelper(0x000123456789abcd, 0, NoFlag); // - The largest subnormal value. FjcvtzsHelper(0x000fffffffffffff, 0, NoFlag); // - The smallest subnormal value. FjcvtzsHelper(0x0000000000000001, 0, NoFlag); // The same values again, but negated. FjcvtzsHelper(0x8000000000000000, 0, NoFlag); FjcvtzsHelper(0x8010000000000000, 0, NoFlag); FjcvtzsHelper(0xbfdfffffffffffff, 0, NoFlag); FjcvtzsHelper(0xbfe0000000000000, 0, NoFlag); FjcvtzsHelper(0xbfe0000000000001, 0, NoFlag); FjcvtzsHelper(0xbfefffffffffffff, 0, NoFlag); FjcvtzsHelper(0xbff0000000000000, 0xffffffff, ZFlag); FjcvtzsHelper(0xbff0000000000001, 0xffffffff, NoFlag); FjcvtzsHelper(0xbff8000000000000, 0xffffffff, NoFlag); FjcvtzsHelper(0xc024000000000000, 0xfffffff6, ZFlag); FjcvtzsHelper(0xffefffffffffffff, 0, NoFlag); FjcvtzsHelper(0xfff0000000000000, 0, NoFlag); FjcvtzsHelper(0xfff923456789abcd, 0, NoFlag); FjcvtzsHelper(0xfff8000000000000, 0, NoFlag); FjcvtzsHelper(0xfff123456789abcd, 0, NoFlag); FjcvtzsHelper(0xfff0000000000001, 0, NoFlag); FjcvtzsHelper(0x800123456789abcd, 0, NoFlag); FjcvtzsHelper(0x800fffffffffffff, 0, NoFlag); FjcvtzsHelper(0x8000000000000001, 0, NoFlag); // Test floating-point numbers of every possible exponent, most of the // expected values are zero but there is a range of exponents where the // results are shifted parts of this mantissa. uint64_t mantissa = 0x0001234567890abc; // Between an exponent of 0 and 52, only some of the top bits of the // mantissa are above the decimal position of doubles so the mantissa is // shifted to the right down to just those top bits. Above 52, all bits // of the mantissa are shifted left above the decimal position until it // reaches 52 + 64 where all the bits are shifted out of the range of 64-bit // integers. int first_exp_boundary = 52; int second_exp_boundary = first_exp_boundary + 64; for (int exponent = 0; exponent < 2048; exponent++) { int e = exponent - 1023; uint64_t expected = 0; if (e < 0) { expected = 0; } else if (e <= first_exp_boundary) { expected = (UINT64_C(1) << e) | (mantissa >> (52 - e)); expected &= 0xffffffff; } else if (e < second_exp_boundary) { expected = (mantissa << (e - 52)) & 0xffffffff; } else { expected = 0; } uint64_t value = (static_cast(exponent) << 52) | mantissa; FjcvtzsHelper(value, expected, NoFlag); FjcvtzsHelper(value | kDSignMask, (-expected) & 0xffffffff, NoFlag); } } TEST(fcvtzu) { INIT_V8(); SETUP(); int64_t scratch = 0; uintptr_t scratch_base = reinterpret_cast(&scratch); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s16, 1.5); __ Fmov(s17, 1.1); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtzu(w0, s0); __ Fcvtzu(w1, s1); __ Fcvtzu(w2, s2); __ Fcvtzu(w3, s3); __ Fcvtzu(w4, s4); __ Fcvtzu(w5, s5); __ Fcvtzu(w6, s6); __ Fcvtzu(w7, s7); __ Fcvtzu(w8, d8); __ Fcvtzu(w9, d9); __ Fcvtzu(w10, d10); __ Fcvtzu(w11, d11); __ Fcvtzu(w12, d12); __ Fcvtzu(w13, d13); __ Fcvtzu(w14, d14); __ Fcvtzu(w15, d15); __ Fcvtzu(x17, s17); __ Fcvtzu(x19, s19); __ Fcvtzu(x20, s20); __ Fcvtzu(x21, s21); __ Fcvtzu(x22, s22); __ Fcvtzu(x23, s23); __ Fcvtzu(x24, d24); __ Fcvtzu(x25, d25); __ Fcvtzu(x26, d26); __ Fcvtzu(x27, d27); __ Fcvtzu(x28, d28); // Save results to the scratch memory, for those that don't fit in registers. __ Mov(x30, scratch_base); __ Fcvtzu(x29, s16); __ Str(x29, MemOperand(x30)); __ Fcvtzu(x29, d29); __ Fcvtzu(x30, d30); END(); RUN(); CHECK_EQUAL_64(1, x0); CHECK_EQUAL_64(1, x1); CHECK_EQUAL_64(1, x2); CHECK_EQUAL_64(0, x3); CHECK_EQUAL_64(0xFFFFFFFF, x4); CHECK_EQUAL_64(0, x5); CHECK_EQUAL_64(0x7FFFFF80, x6); CHECK_EQUAL_64(0, x7); CHECK_EQUAL_64(1, x8); CHECK_EQUAL_64(1, x9); CHECK_EQUAL_64(1, x10); CHECK_EQUAL_64(0, x11); CHECK_EQUAL_64(0xFFFFFFFF, x12); CHECK_EQUAL_64(0, x13); CHECK_EQUAL_64(0x7FFFFFFE, x14); CHECK_EQUAL_64(0x0, x15); CHECK_EQUAL_64(1, scratch); CHECK_EQUAL_64(1, x17); CHECK_EQUAL_64(0x0UL, x19); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20); CHECK_EQUAL_64(0x0UL, x21); CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22); CHECK_EQUAL_64(0x0UL, x23); CHECK_EQUAL_64(1, x24); CHECK_EQUAL_64(1, x25); CHECK_EQUAL_64(0x0UL, x26); CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27); CHECK_EQUAL_64(0x0UL, x28); CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29); CHECK_EQUAL_64(0x0UL, x30); } // Test that scvtf and ucvtf can convert the 64-bit input into the expected // value. All possible values of 'fbits' are tested. The expected value is // modified accordingly in each case. // // The expected value is specified as the bit encoding of the expected double // produced by scvtf (expected_scvtf_bits) as well as ucvtf // (expected_ucvtf_bits). // // Where the input value is representable by int32_t or uint32_t, conversions // from W registers will also be tested. static void TestUScvtfHelper(uint64_t in, uint64_t expected_scvtf_bits, uint64_t expected_ucvtf_bits) { uint64_t u64 = in; uint32_t u32 = u64 & 0xFFFFFFFF; int64_t s64 = static_cast(in); int32_t s32 = s64 & 0x7FFFFFFF; bool cvtf_s32 = (s64 == s32); bool cvtf_u32 = (u64 == u32); double results_scvtf_x[65]; double results_ucvtf_x[65]; double results_scvtf_w[33]; double results_ucvtf_w[33]; SETUP(); START(); __ Mov(x0, reinterpret_cast(results_scvtf_x)); __ Mov(x1, reinterpret_cast(results_ucvtf_x)); __ Mov(x2, reinterpret_cast(results_scvtf_w)); __ Mov(x3, reinterpret_cast(results_ucvtf_w)); __ Mov(x10, s64); // Corrupt the top word, in case it is accidentally used during W-register // conversions. __ Mov(x11, 0x5555555555555555); __ Bfi(x11, x10, 0, kWRegSizeInBits); // Test integer conversions. __ Scvtf(d0, x10); __ Ucvtf(d1, x10); __ Scvtf(d2, w11); __ Ucvtf(d3, w11); __ Str(d0, MemOperand(x0)); __ Str(d1, MemOperand(x1)); __ Str(d2, MemOperand(x2)); __ Str(d3, MemOperand(x3)); // Test all possible values of fbits. for (int fbits = 1; fbits <= 32; fbits++) { __ Scvtf(d0, x10, fbits); __ Ucvtf(d1, x10, fbits); __ Scvtf(d2, w11, fbits); __ Ucvtf(d3, w11, fbits); __ Str(d0, MemOperand(x0, fbits * kDRegSize)); __ Str(d1, MemOperand(x1, fbits * kDRegSize)); __ Str(d2, MemOperand(x2, fbits * kDRegSize)); __ Str(d3, MemOperand(x3, fbits * kDRegSize)); } // Conversions from W registers can only handle fbits values <= 32, so just // test conversions from X registers for 32 < fbits <= 64. for (int fbits = 33; fbits <= 64; fbits++) { __ Scvtf(d0, x10, fbits); __ Ucvtf(d1, x10, fbits); __ Str(d0, MemOperand(x0, fbits * kDRegSize)); __ Str(d1, MemOperand(x1, fbits * kDRegSize)); } END(); RUN(); // Check the results. double expected_scvtf_base = base::bit_cast(expected_scvtf_bits); double expected_ucvtf_base = base::bit_cast(expected_ucvtf_bits); for (int fbits = 0; fbits <= 32; fbits++) { double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); if (cvtf_s32) CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]); if (cvtf_u32) CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]); } for (int fbits = 33; fbits <= 64; fbits++) { double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); } } TEST(scvtf_ucvtf_double) { INIT_V8(); // Simple conversions of positive numbers which require no rounding; the // results should not depened on the rounding mode, and ucvtf and scvtf should // produce the same result. TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000); TestUScvtfHelper(0x0000000000000001, 0x3FF0000000000000, 0x3FF0000000000000); TestUScvtfHelper(0x0000000040000000, 0x41D0000000000000, 0x41D0000000000000); TestUScvtfHelper(0x0000000100000000, 0x41F0000000000000, 0x41F0000000000000); TestUScvtfHelper(0x4000000000000000, 0x43D0000000000000, 0x43D0000000000000); // Test mantissa extremities. TestUScvtfHelper(0x4000000000000400, 0x43D0000000000001, 0x43D0000000000001); // The largest int32_t that fits in a double. TestUScvtfHelper(0x000000007FFFFFFF, 0x41DFFFFFFFC00000, 0x41DFFFFFFFC00000); // Values that would be negative if treated as an int32_t. TestUScvtfHelper(0x00000000FFFFFFFF, 0x41EFFFFFFFE00000, 0x41EFFFFFFFE00000); TestUScvtfHelper(0x0000000080000000, 0x41E0000000000000, 0x41E0000000000000); TestUScvtfHelper(0x0000000080000001, 0x41E0000000200000, 0x41E0000000200000); // The largest int64_t that fits in a double. TestUScvtfHelper(0x7FFFFFFFFFFFFC00, 0x43DFFFFFFFFFFFFF, 0x43DFFFFFFFFFFFFF); // Check for bit pattern reproduction. TestUScvtfHelper(0x0123456789ABCDE0, 0x43723456789ABCDE, 0x43723456789ABCDE); TestUScvtfHelper(0x0000000012345678, 0x41B2345678000000, 0x41B2345678000000); // Simple conversions of negative int64_t values. These require no rounding, // and the results should not depend on the rounding mode. TestUScvtfHelper(0xFFFFFFFFC0000000, 0xC1D0000000000000, 0x43EFFFFFFFF80000); TestUScvtfHelper(0xFFFFFFFF00000000, 0xC1F0000000000000, 0x43EFFFFFFFE00000); TestUScvtfHelper(0xC000000000000000, 0xC3D0000000000000, 0x43E8000000000000); // Conversions which require rounding. TestUScvtfHelper(0x1000000000000000, 0x43B0000000000000, 0x43B0000000000000); TestUScvtfHelper(0x1000000000000001, 0x43B0000000000000, 0x43B0000000000000); TestUScvtfHelper(0x1000000000000080, 0x43B0000000000000, 0x43B0000000000000); TestUScvtfHelper(0x1000000000000081, 0x43B0000000000001, 0x43B0000000000001); TestUScvtfHelper(0x1000000000000100, 0x43B0000000000001, 0x43B0000000000001); TestUScvtfHelper(0x1000000000000101, 0x43B0000000000001, 0x43B0000000000001); TestUScvtfHelper(0x1000000000000180, 0x43B0000000000002, 0x43B0000000000002); TestUScvtfHelper(0x1000000000000181, 0x43B0000000000002, 0x43B0000000000002); TestUScvtfHelper(0x1000000000000200, 0x43B0000000000002, 0x43B0000000000002); TestUScvtfHelper(0x1000000000000201, 0x43B0000000000002, 0x43B0000000000002); TestUScvtfHelper(0x1000000000000280, 0x43B0000000000002, 0x43B0000000000002); TestUScvtfHelper(0x1000000000000281, 0x43B0000000000003, 0x43B0000000000003); TestUScvtfHelper(0x1000000000000300, 0x43B0000000000003, 0x43B0000000000003); // Check rounding of negative int64_t values (and large uint64_t values). TestUScvtfHelper(0x8000000000000000, 0xC3E0000000000000, 0x43E0000000000000); TestUScvtfHelper(0x8000000000000001, 0xC3E0000000000000, 0x43E0000000000000); TestUScvtfHelper(0x8000000000000200, 0xC3E0000000000000, 0x43E0000000000000); TestUScvtfHelper(0x8000000000000201, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000000); TestUScvtfHelper(0x8000000000000400, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000000); TestUScvtfHelper(0x8000000000000401, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000600, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000601, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000800, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000801, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000A00, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000A01, 0xC3DFFFFFFFFFFFFD, 0x43E0000000000001); TestUScvtfHelper(0x8000000000000C00, 0xC3DFFFFFFFFFFFFD, 0x43E0000000000002); // Round up to produce a result that's too big for the input to represent. TestUScvtfHelper(0x7FFFFFFFFFFFFE00, 0x43E0000000000000, 0x43E0000000000000); TestUScvtfHelper(0x7FFFFFFFFFFFFFFF, 0x43E0000000000000, 0x43E0000000000000); TestUScvtfHelper(0xFFFFFFFFFFFFFC00, 0xC090000000000000, 0x43F0000000000000); TestUScvtfHelper(0xFFFFFFFFFFFFFFFF, 0xBFF0000000000000, 0x43F0000000000000); } // The same as TestUScvtfHelper, but convert to floats. static void TestUScvtf32Helper(uint64_t in, uint32_t expected_scvtf_bits, uint32_t expected_ucvtf_bits) { uint64_t u64 = in; uint32_t u32 = u64 & 0xFFFFFFFF; int64_t s64 = static_cast(in); int32_t s32 = s64 & 0x7FFFFFFF; bool cvtf_s32 = (s64 == s32); bool cvtf_u32 = (u64 == u32); float results_scvtf_x[65]; float results_ucvtf_x[65]; float results_scvtf_w[33]; float results_ucvtf_w[33]; SETUP(); START(); __ Mov(x0, reinterpret_cast(results_scvtf_x)); __ Mov(x1, reinterpret_cast(results_ucvtf_x)); __ Mov(x2, reinterpret_cast(results_scvtf_w)); __ Mov(x3, reinterpret_cast(results_ucvtf_w)); __ Mov(x10, s64); // Corrupt the top word, in case it is accidentally used during W-register // conversions. __ Mov(x11, 0x5555555555555555); __ Bfi(x11, x10, 0, kWRegSizeInBits); // Test integer conversions. __ Scvtf(s0, x10); __ Ucvtf(s1, x10); __ Scvtf(s2, w11); __ Ucvtf(s3, w11); __ Str(s0, MemOperand(x0)); __ Str(s1, MemOperand(x1)); __ Str(s2, MemOperand(x2)); __ Str(s3, MemOperand(x3)); // Test all possible values of fbits. for (int fbits = 1; fbits <= 32; fbits++) { __ Scvtf(s0, x10, fbits); __ Ucvtf(s1, x10, fbits); __ Scvtf(s2, w11, fbits); __ Ucvtf(s3, w11, fbits); __ Str(s0, MemOperand(x0, fbits * kSRegSize)); __ Str(s1, MemOperand(x1, fbits * kSRegSize)); __ Str(s2, MemOperand(x2, fbits * kSRegSize)); __ Str(s3, MemOperand(x3, fbits * kSRegSize)); } // Conversions from W registers can only handle fbits values <= 32, so just // test conversions from X registers for 32 < fbits <= 64. for (int fbits = 33; fbits <= 64; fbits++) { __ Scvtf(s0, x10, fbits); __ Ucvtf(s1, x10, fbits); __ Str(s0, MemOperand(x0, fbits * kSRegSize)); __ Str(s1, MemOperand(x1, fbits * kSRegSize)); } END(); RUN(); // Check the results. float expected_scvtf_base = base::bit_cast(expected_scvtf_bits); float expected_ucvtf_base = base::bit_cast(expected_ucvtf_bits); for (int fbits = 0; fbits <= 32; fbits++) { float expected_scvtf = expected_scvtf_base / powf(2, fbits); float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); if (cvtf_s32) CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]); if (cvtf_u32) CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]); } for (int fbits = 33; fbits <= 64; fbits++) { float expected_scvtf = expected_scvtf_base / powf(2, fbits); float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); } } TEST(scvtf_ucvtf_float) { INIT_V8(); // Simple conversions of positive numbers which require no rounding; the // results should not depened on the rounding mode, and ucvtf and scvtf should // produce the same result. TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000); TestUScvtf32Helper(0x0000000000000001, 0x3F800000, 0x3F800000); TestUScvtf32Helper(0x0000000040000000, 0x4E800000, 0x4E800000); TestUScvtf32Helper(0x0000000100000000, 0x4F800000, 0x4F800000); TestUScvtf32Helper(0x4000000000000000, 0x5E800000, 0x5E800000); // Test mantissa extremities. TestUScvtf32Helper(0x0000000000800001, 0x4B000001, 0x4B000001); TestUScvtf32Helper(0x4000008000000000, 0x5E800001, 0x5E800001); // The largest int32_t that fits in a float. TestUScvtf32Helper(0x000000007FFFFF80, 0x4EFFFFFF, 0x4EFFFFFF); // Values that would be negative if treated as an int32_t. TestUScvtf32Helper(0x00000000FFFFFF00, 0x4F7FFFFF, 0x4F7FFFFF); TestUScvtf32Helper(0x0000000080000000, 0x4F000000, 0x4F000000); TestUScvtf32Helper(0x0000000080000100, 0x4F000001, 0x4F000001); // The largest int64_t that fits in a float. TestUScvtf32Helper(0x7FFFFF8000000000, 0x5EFFFFFF, 0x5EFFFFFF); // Check for bit pattern reproduction. TestUScvtf32Helper(0x0000000000876543, 0x4B076543, 0x4B076543); // Simple conversions of negative int64_t values. These require no rounding, // and the results should not depend on the rounding mode. TestUScvtf32Helper(0xFFFFFC0000000000, 0xD4800000, 0x5F7FFFFC); TestUScvtf32Helper(0xC000000000000000, 0xDE800000, 0x5F400000); // Conversions which require rounding. TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003); TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003); // Check rounding of negative int64_t values (and large uint64_t values). TestUScvtf32Helper(0x8000000000000000, 0xDF000000, 0x5F000000); TestUScvtf32Helper(0x8000000000000001, 0xDF000000, 0x5F000000); TestUScvtf32Helper(0x8000004000000000, 0xDF000000, 0x5F000000); TestUScvtf32Helper(0x8000004000000001, 0xDEFFFFFF, 0x5F000000); TestUScvtf32Helper(0x8000008000000000, 0xDEFFFFFF, 0x5F000000); TestUScvtf32Helper(0x8000008000000001, 0xDEFFFFFF, 0x5F000001); TestUScvtf32Helper(0x800000C000000000, 0xDEFFFFFE, 0x5F000001); TestUScvtf32Helper(0x800000C000000001, 0xDEFFFFFE, 0x5F000001); TestUScvtf32Helper(0x8000010000000000, 0xDEFFFFFE, 0x5F000001); TestUScvtf32Helper(0x8000010000000001, 0xDEFFFFFE, 0x5F000001); TestUScvtf32Helper(0x8000014000000000, 0xDEFFFFFE, 0x5F000001); TestUScvtf32Helper(0x8000014000000001, 0xDEFFFFFD, 0x5F000001); TestUScvtf32Helper(0x8000018000000000, 0xDEFFFFFD, 0x5F000002); // Round up to produce a result that's too big for the input to represent. TestUScvtf32Helper(0x000000007FFFFFC0, 0x4F000000, 0x4F000000); TestUScvtf32Helper(0x000000007FFFFFFF, 0x4F000000, 0x4F000000); TestUScvtf32Helper(0x00000000FFFFFF80, 0x4F800000, 0x4F800000); TestUScvtf32Helper(0x00000000FFFFFFFF, 0x4F800000, 0x4F800000); TestUScvtf32Helper(0x7FFFFFC000000000, 0x5F000000, 0x5F000000); TestUScvtf32Helper(0x7FFFFFFFFFFFFFFF, 0x5F000000, 0x5F000000); TestUScvtf32Helper(0xFFFFFF8000000000, 0xD3000000, 0x5F800000); TestUScvtf32Helper(0xFFFFFFFFFFFFFFFF, 0xBF800000, 0x5F800000); } TEST(system_mrs) { INIT_V8(); SETUP(); START(); __ Mov(w0, 0); __ Mov(w1, 1); __ Mov(w2, 0x80000000); // Set the Z and C flags. __ Cmp(w0, w0); __ Mrs(x3, NZCV); // Set the N flag. __ Cmp(w0, w1); __ Mrs(x4, NZCV); // Set the Z, C and V flags. __ Adds(w0, w2, w2); __ Mrs(x5, NZCV); // Read the default FPCR. __ Mrs(x6, FPCR); END(); RUN(); // NZCV CHECK_EQUAL_32(ZCFlag, w3); CHECK_EQUAL_32(NFlag, w4); CHECK_EQUAL_32(ZCVFlag, w5); // FPCR // The default FPCR on Linux-based platforms is 0. CHECK_EQUAL_32(0, w6); } TEST(system_msr) { INIT_V8(); // All FPCR fields that must be implemented: AHP, DN, FZ, RMode const uint64_t fpcr_core = 0x07C00000; // All FPCR fields (including fields which may be read-as-zero): // Stride, FZ16, Len // IDE, IXE, UFE, OFE, DZE, IOE const uint64_t fpcr_all = fpcr_core | 0x003F9F00; SETUP(); START(); __ Mov(w0, 0); __ Mov(w1, 0x7FFFFFFF); __ Mov(x7, 0); __ Mov(x10, NVFlag); __ Cmp(w0, w0); // Set Z and C. __ Msr(NZCV, x10); // Set N and V. // The Msr should have overwritten every flag set by the Cmp. __ Cinc(x7, x7, mi); // N __ Cinc(x7, x7, ne); // !Z __ Cinc(x7, x7, lo); // !C __ Cinc(x7, x7, vs); // V __ Mov(x10, ZCFlag); __ Cmn(w1, w1); // Set N and V. __ Msr(NZCV, x10); // Set Z and C. // The Msr should have overwritten every flag set by the Cmn. __ Cinc(x7, x7, pl); // !N __ Cinc(x7, x7, eq); // Z __ Cinc(x7, x7, hs); // C __ Cinc(x7, x7, vc); // !V // All core FPCR fields must be writable. __ Mov(x8, fpcr_core); __ Msr(FPCR, x8); __ Mrs(x8, FPCR); // All FPCR fields, including optional ones. This part of the test doesn't // achieve much other than ensuring that supported fields can be cleared by // the next test. __ Mov(x9, fpcr_all); __ Msr(FPCR, x9); __ Mrs(x9, FPCR); __ And(x9, x9, fpcr_core); // The undefined bits must ignore writes. // It's conceivable that a future version of the architecture could use these // fields (making this test fail), but in the meantime this is a useful test // for the simulator. __ Mov(x10, ~fpcr_all); __ Msr(FPCR, x10); __ Mrs(x10, FPCR); END(); RUN(); // We should have incremented x7 (from 0) exactly 8 times. CHECK_EQUAL_64(8, x7); CHECK_EQUAL_64(fpcr_core, x8); CHECK_EQUAL_64(fpcr_core, x9); CHECK_EQUAL_64(0, x10); } TEST(system_pauth_b) { i::v8_flags.sim_abort_on_bad_auth = false; SETUP(); START(); // Exclude x16 and x17 from the scratch register list so we can use // Pac/Autib1716 safely. UseScratchRegisterScope temps(&masm); temps.Exclude(x16, x17); temps.Include(x10, x11); // Backup stack pointer. __ Mov(x20, sp); // Modifiers __ Mov(x16, 0x477d469dec0b8768); __ Mov(sp, 0x477d469dec0b8760); // Generate PACs using the 3 system instructions. __ Mov(x17, 0x0000000012345678); __ Pacib1716(); __ Mov(x0, x17); __ Mov(lr, 0x0000000012345678); __ Pacibsp(); __ Mov(x2, lr); // Authenticate the pointers above. __ Mov(x17, x0); __ Autib1716(); __ Mov(x3, x17); __ Mov(lr, x2); __ Autibsp(); __ Mov(x5, lr); // Attempt to authenticate incorrect pointers. __ Mov(x17, x2); __ Autib1716(); __ Mov(x6, x17); __ Mov(lr, x0); __ Autibsp(); __ Mov(x8, lr); // Restore stack pointer. __ Mov(sp, x20); // Mask out just the PAC code bits. __ And(x0, x0, 0x007f000000000000); __ And(x2, x2, 0x007f000000000000); END(); // TODO(all): test on real hardware when available #ifdef USE_SIMULATOR RUN(); // Check PAC codes have been generated and aren't equal. // NOTE: with a different ComputePAC implementation, there may be a collision. CHECK_NE(0, core.xreg(2)); CHECK_NOT_ZERO_AND_NOT_EQUAL_64(x0, x2); // Pointers correctly authenticated. CHECK_EQUAL_64(0x0000000012345678, x3); CHECK_EQUAL_64(0x0000000012345678, x5); // Pointers corrupted after failing to authenticate. CHECK_EQUAL_64(0x0040000012345678, x6); CHECK_EQUAL_64(0x0040000012345678, x8); #endif // USE_SIMULATOR } TEST(system) { INIT_V8(); SETUP(); RegisterDump before; START(); before.Dump(&masm); __ Nop(); __ Csdb(); END(); RUN(); CHECK_EQUAL_REGISTERS(before); CHECK_EQUAL_NZCV(before.flags_nzcv()); } TEST(zero_dest) { INIT_V8(); SETUP(); RegisterDump before; START(); // Preserve the system stack pointer, in case we clobber it. __ Mov(x30, sp); // Initialize the other registers used in this test. uint64_t literal_base = 0x0100001000100101UL; __ Mov(x0, 0); __ Mov(x1, literal_base); for (int i = 2; i < x30.code(); i++) { // Skip x18, the platform register. if (i == 18) continue; __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); } before.Dump(&masm); // All of these instructions should be NOPs in these forms, but have // alternate forms which can write into the stack pointer. __ add(xzr, x0, x1); __ add(xzr, x1, xzr); __ add(xzr, xzr, x1); __ and_(xzr, x0, x2); __ and_(xzr, x2, xzr); __ and_(xzr, xzr, x2); __ bic(xzr, x0, x3); __ bic(xzr, x3, xzr); __ bic(xzr, xzr, x3); __ eon(xzr, x0, x4); __ eon(xzr, x4, xzr); __ eon(xzr, xzr, x4); __ eor(xzr, x0, x5); __ eor(xzr, x5, xzr); __ eor(xzr, xzr, x5); __ orr(xzr, x0, x6); __ orr(xzr, x6, xzr); __ orr(xzr, xzr, x6); __ sub(xzr, x0, x7); __ sub(xzr, x7, xzr); __ sub(xzr, xzr, x7); // Swap the saved system stack pointer with the real one. If sp was written // during the test, it will show up in x30. This is done because the test // framework assumes that sp will be valid at the end of the test. __ Mov(x29, x30); __ Mov(x30, sp); __ Mov(sp, x29); // We used x29 as a scratch register, so reset it to make sure it doesn't // trigger a test failure. __ Add(x29, x28, x1); END(); RUN(); CHECK_EQUAL_REGISTERS(before); CHECK_EQUAL_NZCV(before.flags_nzcv()); } TEST(zero_dest_setflags) { INIT_V8(); SETUP(); RegisterDump before; START(); // Preserve the system stack pointer, in case we clobber it. __ Mov(x30, sp); // Initialize the other registers used in this test. uint64_t literal_base = 0x0100001000100101UL; __ Mov(x0, 0); __ Mov(x1, literal_base); for (int i = 2; i < 30; i++) { // Skip x18, the platform register. if (i == 18) continue; __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); } before.Dump(&masm); // All of these instructions should only write to the flags in these forms, // but have alternate forms which can write into the stack pointer. __ adds(xzr, x0, Operand(x1, UXTX)); __ adds(xzr, x1, Operand(xzr, UXTX)); __ adds(xzr, x1, 1234); __ adds(xzr, x0, x1); __ adds(xzr, x1, xzr); __ adds(xzr, xzr, x1); __ ands(xzr, x2, ~0xF); __ ands(xzr, xzr, ~0xF); __ ands(xzr, x0, x2); __ ands(xzr, x2, xzr); __ ands(xzr, xzr, x2); __ bics(xzr, x3, ~0xF); __ bics(xzr, xzr, ~0xF); __ bics(xzr, x0, x3); __ bics(xzr, x3, xzr); __ bics(xzr, xzr, x3); __ subs(xzr, x0, Operand(x3, UXTX)); __ subs(xzr, x3, Operand(xzr, UXTX)); __ subs(xzr, x3, 1234); __ subs(xzr, x0, x3); __ subs(xzr, x3, xzr); __ subs(xzr, xzr, x3); // Swap the saved system stack pointer with the real one. If sp was written // during the test, it will show up in x30. This is done because the test // framework assumes that sp will be valid at the end of the test. __ Mov(x29, x30); __ Mov(x30, sp); __ Mov(sp, x29); // We used x29 as a scratch register, so reset it to make sure it doesn't // trigger a test failure. __ Add(x29, x28, x1); END(); RUN(); CHECK_EQUAL_REGISTERS(before); } TEST(register_bit) { // No code generation takes place in this test, so no need to setup and // teardown. // Simple tests. CHECK_EQ(RegList{x0}.bits(), 1ULL << 0); CHECK_EQ(RegList{x1}.bits(), 1ULL << 1); CHECK_EQ(RegList{x10}.bits(), 1ULL << 10); // AAPCS64 definitions. CHECK_EQ(RegList{fp}.bits(), 1ULL << kFramePointerRegCode); CHECK_EQ(RegList{lr}.bits(), 1ULL << kLinkRegCode); // Fixed (hardware) definitions. CHECK_EQ(RegList{xzr}.bits(), 1ULL << kZeroRegCode); // Internal ABI definitions. CHECK_EQ(RegList{sp}.bits(), 1ULL << kSPRegInternalCode); CHECK_NE(RegList{sp}.bits(), RegList{xzr}.bits()); // RegList{xn}.bits() == RegList{wn}.bits() at all times, for the same n. CHECK_EQ(RegList{x0}.bits(), RegList{w0}.bits()); CHECK_EQ(RegList{x1}.bits(), RegList{w1}.bits()); CHECK_EQ(RegList{x10}.bits(), RegList{w10}.bits()); CHECK_EQ(RegList{xzr}.bits(), RegList{wzr}.bits()); CHECK_EQ(RegList{sp}.bits(), RegList{wsp}.bits()); } TEST(peek_poke_simple) { INIT_V8(); SETUP(); START(); static const RegList x0_to_x3 = {x0, x1, x2, x3}; static const RegList x10_to_x13 = {x10, x11, x12, x13}; // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Claim(4); // Simple exchange. // After this test: // x0-x3 should be unchanged. // w10-w13 should contain the lower words of x0-x3. __ Poke(x0, 0); __ Poke(x1, 8); __ Poke(x2, 16); __ Poke(x3, 24); Clobber(&masm, x0_to_x3); __ Peek(x0, 0); __ Peek(x1, 8); __ Peek(x2, 16); __ Peek(x3, 24); __ Poke(w0, 0); __ Poke(w1, 4); __ Poke(w2, 8); __ Poke(w3, 12); Clobber(&masm, x10_to_x13); __ Peek(w10, 0); __ Peek(w11, 4); __ Peek(w12, 8); __ Peek(w13, 12); __ Drop(4); END(); RUN(); CHECK_EQUAL_64(literal_base * 1, x0); CHECK_EQUAL_64(literal_base * 2, x1); CHECK_EQUAL_64(literal_base * 3, x2); CHECK_EQUAL_64(literal_base * 4, x3); CHECK_EQUAL_64((literal_base * 1) & 0xFFFFFFFF, x10); CHECK_EQUAL_64((literal_base * 2) & 0xFFFFFFFF, x11); CHECK_EQUAL_64((literal_base * 3) & 0xFFFFFFFF, x12); CHECK_EQUAL_64((literal_base * 4) & 0xFFFFFFFF, x13); } TEST(peek_poke_unaligned) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Add(x4, x3, x0); __ Add(x5, x4, x0); __ Add(x6, x5, x0); __ Claim(4); // Unaligned exchanges. // After this test: // x0-x6 should be unchanged. // w10-w12 should contain the lower words of x0-x2. __ Poke(x0, 1); Clobber(&masm, {x0}); __ Peek(x0, 1); __ Poke(x1, 2); Clobber(&masm, {x1}); __ Peek(x1, 2); __ Poke(x2, 3); Clobber(&masm, {x2}); __ Peek(x2, 3); __ Poke(x3, 4); Clobber(&masm, {x3}); __ Peek(x3, 4); __ Poke(x4, 5); Clobber(&masm, {x4}); __ Peek(x4, 5); __ Poke(x5, 6); Clobber(&masm, {x5}); __ Peek(x5, 6); __ Poke(x6, 7); Clobber(&masm, {x6}); __ Peek(x6, 7); __ Poke(w0, 1); Clobber(&masm, {w10}); __ Peek(w10, 1); __ Poke(w1, 2); Clobber(&masm, {w11}); __ Peek(w11, 2); __ Poke(w2, 3); Clobber(&masm, {w12}); __ Peek(w12, 3); __ Drop(4); END(); RUN(); CHECK_EQUAL_64(literal_base * 1, x0); CHECK_EQUAL_64(literal_base * 2, x1); CHECK_EQUAL_64(literal_base * 3, x2); CHECK_EQUAL_64(literal_base * 4, x3); CHECK_EQUAL_64(literal_base * 5, x4); CHECK_EQUAL_64(literal_base * 6, x5); CHECK_EQUAL_64(literal_base * 7, x6); CHECK_EQUAL_64((literal_base * 1) & 0xFFFFFFFF, x10); CHECK_EQUAL_64((literal_base * 2) & 0xFFFFFFFF, x11); CHECK_EQUAL_64((literal_base * 3) & 0xFFFFFFFF, x12); } TEST(peek_poke_endianness) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Claim(4); // Endianness tests. // After this section: // x4 should match x0[31:0]:x0[63:32] // w5 should match w1[15:0]:w1[31:16] __ Poke(x0, 0); __ Poke(x0, 8); __ Peek(x4, 4); __ Poke(w1, 0); __ Poke(w1, 4); __ Peek(w5, 2); __ Drop(4); END(); RUN(); uint64_t x0_expected = literal_base * 1; uint64_t x1_expected = literal_base * 2; uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32); uint64_t x5_expected = ((x1_expected << 16) & 0xFFFF0000) | ((x1_expected >> 16) & 0x0000FFFF); CHECK_EQUAL_64(x0_expected, x0); CHECK_EQUAL_64(x1_expected, x1); CHECK_EQUAL_64(x4_expected, x4); CHECK_EQUAL_64(x5_expected, x5); } TEST(peek_poke_mixed) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Claim(4); // Mix with other stack operations. // After this section: // x0-x3 should be unchanged. // x6 should match x1[31:0]:x0[63:32] // w7 should match x1[15:0]:x0[63:48] __ Poke(x1, 8); __ Poke(x0, 0); { __ Peek(x6, 4); __ Peek(w7, 6); __ Poke(xzr, 0); // Clobber the space we're about to drop. __ Poke(xzr, 8); // Clobber the space we're about to drop. __ Drop(2); __ Poke(x3, 8); __ Poke(x2, 0); __ Claim(2); __ Poke(x0, 0); __ Poke(x1, 8); } __ Pop(x0, x1, x2, x3); END(); RUN(); uint64_t x0_expected = literal_base * 1; uint64_t x1_expected = literal_base * 2; uint64_t x2_expected = literal_base * 3; uint64_t x3_expected = literal_base * 4; uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32); uint64_t x7_expected = ((x1_expected << 16) & 0xFFFF0000) | ((x0_expected >> 48) & 0x0000FFFF); CHECK_EQUAL_64(x0_expected, x0); CHECK_EQUAL_64(x1_expected, x1); CHECK_EQUAL_64(x2_expected, x2); CHECK_EQUAL_64(x3_expected, x3); CHECK_EQUAL_64(x6_expected, x6); CHECK_EQUAL_64(x7_expected, x7); } // This enum is used only as an argument to the push-pop test helpers. enum PushPopMethod { // Push or Pop using the Push and Pop methods, with blocks of up to four // registers. (Smaller blocks will be used if necessary.) PushPopByFour, // Use PushRegList and PopRegList to transfer the registers. PushPopRegList }; // The maximum number of registers that can be used by the PushPop* tests, // where a reg_count field is provided. static int const kPushPopMaxRegCount = -1; // Test a simple push-pop pattern: // * Push registers with size . // * Clobber the register contents. // * Pop registers to restore the original contents. // // Different push and pop methods can be specified independently to test for // proper word-endian behaviour. static void PushPopSimpleHelper(int reg_count, int reg_size, PushPopMethod push_method, PushPopMethod pop_method) { SETUP(); START(); // Registers in the TmpList can be used by the macro assembler for debug code // (for example in 'Pop'), so we can't use them here. // x18 is reserved for the platform register. // For simplicity, exclude LR as well, as we would need to sign it when // pushing it. This also ensures that the list has an even number of elements, // which is needed for alignment. static RegList const allowed = RegList::FromBits(static_cast(~masm.TmpList()->bits())) - RegList{x18, lr}; if (reg_count == kPushPopMaxRegCount) { reg_count = CountSetBits(allowed.bits(), kNumberOfRegisters); } DCHECK_EQ(reg_count % 2, 0); // Work out which registers to use, based on reg_size. auto r = CreateRegisterArray(); auto x = CreateRegisterArray(); RegList list = PopulateRegisterArray(nullptr, x.data(), r.data(), reg_size, reg_count, allowed); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; { int i; // Initialize the registers. for (i = 0; i < reg_count; i++) { // Always write into the X register, to ensure that the upper word is // properly ignored by Push when testing W registers. if (!x[i].IsZero()) { __ Mov(x[i], literal_base * i); } } switch (push_method) { case PushPopByFour: // Push high-numbered registers first (to the highest addresses). for (i = reg_count; i >= 4; i -= 4) { __ Push(r[i - 1], r[i - 2], r[i - 3], r[i - 4]); } // Finish off the leftovers. switch (i) { case 3: __ Push(r[2], r[1], r[0]); break; case 2: __ Push(r[1], r[0]); break; case 1: __ Push(r[0]); break; default: CHECK_EQ(i, 0); break; } break; case PushPopRegList: __ PushSizeRegList(list, reg_size); break; } // Clobber all the registers, to ensure that they get repopulated by Pop. Clobber(&masm, list); switch (pop_method) { case PushPopByFour: // Pop low-numbered registers first (from the lowest addresses). for (i = 0; i <= (reg_count-4); i += 4) { __ Pop(r[i], r[i + 1], r[i + 2], r[i + 3]); } // Finish off the leftovers. switch (reg_count - i) { case 3: __ Pop(r[i], r[i+1], r[i+2]); break; case 2: __ Pop(r[i], r[i+1]); break; case 1: __ Pop(r[i]); break; default: CHECK_EQ(i, reg_count); break; } break; case PushPopRegList: __ PopSizeRegList(list, reg_size); break; } } END(); RUN(); // Check that the register contents were preserved. // Always use CHECK_EQUAL_64, even when testing W registers, so we can test // that the upper word was properly cleared by Pop. literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size)); for (int i = 0; i < reg_count; i++) { if (x[i].IsZero()) { CHECK_EQUAL_64(0, x[i]); } else { CHECK_EQUAL_64(literal_base * i, x[i]); } } } TEST(push_pop_simple_32) { INIT_V8(); for (int count = 0; count < kPushPopMaxRegCount; count += 4) { PushPopSimpleHelper(count, kWRegSizeInBits, PushPopByFour, PushPopByFour); PushPopSimpleHelper(count, kWRegSizeInBits, PushPopByFour, PushPopRegList); PushPopSimpleHelper(count, kWRegSizeInBits, PushPopRegList, PushPopByFour); PushPopSimpleHelper(count, kWRegSizeInBits, PushPopRegList, PushPopRegList); } // Skip testing kPushPopMaxRegCount, as we exclude the temporary registers // and we end up with a number of registers that is not a multiple of four and // is not supported for pushing. } TEST(push_pop_simple_64) { INIT_V8(); for (int count = 0; count <= 8; count += 2) { PushPopSimpleHelper(count, kXRegSizeInBits, PushPopByFour, PushPopByFour); PushPopSimpleHelper(count, kXRegSizeInBits, PushPopByFour, PushPopRegList); PushPopSimpleHelper(count, kXRegSizeInBits, PushPopRegList, PushPopByFour); PushPopSimpleHelper(count, kXRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopByFour, PushPopByFour); PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopByFour, PushPopRegList); PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopRegList, PushPopByFour); PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopRegList, PushPopRegList); } // The maximum number of registers that can be used by the PushPopFP* tests, // where a reg_count field is provided. static int const kPushPopFPMaxRegCount = -1; // Test a simple push-pop pattern: // * Push FP registers with size . // * Clobber the register contents. // * Pop FP registers to restore the original contents. // // Different push and pop methods can be specified independently to test for // proper word-endian behaviour. static void PushPopFPSimpleHelper(int reg_count, int reg_size, PushPopMethod push_method, PushPopMethod pop_method) { SETUP(); START(); // We can use any floating-point register. None of them are reserved for // debug code, for example. static DoubleRegList const allowed = DoubleRegList::FromBits(~0); if (reg_count == kPushPopFPMaxRegCount) { reg_count = CountSetBits(allowed.bits(), kNumberOfVRegisters); } // Work out which registers to use, based on reg_size. auto v = CreateRegisterArray(); auto d = CreateRegisterArray(); DoubleRegList list = PopulateVRegisterArray(nullptr, d.data(), v.data(), reg_size, reg_count, allowed); // The literal base is chosen to have two useful properties: // * When multiplied (using an integer) by small values (such as a register // index), this value is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. // * It is never a floating-point NaN, and will therefore always compare // equal to itself. uint64_t literal_base = 0x0100001000100101UL; { int i; // Initialize the registers, using X registers to load the literal. __ Mov(x0, 0); __ Mov(x1, literal_base); for (i = 0; i < reg_count; i++) { // Always write into the D register, to ensure that the upper word is // properly ignored by Push when testing S registers. __ Fmov(d[i], x0); // Calculate the next literal. __ Add(x0, x0, x1); } switch (push_method) { case PushPopByFour: // Push high-numbered registers first (to the highest addresses). for (i = reg_count; i >= 4; i -= 4) { __ Push(v[i-1], v[i-2], v[i-3], v[i-4]); } // Finish off the leftovers. switch (i) { case 3: __ Push(v[2], v[1], v[0]); break; case 2: __ Push(v[1], v[0]); break; case 1: __ Push(v[0]); break; default: CHECK_EQ(i, 0); break; } break; case PushPopRegList: __ PushSizeRegList(list, reg_size); break; } // Clobber all the registers, to ensure that they get repopulated by Pop. ClobberFP(&masm, list); switch (pop_method) { case PushPopByFour: // Pop low-numbered registers first (from the lowest addresses). for (i = 0; i <= (reg_count-4); i += 4) { __ Pop(v[i], v[i+1], v[i+2], v[i+3]); } // Finish off the leftovers. switch (reg_count - i) { case 3: __ Pop(v[i], v[i+1], v[i+2]); break; case 2: __ Pop(v[i], v[i+1]); break; case 1: __ Pop(v[i]); break; default: CHECK_EQ(i, reg_count); break; } break; case PushPopRegList: __ PopSizeRegList(list, reg_size); break; } } END(); RUN(); // Check that the register contents were preserved. // Always use CHECK_EQUAL_FP64, even when testing S registers, so we can // test that the upper word was properly cleared by Pop. literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size)); for (int i = 0; i < reg_count; i++) { uint64_t literal = literal_base * i; double expected; memcpy(&expected, &literal, sizeof(expected)); CHECK_EQUAL_FP64(expected, d[i]); } } TEST(push_pop_fp_simple_32) { INIT_V8(); for (int count = 0; count <= 8; count += 4) { PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopRegList, PushPopRegList); } TEST(push_pop_fp_simple_64) { INIT_V8(); for (int count = 0; count <= 8; count += 2) { PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopRegList, PushPopRegList); } // Push and pop data using an overlapping combination of Push/Pop and // RegList-based methods. static void PushPopMixedMethodsHelper(int reg_size) { SETUP(); // Registers in the TmpList can be used by the macro assembler for debug code // (for example in 'Pop'), so we can't use them here. static RegList const allowed = RegList::FromBits(static_cast(~masm.TmpList()->bits())); // Work out which registers to use, based on reg_size. auto r = CreateRegisterArray(); auto x = CreateRegisterArray(); PopulateRegisterArray(nullptr, x.data(), r.data(), reg_size, 10, allowed); // Calculate some handy register lists. RegList r0_to_r3; for (int i = 0; i <= 3; i++) { r0_to_r3.set(x[i]); } RegList r4_to_r5; for (int i = 4; i <= 5; i++) { r4_to_r5.set(x[i]); } RegList r6_to_r9; for (int i = 6; i <= 9; i++) { r6_to_r9.set(x[i]); } // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; START(); { __ Mov(x[3], literal_base * 3); __ Mov(x[2], literal_base * 2); __ Mov(x[1], literal_base * 1); __ Mov(x[0], literal_base * 0); __ PushSizeRegList(r0_to_r3, reg_size); __ Push(r[3], r[2]); Clobber(&masm, r0_to_r3); __ PopSizeRegList(r0_to_r3, reg_size); __ Push(r[2], r[1], r[3], r[0]); Clobber(&masm, r4_to_r5); __ Pop(r[4], r[5]); Clobber(&masm, r6_to_r9); __ Pop(r[6], r[7], r[8], r[9]); } END(); RUN(); // Always use CHECK_EQUAL_64, even when testing W registers, so we can test // that the upper word was properly cleared by Pop. literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size)); CHECK_EQUAL_64(literal_base * 3, x[9]); CHECK_EQUAL_64(literal_base * 2, x[8]); CHECK_EQUAL_64(literal_base * 0, x[7]); CHECK_EQUAL_64(literal_base * 3, x[6]); CHECK_EQUAL_64(literal_base * 1, x[5]); CHECK_EQUAL_64(literal_base * 2, x[4]); } TEST(push_pop_mixed_methods_64) { INIT_V8(); PushPopMixedMethodsHelper(kXRegSizeInBits); } TEST(push_pop) { INIT_V8(); SETUP(); START(); __ Mov(x3, 0x3333333333333333UL); __ Mov(x2, 0x2222222222222222UL); __ Mov(x1, 0x1111111111111111UL); __ Mov(x0, 0x0000000000000000UL); __ Claim(2); __ PushXRegList({x0, x1, x2, x3}); __ Push(x3, x2); __ PopXRegList({x0, x1, x2, x3}); __ Push(x2, x1, x3, x0); __ Pop(x4, x5); __ Pop(x6, x7, x8, x9); __ Claim(2); __ PushWRegList({w0, w1, w2, w3}); __ Push(w3, w1, w2, w0); __ PopWRegList({w10, w11, w12, w13}); __ Pop(w14, w15, w16, w17); __ Claim(2); __ Push(w2, w2, w1, w1); __ Push(x3, x3); __ Pop(w30, w19, w20, w21); __ Pop(x22, x23); __ Claim(2); __ PushXRegList({x1, x22}); __ PopXRegList({x24, x26}); __ Claim(2); __ PushWRegList({w1, w2, w4, w22}); __ PopWRegList({w25, w27, w28, w29}); __ Claim(2); __ PushXRegList({}); __ PopXRegList({}); // Don't push/pop x18 (platform register) or lr RegList all_regs = RegList::FromBits(0xFFFFFFFF) - RegList{x18, lr}; __ PushXRegList(all_regs); __ PopXRegList(all_regs); __ Drop(12); END(); RUN(); CHECK_EQUAL_64(0x1111111111111111UL, x3); CHECK_EQUAL_64(0x0000000000000000UL, x2); CHECK_EQUAL_64(0x3333333333333333UL, x1); CHECK_EQUAL_64(0x2222222222222222UL, x0); CHECK_EQUAL_64(0x3333333333333333UL, x9); CHECK_EQUAL_64(0x2222222222222222UL, x8); CHECK_EQUAL_64(0x0000000000000000UL, x7); CHECK_EQUAL_64(0x3333333333333333UL, x6); CHECK_EQUAL_64(0x1111111111111111UL, x5); CHECK_EQUAL_64(0x2222222222222222UL, x4); CHECK_EQUAL_32(0x11111111U, w13); CHECK_EQUAL_32(0x33333333U, w12); CHECK_EQUAL_32(0x00000000U, w11); CHECK_EQUAL_32(0x22222222U, w10); CHECK_EQUAL_32(0x11111111U, w17); CHECK_EQUAL_32(0x00000000U, w16); CHECK_EQUAL_32(0x33333333U, w15); CHECK_EQUAL_32(0x22222222U, w14); CHECK_EQUAL_32(0x11111111U, w30); CHECK_EQUAL_32(0x11111111U, w19); CHECK_EQUAL_32(0x11111111U, w20); CHECK_EQUAL_32(0x11111111U, w21); CHECK_EQUAL_64(0x3333333333333333UL, x22); CHECK_EQUAL_64(0x0000000000000000UL, x23); CHECK_EQUAL_64(0x3333333333333333UL, x24); CHECK_EQUAL_64(0x3333333333333333UL, x26); CHECK_EQUAL_32(0x33333333U, w25); CHECK_EQUAL_32(0x00000000U, w27); CHECK_EQUAL_32(0x22222222U, w28); CHECK_EQUAL_32(0x33333333U, w29); } TEST(copy_slots_down) { INIT_V8(); SETUP(); const uint64_t ones = 0x1111111111111111UL; const uint64_t twos = 0x2222222222222222UL; const uint64_t threes = 0x3333333333333333UL; const uint64_t fours = 0x4444444444444444UL; START(); // Test copying 12 slots down one slot. __ Mov(x1, ones); __ Mov(x2, twos); __ Mov(x3, threes); __ Mov(x4, fours); __ Push(x1, x2, x3, x4); __ Push(x1, x2, x1, x2); __ Push(x3, x4, x3, x4); __ Push(xzr, xzr); __ Mov(x5, 1); __ Mov(x6, 2); __ Mov(x7, 12); __ CopySlots(x5, x6, x7); __ Pop(xzr, x4, x5, x6); __ Pop(x7, x8, x9, x10); __ Pop(x11, x12, x13, x14); __ Pop(x15, xzr); // Test copying one slot down one slot. __ Push(x1, xzr, xzr, xzr); __ Mov(x1, 2); __ Mov(x2, 3); __ Mov(x3, 1); __ CopySlots(x1, x2, x3); __ Drop(2); __ Pop(x0, xzr); END(); RUN(); CHECK_EQUAL_64(fours, x4); CHECK_EQUAL_64(threes, x5); CHECK_EQUAL_64(fours, x6); CHECK_EQUAL_64(threes, x7); CHECK_EQUAL_64(twos, x8); CHECK_EQUAL_64(ones, x9); CHECK_EQUAL_64(twos, x10); CHECK_EQUAL_64(ones, x11); CHECK_EQUAL_64(fours, x12); CHECK_EQUAL_64(threes, x13); CHECK_EQUAL_64(twos, x14); CHECK_EQUAL_64(ones, x15); CHECK_EQUAL_64(ones, x0); } TEST(copy_slots_up) { INIT_V8(); SETUP(); const uint64_t ones = 0x1111111111111111UL; const uint64_t twos = 0x2222222222222222UL; const uint64_t threes = 0x3333333333333333UL; START(); __ Mov(x1, ones); __ Mov(x2, twos); __ Mov(x3, threes); // Test copying one slot to the next slot higher in memory. __ Push(xzr, x1); __ Mov(x5, 1); __ Mov(x6, 0); __ Mov(x7, 1); __ CopySlots(x5, x6, x7); __ Pop(xzr, x10); // Test copying two slots to the next two slots higher in memory. __ Push(xzr, xzr); __ Push(x1, x2); __ Mov(x5, 2); __ Mov(x6, 0); __ Mov(x7, 2); __ CopySlots(x5, x6, x7); __ Drop(2); __ Pop(x11, x12); // Test copying three slots to the next three slots higher in memory. __ Push(xzr, xzr, xzr, x1); __ Push(x2, x3); __ Mov(x5, 3); __ Mov(x6, 0); __ Mov(x7, 3); __ CopySlots(x5, x6, x7); __ Drop(2); __ Pop(xzr, x0, x1, x2); END(); RUN(); CHECK_EQUAL_64(ones, x10); CHECK_EQUAL_64(twos, x11); CHECK_EQUAL_64(ones, x12); CHECK_EQUAL_64(threes, x0); CHECK_EQUAL_64(twos, x1); CHECK_EQUAL_64(ones, x2); } TEST(copy_double_words_downwards_even) { INIT_V8(); SETUP(); const uint64_t ones = 0x1111111111111111UL; const uint64_t twos = 0x2222222222222222UL; const uint64_t threes = 0x3333333333333333UL; const uint64_t fours = 0x4444444444444444UL; START(); // Test copying 12 slots up one slot. __ Mov(x1, ones); __ Mov(x2, twos); __ Mov(x3, threes); __ Mov(x4, fours); __ Push(xzr, xzr); __ Push(x1, x2, x3, x4); __ Push(x1, x2, x1, x2); __ Push(x3, x4, x3, x4); __ SlotAddress(x5, 12); __ SlotAddress(x6, 11); __ Mov(x7, 12); __ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst); __ Pop(xzr, x4, x5, x6); __ Pop(x7, x8, x9, x10); __ Pop(x11, x12, x13, x14); __ Pop(x15, xzr); END(); RUN(); CHECK_EQUAL_64(ones, x15); CHECK_EQUAL_64(twos, x14); CHECK_EQUAL_64(threes, x13); CHECK_EQUAL_64(fours, x12); CHECK_EQUAL_64(ones, x11); CHECK_EQUAL_64(twos, x10); CHECK_EQUAL_64(ones, x9); CHECK_EQUAL_64(twos, x8); CHECK_EQUAL_64(threes, x7); CHECK_EQUAL_64(fours, x6); CHECK_EQUAL_64(threes, x5); CHECK_EQUAL_64(fours, x4); } TEST(copy_double_words_downwards_odd) { INIT_V8(); SETUP(); const uint64_t ones = 0x1111111111111111UL; const uint64_t twos = 0x2222222222222222UL; const uint64_t threes = 0x3333333333333333UL; const uint64_t fours = 0x4444444444444444UL; const uint64_t fives = 0x5555555555555555UL; START(); // Test copying 13 slots up one slot. __ Mov(x1, ones); __ Mov(x2, twos); __ Mov(x3, threes); __ Mov(x4, fours); __ Mov(x5, fives); __ Push(xzr, x5); __ Push(x1, x2, x3, x4); __ Push(x1, x2, x1, x2); __ Push(x3, x4, x3, x4); __ SlotAddress(x5, 13); __ SlotAddress(x6, 12); __ Mov(x7, 13); __ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst); __ Pop(xzr, x4); __ Pop(x5, x6, x7, x8); __ Pop(x9, x10, x11, x12); __ Pop(x13, x14, x15, x16); END(); RUN(); CHECK_EQUAL_64(fives, x16); CHECK_EQUAL_64(ones, x15); CHECK_EQUAL_64(twos, x14); CHECK_EQUAL_64(threes, x13); CHECK_EQUAL_64(fours, x12); CHECK_EQUAL_64(ones, x11); CHECK_EQUAL_64(twos, x10); CHECK_EQUAL_64(ones, x9); CHECK_EQUAL_64(twos, x8); CHECK_EQUAL_64(threes, x7); CHECK_EQUAL_64(fours, x6); CHECK_EQUAL_64(threes, x5); CHECK_EQUAL_64(fours, x4); } TEST(copy_noop) { INIT_V8(); SETUP(); const uint64_t ones = 0x1111111111111111UL; const uint64_t twos = 0x2222222222222222UL; const uint64_t threes = 0x3333333333333333UL; const uint64_t fours = 0x4444444444444444UL; const uint64_t fives = 0x5555555555555555UL; START(); __ Mov(x1, ones); __ Mov(x2, twos); __ Mov(x3, threes); __ Mov(x4, fours); __ Mov(x5, fives); __ Push(xzr, x5, x5, xzr); __ Push(x3, x4, x3, x4); __ Push(x1, x2, x1, x2); __ Push(x1, x2, x3, x4); // src < dst, count == 0 __ SlotAddress(x5, 3); __ SlotAddress(x6, 2); __ Mov(x7, 0); __ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst); // dst < src, count == 0 __ SlotAddress(x5, 2); __ SlotAddress(x6, 3); __ Mov(x7, 0); __ CopyDoubleWords(x5, x6, x7, TurboAssembler::kDstLessThanSrc); __ Pop(x1, x2, x3, x4); __ Pop(x5, x6, x7, x8); __ Pop(x9, x10, x11, x12); __ Pop(x13, x14, x15, x16); END(); RUN(); CHECK_EQUAL_64(fours, x1); CHECK_EQUAL_64(threes, x2); CHECK_EQUAL_64(twos, x3); CHECK_EQUAL_64(ones, x4); CHECK_EQUAL_64(twos, x5); CHECK_EQUAL_64(ones, x6); CHECK_EQUAL_64(twos, x7); CHECK_EQUAL_64(ones, x8); CHECK_EQUAL_64(fours, x9); CHECK_EQUAL_64(threes, x10); CHECK_EQUAL_64(fours, x11); CHECK_EQUAL_64(threes, x12); CHECK_EQUAL_64(0, x13); CHECK_EQUAL_64(fives, x14); CHECK_EQUAL_64(fives, x15); CHECK_EQUAL_64(0, x16); } TEST(noreg) { // This test doesn't generate any code, but it verifies some invariants // related to NoReg. CHECK_EQ(NoReg, NoVReg); CHECK_EQ(NoVReg, NoReg); CHECK_EQ(NoReg, NoCPUReg); CHECK_EQ(NoCPUReg, NoReg); CHECK_EQ(NoVReg, NoCPUReg); CHECK_EQ(NoCPUReg, NoVReg); CHECK(NoReg.IsNone()); CHECK(NoVReg.IsNone()); CHECK(NoCPUReg.IsNone()); } TEST(vreg) { // This test doesn't generate any code, but it verifies // Helper functions and methods pertaining to VRegister logic. CHECK_EQ(8U, RegisterSizeInBitsFromFormat(kFormatB)); CHECK_EQ(16U, RegisterSizeInBitsFromFormat(kFormatH)); CHECK_EQ(32U, RegisterSizeInBitsFromFormat(kFormatS)); CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormatD)); CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat8B)); CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat4H)); CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat2S)); CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat1D)); CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat16B)); CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat8H)); CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat4S)); CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat2D)); CHECK_EQ(16, LaneCountFromFormat(kFormat16B)); CHECK_EQ(8, LaneCountFromFormat(kFormat8B)); CHECK_EQ(8, LaneCountFromFormat(kFormat8H)); CHECK_EQ(4, LaneCountFromFormat(kFormat4H)); CHECK_EQ(4, LaneCountFromFormat(kFormat4S)); CHECK_EQ(2, LaneCountFromFormat(kFormat2S)); CHECK_EQ(2, LaneCountFromFormat(kFormat2D)); CHECK_EQ(1, LaneCountFromFormat(kFormat1D)); CHECK_EQ(1, LaneCountFromFormat(kFormatB)); CHECK_EQ(1, LaneCountFromFormat(kFormatH)); CHECK_EQ(1, LaneCountFromFormat(kFormatS)); CHECK_EQ(1, LaneCountFromFormat(kFormatD)); CHECK(!IsVectorFormat(kFormatB)); CHECK(!IsVectorFormat(kFormatH)); CHECK(!IsVectorFormat(kFormatS)); CHECK(!IsVectorFormat(kFormatD)); CHECK(IsVectorFormat(kFormat16B)); CHECK(IsVectorFormat(kFormat8B)); CHECK(IsVectorFormat(kFormat8H)); CHECK(IsVectorFormat(kFormat4H)); CHECK(IsVectorFormat(kFormat4S)); CHECK(IsVectorFormat(kFormat2S)); CHECK(IsVectorFormat(kFormat2D)); CHECK(IsVectorFormat(kFormat1D)); CHECK(!d0.Is8B()); CHECK(!d0.Is16B()); CHECK(!d0.Is4H()); CHECK(!d0.Is8H()); CHECK(!d0.Is2S()); CHECK(!d0.Is4S()); CHECK(d0.Is1D()); CHECK(!d0.Is1S()); CHECK(!d0.Is1H()); CHECK(!d0.Is1B()); CHECK(!d0.IsVector()); CHECK(d0.IsScalar()); CHECK(d0.IsFPRegister()); CHECK(!d0.IsW()); CHECK(!d0.IsX()); CHECK(d0.IsV()); CHECK(!d0.IsB()); CHECK(!d0.IsH()); CHECK(!d0.IsS()); CHECK(d0.IsD()); CHECK(!d0.IsQ()); CHECK(!s0.Is8B()); CHECK(!s0.Is16B()); CHECK(!s0.Is4H()); CHECK(!s0.Is8H()); CHECK(!s0.Is2S()); CHECK(!s0.Is4S()); CHECK(!s0.Is1D()); CHECK(s0.Is1S()); CHECK(!s0.Is1H()); CHECK(!s0.Is1B()); CHECK(!s0.IsVector()); CHECK(s0.IsScalar()); CHECK(s0.IsFPRegister()); CHECK(!s0.IsW()); CHECK(!s0.IsX()); CHECK(s0.IsV()); CHECK(!s0.IsB()); CHECK(!s0.IsH()); CHECK(s0.IsS()); CHECK(!s0.IsD()); CHECK(!s0.IsQ()); CHECK(!h0.Is8B()); CHECK(!h0.Is16B()); CHECK(!h0.Is4H()); CHECK(!h0.Is8H()); CHECK(!h0.Is2S()); CHECK(!h0.Is4S()); CHECK(!h0.Is1D()); CHECK(!h0.Is1S()); CHECK(h0.Is1H()); CHECK(!h0.Is1B()); CHECK(!h0.IsVector()); CHECK(h0.IsScalar()); CHECK(!h0.IsFPRegister()); CHECK(!h0.IsW()); CHECK(!h0.IsX()); CHECK(h0.IsV()); CHECK(!h0.IsB()); CHECK(h0.IsH()); CHECK(!h0.IsS()); CHECK(!h0.IsD()); CHECK(!h0.IsQ()); CHECK(!b0.Is8B()); CHECK(!b0.Is16B()); CHECK(!b0.Is4H()); CHECK(!b0.Is8H()); CHECK(!b0.Is2S()); CHECK(!b0.Is4S()); CHECK(!b0.Is1D()); CHECK(!b0.Is1S()); CHECK(!b0.Is1H()); CHECK(b0.Is1B()); CHECK(!b0.IsVector()); CHECK(b0.IsScalar()); CHECK(!b0.IsFPRegister()); CHECK(!b0.IsW()); CHECK(!b0.IsX()); CHECK(b0.IsV()); CHECK(b0.IsB()); CHECK(!b0.IsH()); CHECK(!b0.IsS()); CHECK(!b0.IsD()); CHECK(!b0.IsQ()); CHECK(!q0.Is8B()); CHECK(!q0.Is16B()); CHECK(!q0.Is4H()); CHECK(!q0.Is8H()); CHECK(!q0.Is2S()); CHECK(!q0.Is4S()); CHECK(!q0.Is1D()); CHECK(!q0.Is2D()); CHECK(!q0.Is1S()); CHECK(!q0.Is1H()); CHECK(!q0.Is1B()); CHECK(!q0.IsVector()); CHECK(q0.IsScalar()); CHECK(!q0.IsFPRegister()); CHECK(!q0.IsW()); CHECK(!q0.IsX()); CHECK(q0.IsV()); CHECK(!q0.IsB()); CHECK(!q0.IsH()); CHECK(!q0.IsS()); CHECK(!q0.IsD()); CHECK(q0.IsQ()); CHECK(w0.IsW()); CHECK(!w0.IsX()); CHECK(!w0.IsV()); CHECK(!w0.IsB()); CHECK(!w0.IsH()); CHECK(!w0.IsS()); CHECK(!w0.IsD()); CHECK(!w0.IsQ()); CHECK(!x0.IsW()); CHECK(x0.IsX()); CHECK(!x0.IsV()); CHECK(!x0.IsB()); CHECK(!x0.IsH()); CHECK(!x0.IsS()); CHECK(!x0.IsD()); CHECK(!x0.IsQ()); CHECK(v0.V().IsV()); CHECK(v0.B().IsB()); CHECK(v0.H().IsH()); CHECK(v0.D().IsD()); CHECK(v0.S().IsS()); CHECK(v0.Q().IsQ()); VRegister test_8b(VRegister::Create(0, 64, 8)); CHECK(test_8b.Is8B()); CHECK(!test_8b.Is16B()); CHECK(!test_8b.Is4H()); CHECK(!test_8b.Is8H()); CHECK(!test_8b.Is2S()); CHECK(!test_8b.Is4S()); CHECK(!test_8b.Is1D()); CHECK(!test_8b.Is2D()); CHECK(!test_8b.Is1H()); CHECK(!test_8b.Is1B()); CHECK(test_8b.IsVector()); CHECK(!test_8b.IsScalar()); CHECK(test_8b.IsFPRegister()); VRegister test_16b(VRegister::Create(0, 128, 16)); CHECK(!test_16b.Is8B()); CHECK(test_16b.Is16B()); CHECK(!test_16b.Is4H()); CHECK(!test_16b.Is8H()); CHECK(!test_16b.Is2S()); CHECK(!test_16b.Is4S()); CHECK(!test_16b.Is1D()); CHECK(!test_16b.Is2D()); CHECK(!test_16b.Is1H()); CHECK(!test_16b.Is1B()); CHECK(test_16b.IsVector()); CHECK(!test_16b.IsScalar()); CHECK(!test_16b.IsFPRegister()); VRegister test_4h(VRegister::Create(0, 64, 4)); CHECK(!test_4h.Is8B()); CHECK(!test_4h.Is16B()); CHECK(test_4h.Is4H()); CHECK(!test_4h.Is8H()); CHECK(!test_4h.Is2S()); CHECK(!test_4h.Is4S()); CHECK(!test_4h.Is1D()); CHECK(!test_4h.Is2D()); CHECK(!test_4h.Is1H()); CHECK(!test_4h.Is1B()); CHECK(test_4h.IsVector()); CHECK(!test_4h.IsScalar()); CHECK(test_4h.IsFPRegister()); VRegister test_8h(VRegister::Create(0, 128, 8)); CHECK(!test_8h.Is8B()); CHECK(!test_8h.Is16B()); CHECK(!test_8h.Is4H()); CHECK(test_8h.Is8H()); CHECK(!test_8h.Is2S()); CHECK(!test_8h.Is4S()); CHECK(!test_8h.Is1D()); CHECK(!test_8h.Is2D()); CHECK(!test_8h.Is1H()); CHECK(!test_8h.Is1B()); CHECK(test_8h.IsVector()); CHECK(!test_8h.IsScalar()); CHECK(!test_8h.IsFPRegister()); VRegister test_2s(VRegister::Create(0, 64, 2)); CHECK(!test_2s.Is8B()); CHECK(!test_2s.Is16B()); CHECK(!test_2s.Is4H()); CHECK(!test_2s.Is8H()); CHECK(test_2s.Is2S()); CHECK(!test_2s.Is4S()); CHECK(!test_2s.Is1D()); CHECK(!test_2s.Is2D()); CHECK(!test_2s.Is1H()); CHECK(!test_2s.Is1B()); CHECK(test_2s.IsVector()); CHECK(!test_2s.IsScalar()); CHECK(test_2s.IsFPRegister()); VRegister test_4s(VRegister::Create(0, 128, 4)); CHECK(!test_4s.Is8B()); CHECK(!test_4s.Is16B()); CHECK(!test_4s.Is4H()); CHECK(!test_4s.Is8H()); CHECK(!test_4s.Is2S()); CHECK(test_4s.Is4S()); CHECK(!test_4s.Is1D()); CHECK(!test_4s.Is2D()); CHECK(!test_4s.Is1S()); CHECK(!test_4s.Is1H()); CHECK(!test_4s.Is1B()); CHECK(test_4s.IsVector()); CHECK(!test_4s.IsScalar()); CHECK(!test_4s.IsFPRegister()); VRegister test_1d(VRegister::Create(0, 64, 1)); CHECK(!test_1d.Is8B()); CHECK(!test_1d.Is16B()); CHECK(!test_1d.Is4H()); CHECK(!test_1d.Is8H()); CHECK(!test_1d.Is2S()); CHECK(!test_1d.Is4S()); CHECK(test_1d.Is1D()); CHECK(!test_1d.Is2D()); CHECK(!test_1d.Is1S()); CHECK(!test_1d.Is1H()); CHECK(!test_1d.Is1B()); CHECK(!test_1d.IsVector()); CHECK(test_1d.IsScalar()); CHECK(test_1d.IsFPRegister()); VRegister test_2d(VRegister::Create(0, 128, 2)); CHECK(!test_2d.Is8B()); CHECK(!test_2d.Is16B()); CHECK(!test_2d.Is4H()); CHECK(!test_2d.Is8H()); CHECK(!test_2d.Is2S()); CHECK(!test_2d.Is4S()); CHECK(!test_2d.Is1D()); CHECK(test_2d.Is2D()); CHECK(!test_2d.Is1H()); CHECK(!test_2d.Is1B()); CHECK(test_2d.IsVector()); CHECK(!test_2d.IsScalar()); CHECK(!test_2d.IsFPRegister()); VRegister test_1s(VRegister::Create(0, 32, 1)); CHECK(!test_1s.Is8B()); CHECK(!test_1s.Is16B()); CHECK(!test_1s.Is4H()); CHECK(!test_1s.Is8H()); CHECK(!test_1s.Is2S()); CHECK(!test_1s.Is4S()); CHECK(!test_1s.Is1D()); CHECK(!test_1s.Is2D()); CHECK(test_1s.Is1S()); CHECK(!test_1s.Is1H()); CHECK(!test_1s.Is1B()); CHECK(!test_1s.IsVector()); CHECK(test_1s.IsScalar()); CHECK(test_1s.IsFPRegister()); VRegister test_1h(VRegister::Create(0, 16, 1)); CHECK(!test_1h.Is8B()); CHECK(!test_1h.Is16B()); CHECK(!test_1h.Is4H()); CHECK(!test_1h.Is8H()); CHECK(!test_1h.Is2S()); CHECK(!test_1h.Is4S()); CHECK(!test_1h.Is1D()); CHECK(!test_1h.Is2D()); CHECK(!test_1h.Is1S()); CHECK(test_1h.Is1H()); CHECK(!test_1h.Is1B()); CHECK(!test_1h.IsVector()); CHECK(test_1h.IsScalar()); CHECK(!test_1h.IsFPRegister()); VRegister test_1b(VRegister::Create(0, 8, 1)); CHECK(!test_1b.Is8B()); CHECK(!test_1b.Is16B()); CHECK(!test_1b.Is4H()); CHECK(!test_1b.Is8H()); CHECK(!test_1b.Is2S()); CHECK(!test_1b.Is4S()); CHECK(!test_1b.Is1D()); CHECK(!test_1b.Is2D()); CHECK(!test_1b.Is1S()); CHECK(!test_1b.Is1H()); CHECK(test_1b.Is1B()); CHECK(!test_1b.IsVector()); CHECK(test_1b.IsScalar()); CHECK(!test_1b.IsFPRegister()); VRegister test_breg_from_code(VRegister::BRegFromCode(0)); CHECK_EQ(test_breg_from_code.SizeInBits(), kBRegSizeInBits); VRegister test_hreg_from_code(VRegister::HRegFromCode(0)); CHECK_EQ(test_hreg_from_code.SizeInBits(), kHRegSizeInBits); VRegister test_sreg_from_code(VRegister::SRegFromCode(0)); CHECK_EQ(test_sreg_from_code.SizeInBits(), kSRegSizeInBits); VRegister test_dreg_from_code(VRegister::DRegFromCode(0)); CHECK_EQ(test_dreg_from_code.SizeInBits(), kDRegSizeInBits); VRegister test_qreg_from_code(VRegister::QRegFromCode(0)); CHECK_EQ(test_qreg_from_code.SizeInBits(), kQRegSizeInBits); VRegister test_vreg_from_code(VRegister::VRegFromCode(0)); CHECK_EQ(test_vreg_from_code.SizeInBits(), kVRegSizeInBits); VRegister test_v8b(VRegister::VRegFromCode(31).V8B()); CHECK_EQ(test_v8b.code(), 31); CHECK_EQ(test_v8b.SizeInBits(), kDRegSizeInBits); CHECK(test_v8b.IsLaneSizeB()); CHECK(!test_v8b.IsLaneSizeH()); CHECK(!test_v8b.IsLaneSizeS()); CHECK(!test_v8b.IsLaneSizeD()); CHECK_EQ(test_v8b.LaneSizeInBits(), 8U); VRegister test_v16b(VRegister::VRegFromCode(31).V16B()); CHECK_EQ(test_v16b.code(), 31); CHECK_EQ(test_v16b.SizeInBits(), kQRegSizeInBits); CHECK(test_v16b.IsLaneSizeB()); CHECK(!test_v16b.IsLaneSizeH()); CHECK(!test_v16b.IsLaneSizeS()); CHECK(!test_v16b.IsLaneSizeD()); CHECK_EQ(test_v16b.LaneSizeInBits(), 8U); VRegister test_v4h(VRegister::VRegFromCode(31).V4H()); CHECK_EQ(test_v4h.code(), 31); CHECK_EQ(test_v4h.SizeInBits(), kDRegSizeInBits); CHECK(!test_v4h.IsLaneSizeB()); CHECK(test_v4h.IsLaneSizeH()); CHECK(!test_v4h.IsLaneSizeS()); CHECK(!test_v4h.IsLaneSizeD()); CHECK_EQ(test_v4h.LaneSizeInBits(), 16U); VRegister test_v8h(VRegister::VRegFromCode(31).V8H()); CHECK_EQ(test_v8h.code(), 31); CHECK_EQ(test_v8h.SizeInBits(), kQRegSizeInBits); CHECK(!test_v8h.IsLaneSizeB()); CHECK(test_v8h.IsLaneSizeH()); CHECK(!test_v8h.IsLaneSizeS()); CHECK(!test_v8h.IsLaneSizeD()); CHECK_EQ(test_v8h.LaneSizeInBits(), 16U); VRegister test_v2s(VRegister::VRegFromCode(31).V2S()); CHECK_EQ(test_v2s.code(), 31); CHECK_EQ(test_v2s.SizeInBits(), kDRegSizeInBits); CHECK(!test_v2s.IsLaneSizeB()); CHECK(!test_v2s.IsLaneSizeH()); CHECK(test_v2s.IsLaneSizeS()); CHECK(!test_v2s.IsLaneSizeD()); CHECK_EQ(test_v2s.LaneSizeInBits(), 32U); VRegister test_v4s(VRegister::VRegFromCode(31).V4S()); CHECK_EQ(test_v4s.code(), 31); CHECK_EQ(test_v4s.SizeInBits(), kQRegSizeInBits); CHECK(!test_v4s.IsLaneSizeB()); CHECK(!test_v4s.IsLaneSizeH()); CHECK(test_v4s.IsLaneSizeS()); CHECK(!test_v4s.IsLaneSizeD()); CHECK_EQ(test_v4s.LaneSizeInBits(), 32U); VRegister test_v1d(VRegister::VRegFromCode(31).V1D()); CHECK_EQ(test_v1d.code(), 31); CHECK_EQ(test_v1d.SizeInBits(), kDRegSizeInBits); CHECK(!test_v1d.IsLaneSizeB()); CHECK(!test_v1d.IsLaneSizeH()); CHECK(!test_v1d.IsLaneSizeS()); CHECK(test_v1d.IsLaneSizeD()); CHECK_EQ(test_v1d.LaneSizeInBits(), 64U); VRegister test_v2d(VRegister::VRegFromCode(31).V2D()); CHECK_EQ(test_v2d.code(), 31); CHECK_EQ(test_v2d.SizeInBits(), kQRegSizeInBits); CHECK(!test_v2d.IsLaneSizeB()); CHECK(!test_v2d.IsLaneSizeH()); CHECK(!test_v2d.IsLaneSizeS()); CHECK(test_v2d.IsLaneSizeD()); CHECK_EQ(test_v2d.LaneSizeInBits(), 64U); CHECK(test_v1d.IsSameFormat(test_v1d)); CHECK(test_v2d.IsSameFormat(test_v2d)); CHECK(!test_v1d.IsSameFormat(test_v2d)); CHECK(!test_v2s.IsSameFormat(test_v2d)); } TEST(isvalid) { // This test doesn't generate any code, but it verifies some invariants // related to IsValid(). CHECK(!NoReg.is_valid()); CHECK(!NoVReg.is_valid()); CHECK(!NoCPUReg.is_valid()); CHECK(x0.is_valid()); CHECK(w0.is_valid()); CHECK(x30.is_valid()); CHECK(w30.is_valid()); CHECK(xzr.is_valid()); CHECK(wzr.is_valid()); CHECK(sp.is_valid()); CHECK(wsp.is_valid()); CHECK(d0.is_valid()); CHECK(s0.is_valid()); CHECK(d31.is_valid()); CHECK(s31.is_valid()); CHECK(x0.IsRegister()); CHECK(w0.IsRegister()); CHECK(xzr.IsRegister()); CHECK(wzr.IsRegister()); CHECK(sp.IsRegister()); CHECK(wsp.IsRegister()); CHECK(!x0.IsVRegister()); CHECK(!w0.IsVRegister()); CHECK(!xzr.IsVRegister()); CHECK(!wzr.IsVRegister()); CHECK(!sp.IsVRegister()); CHECK(!wsp.IsVRegister()); CHECK(d0.IsVRegister()); CHECK(s0.IsVRegister()); CHECK(!d0.IsRegister()); CHECK(!s0.IsRegister()); // Test the same as before, but using CPURegister types. This shouldn't make // any difference. CHECK(static_cast(x0).is_valid()); CHECK(static_cast(w0).is_valid()); CHECK(static_cast(x30).is_valid()); CHECK(static_cast(w30).is_valid()); CHECK(static_cast(xzr).is_valid()); CHECK(static_cast(wzr).is_valid()); CHECK(static_cast(sp).is_valid()); CHECK(static_cast(wsp).is_valid()); CHECK(static_cast(d0).is_valid()); CHECK(static_cast(s0).is_valid()); CHECK(static_cast(d31).is_valid()); CHECK(static_cast(s31).is_valid()); CHECK(static_cast(x0).IsRegister()); CHECK(static_cast(w0).IsRegister()); CHECK(static_cast(xzr).IsRegister()); CHECK(static_cast(wzr).IsRegister()); CHECK(static_cast(sp).IsRegister()); CHECK(static_cast(wsp).IsRegister()); CHECK(!static_cast(x0).IsVRegister()); CHECK(!static_cast(w0).IsVRegister()); CHECK(!static_cast(xzr).IsVRegister()); CHECK(!static_cast(wzr).IsVRegister()); CHECK(!static_cast(sp).IsVRegister()); CHECK(!static_cast(wsp).IsVRegister()); CHECK(static_cast(d0).IsVRegister()); CHECK(static_cast(s0).IsVRegister()); CHECK(!static_cast(d0).IsRegister()); CHECK(!static_cast(s0).IsRegister()); } TEST(areconsecutive) { // This test generates no code; it just checks that AreConsecutive works. CHECK(AreConsecutive(b0, NoVReg)); CHECK(AreConsecutive(b1, b2)); CHECK(AreConsecutive(b3, b4, b5)); CHECK(AreConsecutive(b6, b7, b8, b9)); CHECK(AreConsecutive(h10, NoVReg)); CHECK(AreConsecutive(h11, h12)); CHECK(AreConsecutive(h13, h14, h15)); CHECK(AreConsecutive(h16, h17, h18, h19)); CHECK(AreConsecutive(s20, NoVReg)); CHECK(AreConsecutive(s21, s22)); CHECK(AreConsecutive(s23, s24, s25)); CHECK(AreConsecutive(s26, s27, s28, s29)); CHECK(AreConsecutive(d30, NoVReg)); CHECK(AreConsecutive(d31, d0)); CHECK(AreConsecutive(d1, d2, d3)); CHECK(AreConsecutive(d4, d5, d6, d7)); CHECK(AreConsecutive(q8, NoVReg)); CHECK(AreConsecutive(q9, q10)); CHECK(AreConsecutive(q11, q12, q13)); CHECK(AreConsecutive(q14, q15, q16, q17)); CHECK(AreConsecutive(v18, NoVReg)); CHECK(AreConsecutive(v19, v20)); CHECK(AreConsecutive(v21, v22, v23)); CHECK(AreConsecutive(v24, v25, v26, v27)); CHECK(AreConsecutive(b29, h30)); CHECK(AreConsecutive(s31, d0, q1)); CHECK(AreConsecutive(v2, b3, h4, s5)); CHECK(AreConsecutive(b26, b27, NoVReg, NoVReg)); CHECK(AreConsecutive(h28, NoVReg, NoVReg, NoVReg)); CHECK(!AreConsecutive(b0, b2)); CHECK(!AreConsecutive(h1, h0)); CHECK(!AreConsecutive(s31, s1)); CHECK(!AreConsecutive(d12, d12)); CHECK(!AreConsecutive(q31, q1)); CHECK(!AreConsecutive(b5, b4, b3)); CHECK(!AreConsecutive(h15, h16, h15, h14)); CHECK(!AreConsecutive(s25, s24, s23, s22)); CHECK(!AreConsecutive(d5, d6, d7, d6)); CHECK(!AreConsecutive(q15, q16, q17, q6)); CHECK(!AreConsecutive(b0, b1, b3)); CHECK(!AreConsecutive(h4, h5, h6, h6)); CHECK(!AreConsecutive(d15, d16, d18, NoVReg)); CHECK(!AreConsecutive(s28, s30, NoVReg, NoVReg)); } TEST(cpureglist_utils_x) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of X registers. CPURegList test(x0, x1, x2, x3); CHECK(test.IncludesAliasOf(x0)); CHECK(test.IncludesAliasOf(x1)); CHECK(test.IncludesAliasOf(x2)); CHECK(test.IncludesAliasOf(x3)); CHECK(test.IncludesAliasOf(w0)); CHECK(test.IncludesAliasOf(w1)); CHECK(test.IncludesAliasOf(w2)); CHECK(test.IncludesAliasOf(w3)); CHECK(!test.IncludesAliasOf(x4)); CHECK(!test.IncludesAliasOf(x30)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(sp)); CHECK(!test.IncludesAliasOf(w4)); CHECK(!test.IncludesAliasOf(w30)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(wsp)); CHECK(!test.IncludesAliasOf(d0)); CHECK(!test.IncludesAliasOf(d1)); CHECK(!test.IncludesAliasOf(d2)); CHECK(!test.IncludesAliasOf(d3)); CHECK(!test.IncludesAliasOf(s0)); CHECK(!test.IncludesAliasOf(s1)); CHECK(!test.IncludesAliasOf(s2)); CHECK(!test.IncludesAliasOf(s3)); CHECK(!test.IsEmpty()); CHECK_EQ(test.type(), x0.type()); CHECK_EQ(test.PopHighestIndex(), x3); CHECK_EQ(test.PopLowestIndex(), x0); CHECK(test.IncludesAliasOf(x1)); CHECK(test.IncludesAliasOf(x2)); CHECK(test.IncludesAliasOf(w1)); CHECK(test.IncludesAliasOf(w2)); CHECK(!test.IncludesAliasOf(x0)); CHECK(!test.IncludesAliasOf(x3)); CHECK(!test.IncludesAliasOf(w0)); CHECK(!test.IncludesAliasOf(w3)); CHECK_EQ(test.PopHighestIndex(), x2); CHECK_EQ(test.PopLowestIndex(), x1); CHECK(!test.IncludesAliasOf(x1)); CHECK(!test.IncludesAliasOf(x2)); CHECK(!test.IncludesAliasOf(w1)); CHECK(!test.IncludesAliasOf(w2)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_w) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of W registers. CPURegList test(w10, w11, w12, w13); CHECK(test.IncludesAliasOf(x10)); CHECK(test.IncludesAliasOf(x11)); CHECK(test.IncludesAliasOf(x12)); CHECK(test.IncludesAliasOf(x13)); CHECK(test.IncludesAliasOf(w10)); CHECK(test.IncludesAliasOf(w11)); CHECK(test.IncludesAliasOf(w12)); CHECK(test.IncludesAliasOf(w13)); CHECK(!test.IncludesAliasOf(x0)); CHECK(!test.IncludesAliasOf(x9)); CHECK(!test.IncludesAliasOf(x14)); CHECK(!test.IncludesAliasOf(x30)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(sp)); CHECK(!test.IncludesAliasOf(w0)); CHECK(!test.IncludesAliasOf(w9)); CHECK(!test.IncludesAliasOf(w14)); CHECK(!test.IncludesAliasOf(w30)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(wsp)); CHECK(!test.IncludesAliasOf(d10)); CHECK(!test.IncludesAliasOf(d11)); CHECK(!test.IncludesAliasOf(d12)); CHECK(!test.IncludesAliasOf(d13)); CHECK(!test.IncludesAliasOf(s10)); CHECK(!test.IncludesAliasOf(s11)); CHECK(!test.IncludesAliasOf(s12)); CHECK(!test.IncludesAliasOf(s13)); CHECK(!test.IsEmpty()); CHECK_EQ(test.type(), w10.type()); CHECK_EQ(test.PopHighestIndex(), w13); CHECK_EQ(test.PopLowestIndex(), w10); CHECK(test.IncludesAliasOf(x11)); CHECK(test.IncludesAliasOf(x12)); CHECK(test.IncludesAliasOf(w11)); CHECK(test.IncludesAliasOf(w12)); CHECK(!test.IncludesAliasOf(x10)); CHECK(!test.IncludesAliasOf(x13)); CHECK(!test.IncludesAliasOf(w10)); CHECK(!test.IncludesAliasOf(w13)); CHECK_EQ(test.PopHighestIndex(), w12); CHECK_EQ(test.PopLowestIndex(), w11); CHECK(!test.IncludesAliasOf(x11)); CHECK(!test.IncludesAliasOf(x12)); CHECK(!test.IncludesAliasOf(w11)); CHECK(!test.IncludesAliasOf(w12)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_d) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of D registers. CPURegList test(d20, d21, d22, d23); CHECK(test.IncludesAliasOf(d20)); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(d23)); CHECK(test.IncludesAliasOf(s20)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(test.IncludesAliasOf(s23)); CHECK(!test.IncludesAliasOf(d0)); CHECK(!test.IncludesAliasOf(d19)); CHECK(!test.IncludesAliasOf(d24)); CHECK(!test.IncludesAliasOf(d31)); CHECK(!test.IncludesAliasOf(s0)); CHECK(!test.IncludesAliasOf(s19)); CHECK(!test.IncludesAliasOf(s24)); CHECK(!test.IncludesAliasOf(s31)); CHECK(!test.IncludesAliasOf(x20)); CHECK(!test.IncludesAliasOf(x21)); CHECK(!test.IncludesAliasOf(x22)); CHECK(!test.IncludesAliasOf(x23)); CHECK(!test.IncludesAliasOf(w20)); CHECK(!test.IncludesAliasOf(w21)); CHECK(!test.IncludesAliasOf(w22)); CHECK(!test.IncludesAliasOf(w23)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(sp)); CHECK(!test.IncludesAliasOf(wsp)); CHECK(!test.IsEmpty()); CHECK_EQ(test.type(), d20.type()); CHECK_EQ(test.PopHighestIndex(), d23); CHECK_EQ(test.PopLowestIndex(), d20); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(!test.IncludesAliasOf(d20)); CHECK(!test.IncludesAliasOf(d23)); CHECK(!test.IncludesAliasOf(s20)); CHECK(!test.IncludesAliasOf(s23)); CHECK_EQ(test.PopHighestIndex(), d22); CHECK_EQ(test.PopLowestIndex(), d21); CHECK(!test.IncludesAliasOf(d21)); CHECK(!test.IncludesAliasOf(d22)); CHECK(!test.IncludesAliasOf(s21)); CHECK(!test.IncludesAliasOf(s22)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_s) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of S registers. CPURegList test(s20, s21, s22, s23); // The type and size mechanisms are already covered, so here we just test // that lists of S registers alias individual D registers. CHECK(test.IncludesAliasOf(d20)); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(d23)); CHECK(test.IncludesAliasOf(s20)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(test.IncludesAliasOf(s23)); } TEST(cpureglist_utils_empty) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test an empty list. // Empty lists can have type and size properties. Check that we can create // them, and that they are empty. CPURegList reg32(kWRegSizeInBits, RegList{}); CPURegList reg64(kXRegSizeInBits, RegList{}); CPURegList fpreg32(kSRegSizeInBits, DoubleRegList{}); CPURegList fpreg64(kDRegSizeInBits, DoubleRegList{}); CHECK(reg32.IsEmpty()); CHECK(reg64.IsEmpty()); CHECK(fpreg32.IsEmpty()); CHECK(fpreg64.IsEmpty()); CHECK(reg32.PopLowestIndex().IsNone()); CHECK(reg64.PopLowestIndex().IsNone()); CHECK(fpreg32.PopLowestIndex().IsNone()); CHECK(fpreg64.PopLowestIndex().IsNone()); CHECK(reg32.PopHighestIndex().IsNone()); CHECK(reg64.PopHighestIndex().IsNone()); CHECK(fpreg32.PopHighestIndex().IsNone()); CHECK(fpreg64.PopHighestIndex().IsNone()); CHECK(reg32.IsEmpty()); CHECK(reg64.IsEmpty()); CHECK(fpreg32.IsEmpty()); CHECK(fpreg64.IsEmpty()); } TEST(printf) { INIT_V8(); SETUP_SIZE(BUF_SIZE * 2); START(); char const * test_plain_string = "Printf with no arguments.\n"; char const * test_substring = "'This is a substring.'"; RegisterDump before; // Initialize x29 to the value of the stack pointer. We will use x29 as a // temporary stack pointer later, and initializing it in this way allows the // RegisterDump check to pass. __ Mov(x29, sp); // Test simple integer arguments. __ Mov(x0, 1234); __ Mov(x1, 0x1234); // Test simple floating-point arguments. __ Fmov(d0, 1.234); // Test pointer (string) arguments. __ Mov(x2, reinterpret_cast(test_substring)); // Test the maximum number of arguments, and sign extension. __ Mov(w3, 0xFFFFFFFF); __ Mov(w4, 0xFFFFFFFF); __ Mov(x5, 0xFFFFFFFFFFFFFFFF); __ Mov(x6, 0xFFFFFFFFFFFFFFFF); __ Fmov(s1, 1.234); __ Fmov(s2, 2.345); __ Fmov(d3, 3.456); __ Fmov(d4, 4.567); // Test printing callee-saved registers. __ Mov(x28, 0x123456789ABCDEF); __ Fmov(d10, 42.0); // Test with three arguments. __ Mov(x10, 3); __ Mov(x11, 40); __ Mov(x12, 500); // A single character. __ Mov(w13, 'x'); // Check that we don't clobber any registers. before.Dump(&masm); __ Printf(test_plain_string); // NOLINT(runtime/printf) __ Printf("x0: %" PRId64 ", x1: 0x%08" PRIx64 "\n", x0, x1); __ Printf("w5: %" PRId32 ", x5: %" PRId64"\n", w5, x5); __ Printf("d0: %f\n", d0); __ Printf("Test %%s: %s\n", x2); __ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", w3, w4, x5, x6); __ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); __ Printf("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28); __ Printf("%g\n", d10); __ Printf("%%%%%s%%%c%%\n", x2, w13); // Print the stack pointer. __ Printf("StackPointer(sp): 0x%016" PRIx64 ", 0x%08" PRIx32 "\n", sp, wsp); // Test with three arguments. __ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12); // Mixed argument types. __ Printf("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n", w3, s1, x5, d3); __ Printf("s1: %f, d3: %f, w3: %" PRId32 ", x5: %" PRId64 "\n", s1, d3, w3, x5); END(); RUN(); // We cannot easily test the output of the Printf sequences, and because // Printf preserves all registers by default, we can't look at the number of // bytes that were printed. However, the printf_no_preserve test should check // that, and here we just test that we didn't clobber any registers. CHECK_EQUAL_REGISTERS(before); } TEST(printf_no_preserve) { INIT_V8(); SETUP(); START(); char const * test_plain_string = "Printf with no arguments.\n"; char const * test_substring = "'This is a substring.'"; __ PrintfNoPreserve(test_plain_string); __ Mov(x19, x0); // Test simple integer arguments. __ Mov(x0, 1234); __ Mov(x1, 0x1234); __ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); __ Mov(x20, x0); // Test simple floating-point arguments. __ Fmov(d0, 1.234); __ PrintfNoPreserve("d0: %f\n", d0); __ Mov(x21, x0); // Test pointer (string) arguments. __ Mov(x2, reinterpret_cast(test_substring)); __ PrintfNoPreserve("Test %%s: %s\n", x2); __ Mov(x22, x0); // Test the maximum number of arguments, and sign extension. __ Mov(w3, 0xFFFFFFFF); __ Mov(w4, 0xFFFFFFFF); __ Mov(x5, 0xFFFFFFFFFFFFFFFF); __ Mov(x6, 0xFFFFFFFFFFFFFFFF); __ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", w3, w4, x5, x6); __ Mov(x23, x0); __ Fmov(s1, 1.234); __ Fmov(s2, 2.345); __ Fmov(d3, 3.456); __ Fmov(d4, 4.567); __ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); __ Mov(x24, x0); // Test printing callee-saved registers. __ Mov(x28, 0x123456789ABCDEF); __ PrintfNoPreserve("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28); __ Mov(x25, x0); __ Fmov(d10, 42.0); __ PrintfNoPreserve("%g\n", d10); __ Mov(x26, x0); // Test with three arguments. __ Mov(x3, 3); __ Mov(x4, 40); __ Mov(x5, 500); __ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5); __ Mov(x27, x0); // Mixed argument types. __ Mov(w3, 0xFFFFFFFF); __ Fmov(s1, 1.234); __ Mov(x5, 0xFFFFFFFFFFFFFFFF); __ Fmov(d3, 3.456); __ PrintfNoPreserve("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n", w3, s1, x5, d3); __ Mov(x28, x0); END(); RUN(); // We cannot easily test the exact output of the Printf sequences, but we can // use the return code to check that the string length was correct. // Printf with no arguments. CHECK_EQUAL_64(strlen(test_plain_string), x19); // x0: 1234, x1: 0x00001234 CHECK_EQUAL_64(25, x20); // d0: 1.234000 CHECK_EQUAL_64(13, x21); // Test %s: 'This is a substring.' CHECK_EQUAL_64(32, x22); // w3(uint32): 4294967295 // w4(int32): -1 // x5(uint64): 18446744073709551615 // x6(int64): -1 CHECK_EQUAL_64(23 + 14 + 33 + 14, x23); // %f: 1.234000 // %g: 2.345 // %e: 3.456000e+00 // %E: 4.567000E+00 CHECK_EQUAL_64(13 + 10 + 17 + 17, x24); // 0x89ABCDEF, 0x123456789ABCDEF CHECK_EQUAL_64(30, x25); // 42 CHECK_EQUAL_64(3, x26); // 3=3, 4=40, 5=500 CHECK_EQUAL_64(17, x27); // w3: 4294967295, s1: 1.234000, x5: 18446744073709551615, d3: 3.456000 CHECK_EQUAL_64(69, x28); } TEST(blr_lr) { // A simple test to check that the simulator correcty handle "blr lr". INIT_V8(); SETUP(); START(); Label target; Label end; __ Mov(x0, 0x0); __ Adr(lr, &target); __ Blr(lr); __ Mov(x0, 0xDEADBEEF); __ B(&end); __ Bind(&target, BranchTargetIdentifier::kBtiCall); __ Mov(x0, 0xC001C0DE); __ Bind(&end); END(); RUN(); CHECK_EQUAL_64(0xC001C0DE, x0); } TEST(barriers) { // Generate all supported barriers, this is just a smoke test INIT_V8(); SETUP(); START(); // DMB __ Dmb(FullSystem, BarrierAll); __ Dmb(FullSystem, BarrierReads); __ Dmb(FullSystem, BarrierWrites); __ Dmb(FullSystem, BarrierOther); __ Dmb(InnerShareable, BarrierAll); __ Dmb(InnerShareable, BarrierReads); __ Dmb(InnerShareable, BarrierWrites); __ Dmb(InnerShareable, BarrierOther); __ Dmb(NonShareable, BarrierAll); __ Dmb(NonShareable, BarrierReads); __ Dmb(NonShareable, BarrierWrites); __ Dmb(NonShareable, BarrierOther); __ Dmb(OuterShareable, BarrierAll); __ Dmb(OuterShareable, BarrierReads); __ Dmb(OuterShareable, BarrierWrites); __ Dmb(OuterShareable, BarrierOther); // DSB __ Dsb(FullSystem, BarrierAll); __ Dsb(FullSystem, BarrierReads); __ Dsb(FullSystem, BarrierWrites); __ Dsb(FullSystem, BarrierOther); __ Dsb(InnerShareable, BarrierAll); __ Dsb(InnerShareable, BarrierReads); __ Dsb(InnerShareable, BarrierWrites); __ Dsb(InnerShareable, BarrierOther); __ Dsb(NonShareable, BarrierAll); __ Dsb(NonShareable, BarrierReads); __ Dsb(NonShareable, BarrierWrites); __ Dsb(NonShareable, BarrierOther); __ Dsb(OuterShareable, BarrierAll); __ Dsb(OuterShareable, BarrierReads); __ Dsb(OuterShareable, BarrierWrites); __ Dsb(OuterShareable, BarrierOther); // ISB __ Isb(); END(); RUN(); } TEST(process_nan_double) { INIT_V8(); // Make sure that NaN propagation works correctly. double sn = base::bit_cast(0x7FF5555511111111); double qn = base::bit_cast(0x7FFAAAAA11111111); CHECK(IsSignallingNaN(sn)); CHECK(IsQuietNaN(qn)); // The input NaNs after passing through ProcessNaN. double sn_proc = base::bit_cast(0x7FFD555511111111); double qn_proc = qn; CHECK(IsQuietNaN(sn_proc)); CHECK(IsQuietNaN(qn_proc)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaN, and check that // they all handle the NaN correctly. __ Fmov(d0, sn); __ Fmov(d10, qn); // Operations that always propagate NaNs unchanged, even signalling NaNs. // - Signalling NaN __ Fmov(d1, d0); __ Fabs(d2, d0); __ Fneg(d3, d0); // - Quiet NaN __ Fmov(d11, d10); __ Fabs(d12, d10); __ Fneg(d13, d10); // Operations that use ProcessNaN. // - Signalling NaN __ Fsqrt(d4, d0); __ Frinta(d5, d0); __ Frintn(d6, d0); __ Frintz(d7, d0); // - Quiet NaN __ Fsqrt(d14, d10); __ Frinta(d15, d10); __ Frintn(d16, d10); __ Frintz(d17, d10); // The behaviour of fcvt is checked in TEST(fcvt_sd). END(); RUN(); uint64_t qn_raw = base::bit_cast(qn); uint64_t sn_raw = base::bit_cast(sn); // - Signalling NaN CHECK_EQUAL_FP64(sn, d1); CHECK_EQUAL_FP64(base::bit_cast(sn_raw & ~kDSignMask), d2); CHECK_EQUAL_FP64(base::bit_cast(sn_raw ^ kDSignMask), d3); // - Quiet NaN CHECK_EQUAL_FP64(qn, d11); CHECK_EQUAL_FP64(base::bit_cast(qn_raw & ~kDSignMask), d12); CHECK_EQUAL_FP64(base::bit_cast(qn_raw ^ kDSignMask), d13); // - Signalling NaN CHECK_EQUAL_FP64(sn_proc, d4); CHECK_EQUAL_FP64(sn_proc, d5); CHECK_EQUAL_FP64(sn_proc, d6); CHECK_EQUAL_FP64(sn_proc, d7); // - Quiet NaN CHECK_EQUAL_FP64(qn_proc, d14); CHECK_EQUAL_FP64(qn_proc, d15); CHECK_EQUAL_FP64(qn_proc, d16); CHECK_EQUAL_FP64(qn_proc, d17); } TEST(process_nan_float) { INIT_V8(); // Make sure that NaN propagation works correctly. float sn = base::bit_cast(0x7F951111); float qn = base::bit_cast(0x7FEA1111); CHECK(IsSignallingNaN(sn)); CHECK(IsQuietNaN(qn)); // The input NaNs after passing through ProcessNaN. float sn_proc = base::bit_cast(0x7FD51111); float qn_proc = qn; CHECK(IsQuietNaN(sn_proc)); CHECK(IsQuietNaN(qn_proc)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaN, and check that // they all handle the NaN correctly. __ Fmov(s0, sn); __ Fmov(s10, qn); // Operations that always propagate NaNs unchanged, even signalling NaNs. // - Signalling NaN __ Fmov(s1, s0); __ Fabs(s2, s0); __ Fneg(s3, s0); // - Quiet NaN __ Fmov(s11, s10); __ Fabs(s12, s10); __ Fneg(s13, s10); // Operations that use ProcessNaN. // - Signalling NaN __ Fsqrt(s4, s0); __ Frinta(s5, s0); __ Frintn(s6, s0); __ Frintz(s7, s0); // - Quiet NaN __ Fsqrt(s14, s10); __ Frinta(s15, s10); __ Frintn(s16, s10); __ Frintz(s17, s10); // The behaviour of fcvt is checked in TEST(fcvt_sd). END(); RUN(); uint32_t qn_raw = base::bit_cast(qn); uint32_t sn_raw = base::bit_cast(sn); uint32_t sign_mask = static_cast(kSSignMask); // - Signalling NaN CHECK_EQUAL_FP32(sn, s1); CHECK_EQUAL_FP32(base::bit_cast(sn_raw & ~sign_mask), s2); CHECK_EQUAL_FP32(base::bit_cast(sn_raw ^ sign_mask), s3); // - Quiet NaN CHECK_EQUAL_FP32(qn, s11); CHECK_EQUAL_FP32(base::bit_cast(qn_raw & ~sign_mask), s12); CHECK_EQUAL_FP32(base::bit_cast(qn_raw ^ sign_mask), s13); // - Signalling NaN CHECK_EQUAL_FP32(sn_proc, s4); CHECK_EQUAL_FP32(sn_proc, s5); CHECK_EQUAL_FP32(sn_proc, s6); CHECK_EQUAL_FP32(sn_proc, s7); // - Quiet NaN CHECK_EQUAL_FP32(qn_proc, s14); CHECK_EQUAL_FP32(qn_proc, s15); CHECK_EQUAL_FP32(qn_proc, s16); CHECK_EQUAL_FP32(qn_proc, s17); } static void ProcessNaNsHelper(double n, double m, double expected) { CHECK(std::isnan(n) || std::isnan(m)); CHECK(std::isnan(expected)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaNs, and check that // they all propagate NaNs correctly. __ Fmov(d0, n); __ Fmov(d1, m); __ Fadd(d2, d0, d1); __ Fsub(d3, d0, d1); __ Fmul(d4, d0, d1); __ Fdiv(d5, d0, d1); __ Fmax(d6, d0, d1); __ Fmin(d7, d0, d1); END(); RUN(); CHECK_EQUAL_FP64(expected, d2); CHECK_EQUAL_FP64(expected, d3); CHECK_EQUAL_FP64(expected, d4); CHECK_EQUAL_FP64(expected, d5); CHECK_EQUAL_FP64(expected, d6); CHECK_EQUAL_FP64(expected, d7); } TEST(process_nans_double) { INIT_V8(); // Make sure that NaN propagation works correctly. double sn = base::bit_cast(0x7FF5555511111111); double sm = base::bit_cast(0x7FF5555522222222); double qn = base::bit_cast(0x7FFAAAAA11111111); double qm = base::bit_cast(0x7FFAAAAA22222222); CHECK(IsSignallingNaN(sn)); CHECK(IsSignallingNaN(sm)); CHECK(IsQuietNaN(qn)); CHECK(IsQuietNaN(qm)); // The input NaNs after passing through ProcessNaN. double sn_proc = base::bit_cast(0x7FFD555511111111); double sm_proc = base::bit_cast(0x7FFD555522222222); double qn_proc = qn; double qm_proc = qm; CHECK(IsQuietNaN(sn_proc)); CHECK(IsQuietNaN(sm_proc)); CHECK(IsQuietNaN(qn_proc)); CHECK(IsQuietNaN(qm_proc)); // Quiet NaNs are propagated. ProcessNaNsHelper(qn, 0, qn_proc); ProcessNaNsHelper(0, qm, qm_proc); ProcessNaNsHelper(qn, qm, qn_proc); // Signalling NaNs are propagated, and made quiet. ProcessNaNsHelper(sn, 0, sn_proc); ProcessNaNsHelper(0, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); // Signalling NaNs take precedence over quiet NaNs. ProcessNaNsHelper(sn, qm, sn_proc); ProcessNaNsHelper(qn, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); } static void ProcessNaNsHelper(float n, float m, float expected) { CHECK(std::isnan(n) || std::isnan(m)); CHECK(std::isnan(expected)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaNs, and check that // they all propagate NaNs correctly. __ Fmov(s0, n); __ Fmov(s1, m); __ Fadd(s2, s0, s1); __ Fsub(s3, s0, s1); __ Fmul(s4, s0, s1); __ Fdiv(s5, s0, s1); __ Fmax(s6, s0, s1); __ Fmin(s7, s0, s1); END(); RUN(); CHECK_EQUAL_FP32(expected, s2); CHECK_EQUAL_FP32(expected, s3); CHECK_EQUAL_FP32(expected, s4); CHECK_EQUAL_FP32(expected, s5); CHECK_EQUAL_FP32(expected, s6); CHECK_EQUAL_FP32(expected, s7); } TEST(process_nans_float) { INIT_V8(); // Make sure that NaN propagation works correctly. float sn = base::bit_cast(0x7F951111); float sm = base::bit_cast(0x7F952222); float qn = base::bit_cast(0x7FEA1111); float qm = base::bit_cast(0x7FEA2222); CHECK(IsSignallingNaN(sn)); CHECK(IsSignallingNaN(sm)); CHECK(IsQuietNaN(qn)); CHECK(IsQuietNaN(qm)); // The input NaNs after passing through ProcessNaN. float sn_proc = base::bit_cast(0x7FD51111); float sm_proc = base::bit_cast(0x7FD52222); float qn_proc = qn; float qm_proc = qm; CHECK(IsQuietNaN(sn_proc)); CHECK(IsQuietNaN(sm_proc)); CHECK(IsQuietNaN(qn_proc)); CHECK(IsQuietNaN(qm_proc)); // Quiet NaNs are propagated. ProcessNaNsHelper(qn, 0, qn_proc); ProcessNaNsHelper(0, qm, qm_proc); ProcessNaNsHelper(qn, qm, qn_proc); // Signalling NaNs are propagated, and made quiet. ProcessNaNsHelper(sn, 0, sn_proc); ProcessNaNsHelper(0, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); // Signalling NaNs take precedence over quiet NaNs. ProcessNaNsHelper(sn, qm, sn_proc); ProcessNaNsHelper(qn, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); } static void DefaultNaNHelper(float n, float m, float a) { CHECK(std::isnan(n) || std::isnan(m) || std::isnan(a)); bool test_1op = std::isnan(n); bool test_2op = std::isnan(n) || std::isnan(m); SETUP(); START(); // Enable Default-NaN mode in the FPCR. __ Mrs(x0, FPCR); __ Orr(x1, x0, DN_mask); __ Msr(FPCR, x1); // Execute a number of instructions which all use ProcessNaNs, and check that // they all produce the default NaN. __ Fmov(s0, n); __ Fmov(s1, m); __ Fmov(s2, a); if (test_1op) { // Operations that always propagate NaNs unchanged, even signalling NaNs. __ Fmov(s10, s0); __ Fabs(s11, s0); __ Fneg(s12, s0); // Operations that use ProcessNaN. __ Fsqrt(s13, s0); __ Frinta(s14, s0); __ Frintn(s15, s0); __ Frintz(s16, s0); // Fcvt usually has special NaN handling, but it respects default-NaN mode. __ Fcvt(d17, s0); } if (test_2op) { __ Fadd(s18, s0, s1); __ Fsub(s19, s0, s1); __ Fmul(s20, s0, s1); __ Fdiv(s21, s0, s1); __ Fmax(s22, s0, s1); __ Fmin(s23, s0, s1); } __ Fmadd(s24, s0, s1, s2); __ Fmsub(s25, s0, s1, s2); __ Fnmadd(s26, s0, s1, s2); __ Fnmsub(s27, s0, s1, s2); // Restore FPCR. __ Msr(FPCR, x0); END(); RUN(); if (test_1op) { uint32_t n_raw = base::bit_cast(n); uint32_t sign_mask = static_cast(kSSignMask); CHECK_EQUAL_FP32(n, s10); CHECK_EQUAL_FP32(base::bit_cast(n_raw & ~sign_mask), s11); CHECK_EQUAL_FP32(base::bit_cast(n_raw ^ sign_mask), s12); CHECK_EQUAL_FP32(kFP32DefaultNaN, s13); CHECK_EQUAL_FP32(kFP32DefaultNaN, s14); CHECK_EQUAL_FP32(kFP32DefaultNaN, s15); CHECK_EQUAL_FP32(kFP32DefaultNaN, s16); CHECK_EQUAL_FP64(kFP64DefaultNaN, d17); } if (test_2op) { CHECK_EQUAL_FP32(kFP32DefaultNaN, s18); CHECK_EQUAL_FP32(kFP32DefaultNaN, s19); CHECK_EQUAL_FP32(kFP32DefaultNaN, s20); CHECK_EQUAL_FP32(kFP32DefaultNaN, s21); CHECK_EQUAL_FP32(kFP32DefaultNaN, s22); CHECK_EQUAL_FP32(kFP32DefaultNaN, s23); } CHECK_EQUAL_FP32(kFP32DefaultNaN, s24); CHECK_EQUAL_FP32(kFP32DefaultNaN, s25); CHECK_EQUAL_FP32(kFP32DefaultNaN, s26); CHECK_EQUAL_FP32(kFP32DefaultNaN, s27); } TEST(default_nan_float) { INIT_V8(); float sn = base::bit_cast(0x7F951111); float sm = base::bit_cast(0x7F952222); float sa = base::bit_cast(0x7F95AAAA); float qn = base::bit_cast(0x7FEA1111); float qm = base::bit_cast(0x7FEA2222); float qa = base::bit_cast(0x7FEAAAAA); CHECK(IsSignallingNaN(sn)); CHECK(IsSignallingNaN(sm)); CHECK(IsSignallingNaN(sa)); CHECK(IsQuietNaN(qn)); CHECK(IsQuietNaN(qm)); CHECK(IsQuietNaN(qa)); // - Signalling NaNs DefaultNaNHelper(sn, 0.0f, 0.0f); DefaultNaNHelper(0.0f, sm, 0.0f); DefaultNaNHelper(0.0f, 0.0f, sa); DefaultNaNHelper(sn, sm, 0.0f); DefaultNaNHelper(0.0f, sm, sa); DefaultNaNHelper(sn, 0.0f, sa); DefaultNaNHelper(sn, sm, sa); // - Quiet NaNs DefaultNaNHelper(qn, 0.0f, 0.0f); DefaultNaNHelper(0.0f, qm, 0.0f); DefaultNaNHelper(0.0f, 0.0f, qa); DefaultNaNHelper(qn, qm, 0.0f); DefaultNaNHelper(0.0f, qm, qa); DefaultNaNHelper(qn, 0.0f, qa); DefaultNaNHelper(qn, qm, qa); // - Mixed NaNs DefaultNaNHelper(qn, sm, sa); DefaultNaNHelper(sn, qm, sa); DefaultNaNHelper(sn, sm, qa); DefaultNaNHelper(qn, qm, sa); DefaultNaNHelper(sn, qm, qa); DefaultNaNHelper(qn, sm, qa); DefaultNaNHelper(qn, qm, qa); } static void DefaultNaNHelper(double n, double m, double a) { CHECK(std::isnan(n) || std::isnan(m) || std::isnan(a)); bool test_1op = std::isnan(n); bool test_2op = std::isnan(n) || std::isnan(m); SETUP(); START(); // Enable Default-NaN mode in the FPCR. __ Mrs(x0, FPCR); __ Orr(x1, x0, DN_mask); __ Msr(FPCR, x1); // Execute a number of instructions which all use ProcessNaNs, and check that // they all produce the default NaN. __ Fmov(d0, n); __ Fmov(d1, m); __ Fmov(d2, a); if (test_1op) { // Operations that always propagate NaNs unchanged, even signalling NaNs. __ Fmov(d10, d0); __ Fabs(d11, d0); __ Fneg(d12, d0); // Operations that use ProcessNaN. __ Fsqrt(d13, d0); __ Frinta(d14, d0); __ Frintn(d15, d0); __ Frintz(d16, d0); // Fcvt usually has special NaN handling, but it respects default-NaN mode. __ Fcvt(s17, d0); } if (test_2op) { __ Fadd(d18, d0, d1); __ Fsub(d19, d0, d1); __ Fmul(d20, d0, d1); __ Fdiv(d21, d0, d1); __ Fmax(d22, d0, d1); __ Fmin(d23, d0, d1); } __ Fmadd(d24, d0, d1, d2); __ Fmsub(d25, d0, d1, d2); __ Fnmadd(d26, d0, d1, d2); __ Fnmsub(d27, d0, d1, d2); // Restore FPCR. __ Msr(FPCR, x0); END(); RUN(); if (test_1op) { uint64_t n_raw = base::bit_cast(n); CHECK_EQUAL_FP64(n, d10); CHECK_EQUAL_FP64(base::bit_cast(n_raw & ~kDSignMask), d11); CHECK_EQUAL_FP64(base::bit_cast(n_raw ^ kDSignMask), d12); CHECK_EQUAL_FP64(kFP64DefaultNaN, d13); CHECK_EQUAL_FP64(kFP64DefaultNaN, d14); CHECK_EQUAL_FP64(kFP64DefaultNaN, d15); CHECK_EQUAL_FP64(kFP64DefaultNaN, d16); CHECK_EQUAL_FP32(kFP32DefaultNaN, s17); } if (test_2op) { CHECK_EQUAL_FP64(kFP64DefaultNaN, d18); CHECK_EQUAL_FP64(kFP64DefaultNaN, d19); CHECK_EQUAL_FP64(kFP64DefaultNaN, d20); CHECK_EQUAL_FP64(kFP64DefaultNaN, d21); CHECK_EQUAL_FP64(kFP64DefaultNaN, d22); CHECK_EQUAL_FP64(kFP64DefaultNaN, d23); } CHECK_EQUAL_FP64(kFP64DefaultNaN, d24); CHECK_EQUAL_FP64(kFP64DefaultNaN, d25); CHECK_EQUAL_FP64(kFP64DefaultNaN, d26); CHECK_EQUAL_FP64(kFP64DefaultNaN, d27); } TEST(default_nan_double) { INIT_V8(); double sn = base::bit_cast(0x7FF5555511111111); double sm = base::bit_cast(0x7FF5555522222222); double sa = base::bit_cast(0x7FF55555AAAAAAAA); double qn = base::bit_cast(0x7FFAAAAA11111111); double qm = base::bit_cast(0x7FFAAAAA22222222); double qa = base::bit_cast(0x7FFAAAAAAAAAAAAA); CHECK(IsSignallingNaN(sn)); CHECK(IsSignallingNaN(sm)); CHECK(IsSignallingNaN(sa)); CHECK(IsQuietNaN(qn)); CHECK(IsQuietNaN(qm)); CHECK(IsQuietNaN(qa)); // - Signalling NaNs DefaultNaNHelper(sn, 0.0, 0.0); DefaultNaNHelper(0.0, sm, 0.0); DefaultNaNHelper(0.0, 0.0, sa); DefaultNaNHelper(sn, sm, 0.0); DefaultNaNHelper(0.0, sm, sa); DefaultNaNHelper(sn, 0.0, sa); DefaultNaNHelper(sn, sm, sa); // - Quiet NaNs DefaultNaNHelper(qn, 0.0, 0.0); DefaultNaNHelper(0.0, qm, 0.0); DefaultNaNHelper(0.0, 0.0, qa); DefaultNaNHelper(qn, qm, 0.0); DefaultNaNHelper(0.0, qm, qa); DefaultNaNHelper(qn, 0.0, qa); DefaultNaNHelper(qn, qm, qa); // - Mixed NaNs DefaultNaNHelper(qn, sm, sa); DefaultNaNHelper(sn, qm, sa); DefaultNaNHelper(sn, sm, qa); DefaultNaNHelper(qn, qm, sa); DefaultNaNHelper(sn, qm, qa); DefaultNaNHelper(qn, sm, qa); DefaultNaNHelper(qn, qm, qa); } TEST(near_call_no_relocation) { INIT_V8(); SETUP(); START(); Label function; Label test; __ B(&test); __ Bind(&function); __ Mov(x0, 0x1); __ Ret(); __ Bind(&test); __ Mov(x0, 0x0); { Assembler::BlockConstPoolScope scope(&masm); int offset = (function.pos() - __ pc_offset()) / kInstrSize; __ near_call(offset, RelocInfo::NO_INFO); } END(); RUN(); CHECK_EQUAL_64(1, x0); } static void AbsHelperX(int64_t value) { int64_t expected; SETUP(); START(); Label fail; Label done; __ Mov(x0, 0); __ Mov(x1, value); if (value != kXMinInt) { expected = std::abs(value); Label next; // The result is representable. __ Abs(x10, x1); __ Abs(x11, x1, &fail); __ Abs(x12, x1, &fail, &next); __ Bind(&next); __ Abs(x13, x1, nullptr, &done); } else { // std::abs is undefined for kXMinInt but our implementation in the // MacroAssembler will return kXMinInt in such a case. expected = kXMinInt; Label next; // The result is not representable. __ Abs(x10, x1); __ Abs(x11, x1, nullptr, &fail); __ Abs(x12, x1, &next, &fail); __ Bind(&next); __ Abs(x13, x1, &done); } __ Bind(&fail); __ Mov(x0, -1); __ Bind(&done); END(); RUN(); CHECK_EQUAL_64(0, x0); CHECK_EQUAL_64(value, x1); CHECK_EQUAL_64(expected, x10); CHECK_EQUAL_64(expected, x11); CHECK_EQUAL_64(expected, x12); CHECK_EQUAL_64(expected, x13); } static void AbsHelperW(int32_t value) { int32_t expected; SETUP(); START(); Label fail; Label done; __ Mov(w0, 0); // TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL. // Once it is fixed, we should remove the cast. __ Mov(w1, static_cast(value)); if (value != kWMinInt) { expected = abs(value); Label next; // The result is representable. __ Abs(w10, w1); __ Abs(w11, w1, &fail); __ Abs(w12, w1, &fail, &next); __ Bind(&next); __ Abs(w13, w1, nullptr, &done); } else { // abs is undefined for kWMinInt but our implementation in the // MacroAssembler will return kWMinInt in such a case. expected = kWMinInt; Label next; // The result is not representable. __ Abs(w10, w1); __ Abs(w11, w1, nullptr, &fail); __ Abs(w12, w1, &next, &fail); __ Bind(&next); __ Abs(w13, w1, &done); } __ Bind(&fail); __ Mov(w0, -1); __ Bind(&done); END(); RUN(); CHECK_EQUAL_32(0, w0); CHECK_EQUAL_32(value, w1); CHECK_EQUAL_32(expected, w10); CHECK_EQUAL_32(expected, w11); CHECK_EQUAL_32(expected, w12); CHECK_EQUAL_32(expected, w13); } TEST(abs) { INIT_V8(); AbsHelperX(0); AbsHelperX(42); AbsHelperX(-42); AbsHelperX(kXMinInt); AbsHelperX(kXMaxInt); AbsHelperW(0); AbsHelperW(42); AbsHelperW(-42); AbsHelperW(kWMinInt); AbsHelperW(kWMaxInt); } TEST(pool_size) { INIT_V8(); SETUP(); // This test does not execute any code. It only tests that the size of the // pools is read correctly from the RelocInfo. rw_buffer_scope.emplace(*owned_buf); Label exit; __ b(&exit); const unsigned constant_pool_size = 312; const unsigned veneer_pool_size = 184; __ RecordConstPool(constant_pool_size); for (unsigned i = 0; i < constant_pool_size / 4; ++i) { __ dc32(0); } __ RecordVeneerPool(masm.pc_offset(), veneer_pool_size); for (unsigned i = 0; i < veneer_pool_size / kInstrSize; ++i) { __ nop(); } __ bind(&exit); CodeDesc desc; masm.GetCode(isolate, &desc); code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING) .set_self_reference(masm.CodeObject()) .Build(); unsigned pool_count = 0; int pool_mask = RelocInfo::ModeMask(RelocInfo::CONST_POOL) | RelocInfo::ModeMask(RelocInfo::VENEER_POOL); for (RelocIterator it(*code, pool_mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (RelocInfo::IsConstPool(info->rmode())) { CHECK_EQ(info->data(), constant_pool_size); ++pool_count; } if (RelocInfo::IsVeneerPool(info->rmode())) { CHECK_EQ(info->data(), veneer_pool_size); ++pool_count; } } CHECK_EQ(pool_count, 2); } TEST(jump_tables_forward) { // Test jump tables with forward jumps. const int kNumCases = 512; INIT_V8(); SETUP_SIZE(kNumCases * 5 * kInstrSize + 8192); START(); int32_t values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); int32_t results[kNumCases]; memset(results, 0, sizeof(results)); uintptr_t results_ptr = reinterpret_cast(results); Label loop; Label labels[kNumCases]; Label done; const Register& index = x0; static_assert(sizeof(results[0]) == 4); const Register& value = w1; const Register& target = x2; __ Mov(index, 0); __ Mov(target, results_ptr); __ Bind(&loop); { Assembler::BlockPoolsScope block_pools(&masm); Label base; __ Adr(x10, &base); __ Ldr(x11, MemOperand(x10, index, LSL, kSystemPointerSizeLog2)); __ Br(x11); __ Bind(&base); for (int i = 0; i < kNumCases; ++i) { __ dcptr(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ Bind(&labels[i], BranchTargetIdentifier::kBtiJump); __ Mov(value, values[i]); __ B(&done); } __ Bind(&done); __ Str(value, MemOperand(target, 4, PostIndex)); __ Add(index, index, 1); __ Cmp(index, kNumCases); __ B(ne, &loop); END(); RUN(); for (int i = 0; i < kNumCases; ++i) { CHECK_EQ(values[i], results[i]); } } TEST(jump_tables_backward) { // Test jump tables with backward jumps. const int kNumCases = 512; INIT_V8(); SETUP_SIZE(kNumCases * 5 * kInstrSize + 8192); START(); int32_t values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); int32_t results[kNumCases]; memset(results, 0, sizeof(results)); uintptr_t results_ptr = reinterpret_cast(results); Label loop; Label labels[kNumCases]; Label done; const Register& index = x0; static_assert(sizeof(results[0]) == 4); const Register& value = w1; const Register& target = x2; __ Mov(index, 0); __ Mov(target, results_ptr); __ B(&loop); for (int i = 0; i < kNumCases; ++i) { __ Bind(&labels[i], BranchTargetIdentifier::kBtiJump); __ Mov(value, values[i]); __ B(&done); } __ Bind(&loop); { Assembler::BlockPoolsScope block_pools(&masm); Label base; __ Adr(x10, &base); __ Ldr(x11, MemOperand(x10, index, LSL, kSystemPointerSizeLog2)); __ Br(x11); __ Bind(&base); for (int i = 0; i < kNumCases; ++i) { __ dcptr(&labels[i]); } } __ Bind(&done); __ Str(value, MemOperand(target, 4, PostIndex)); __ Add(index, index, 1); __ Cmp(index, kNumCases); __ B(ne, &loop); END(); RUN(); for (int i = 0; i < kNumCases; ++i) { CHECK_EQ(values[i], results[i]); } } TEST(internal_reference_linked) { // Test internal reference when they are linked in a label chain. INIT_V8(); SETUP(); START(); Label done; __ Mov(x0, 0); __ Cbnz(x0, &done); { Assembler::BlockPoolsScope block_pools(&masm); Label base; __ Adr(x10, &base); __ Ldr(x11, MemOperand(x10)); __ Br(x11); __ Bind(&base); __ dcptr(&done); } // Dead code, just to extend the label chain. __ B(&done); __ dcptr(&done); __ Tbz(x0, 1, &done); __ Bind(&done, BranchTargetIdentifier::kBtiJump); __ Mov(x0, 1); END(); RUN(); CHECK_EQUAL_64(0x1, x0); } } // namespace internal } // namespace v8 #undef __ #undef BUF_SIZE #undef SETUP #undef INIT_V8 #undef SETUP_SIZE #undef RESET #undef START_AFTER_RESET #undef START #undef RUN #undef END #undef CHECK_EQUAL_NZCV #undef CHECK_EQUAL_REGISTERS #undef CHECK_EQUAL_32 #undef CHECK_EQUAL_FP32 #undef CHECK_EQUAL_64 #undef CHECK_FULL_HEAP_OBJECT_IN_REGISTER #undef CHECK_NOT_ZERO_AND_NOT_EQUAL_64 #undef CHECK_EQUAL_FP64 #undef CHECK_EQUAL_128 #undef CHECK_CONSTANT_POOL_SIZE