// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_GLOBALS_H_ #define V8_GLOBALS_H_ namespace v8 { namespace internal { // Processor architecture detection. For more info on what's defined, see: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx // http://www.agner.org/optimize/calling_conventions.pdf // or with gcc, run: "echo | gcc -E -dM -" #if defined(_M_X64) || defined(__x86_64__) #define V8_HOST_ARCH_X64 1 #define V8_HOST_ARCH_64_BIT 1 #define V8_HOST_CAN_READ_UNALIGNED 1 #elif defined(_M_IX86) || defined(__i386__) #define V8_HOST_ARCH_IA32 1 #define V8_HOST_ARCH_32_BIT 1 #define V8_HOST_CAN_READ_UNALIGNED 1 #elif defined(__ARMEL__) #define V8_HOST_ARCH_ARM 1 #define V8_HOST_ARCH_32_BIT 1 // Some CPU-OS combinations allow unaligned access on ARM. We assume // that unaligned accesses are not allowed unless the build system // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. #if CAN_USE_UNALIGNED_ACCESSES #define V8_HOST_CAN_READ_UNALIGNED 1 #endif #elif defined(_MIPS_ARCH_MIPS32R2) #define V8_HOST_ARCH_MIPS 1 #define V8_HOST_ARCH_32_BIT 1 #else #error Host architecture was not detected as supported by v8 #endif // Target architecture detection. This may be set externally. If not, detect // in the same way as the host architecture, that is, target the native // environment as presented by the compiler. #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_IA32) && \ !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS) #if defined(_M_X64) || defined(__x86_64__) #define V8_TARGET_ARCH_X64 1 #elif defined(_M_IX86) || defined(__i386__) #define V8_TARGET_ARCH_IA32 1 #elif defined(__ARMEL__) #define V8_TARGET_ARCH_ARM 1 #elif defined(_MIPS_ARCH_MIPS32R2) #define V8_TARGET_ARCH_MIPS 1 #else #error Target architecture was not detected as supported by v8 #endif #endif // Check for supported combinations of host and target architectures. #if defined(V8_TARGET_ARCH_IA32) && !defined(V8_HOST_ARCH_IA32) #error Target architecture ia32 is only supported on ia32 host #endif #if defined(V8_TARGET_ARCH_X64) && !defined(V8_HOST_ARCH_X64) #error Target architecture x64 is only supported on x64 host #endif #if (defined(V8_TARGET_ARCH_ARM) && \ !(defined(V8_HOST_ARCH_IA32) || defined(V8_HOST_ARCH_ARM))) #error Target architecture arm is only supported on arm and ia32 host #endif #if (defined(V8_TARGET_ARCH_MIPS) && \ !(defined(V8_HOST_ARCH_IA32) || defined(V8_HOST_ARCH_MIPS))) #error Target architecture mips is only supported on mips and ia32 host #endif // Define unaligned read for the target architectures supporting it. #if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_IA32) #define V8_TARGET_CAN_READ_UNALIGNED 1 #elif V8_TARGET_ARCH_ARM // Some CPU-OS combinations allow unaligned access on ARM. We assume // that unaligned accesses are not allowed unless the build system // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. #if CAN_USE_UNALIGNED_ACCESSES #define V8_TARGET_CAN_READ_UNALIGNED 1 #endif #elif V8_TARGET_ARCH_MIPS #else #error Target architecture is not supported by v8 #endif // Support for alternative bool type. This is only enabled if the code is // compiled with USE_MYBOOL defined. This catches some nasty type bugs. // For instance, 'bool b = "false";' results in b == true! This is a hidden // source of bugs. // However, redefining the bool type does have some negative impact on some // platforms. It gives rise to compiler warnings (i.e. with // MSVC) in the API header files when mixing code that uses the standard // bool with code that uses the redefined version. // This does not actually belong in the platform code, but needs to be // defined here because the platform code uses bool, and platform.h is // include very early in the main include file. #ifdef USE_MYBOOL typedef unsigned int __my_bool__; #define bool __my_bool__ // use 'indirection' to avoid name clashes #endif typedef uint8_t byte; typedef byte* Address; // Define our own macros for writing 64-bit constants. This is less fragile // than defining __STDC_CONSTANT_MACROS before including , and it // works on compilers that don't have it (like MSVC). #if V8_HOST_ARCH_64_BIT #ifdef _MSC_VER #define V8_UINT64_C(x) (x ## UI64) #define V8_INT64_C(x) (x ## I64) #define V8_PTR_PREFIX "ll" #else // _MSC_VER #define V8_UINT64_C(x) (x ## UL) #define V8_INT64_C(x) (x ## L) #define V8_PTR_PREFIX "l" #endif // _MSC_VER #else // V8_HOST_ARCH_64_BIT #define V8_PTR_PREFIX "" #endif // V8_HOST_ARCH_64_BIT // The following macro works on both 32 and 64-bit platforms. // Usage: instead of writing 0x1234567890123456 // write V8_2PART_UINT64_C(0x12345678,90123456); #define V8_2PART_UINT64_C(a, b) (((static_cast(a) << 32) + 0x##b##u)) #define V8PRIxPTR V8_PTR_PREFIX "x" #define V8PRIdPTR V8_PTR_PREFIX "d" // Fix for Mac OS X defining uintptr_t as "unsigned long": #if defined(__APPLE__) && defined(__MACH__) #undef V8PRIxPTR #define V8PRIxPTR "lx" #endif #if (defined(__APPLE__) && defined(__MACH__)) || \ defined(__FreeBSD__) || defined(__OpenBSD__) #define USING_BSD_ABI #endif // Code-point values in Unicode 4.0 are 21 bits wide. typedef uint16_t uc16; typedef int32_t uc32; // ----------------------------------------------------------------------------- // Constants const int KB = 1024; const int MB = KB * KB; const int GB = KB * KB * KB; const int kMaxInt = 0x7FFFFFFF; const int kMinInt = -kMaxInt - 1; const uint32_t kMaxUInt32 = 0xFFFFFFFFu; const int kCharSize = sizeof(char); // NOLINT const int kShortSize = sizeof(short); // NOLINT const int kIntSize = sizeof(int); // NOLINT const int kDoubleSize = sizeof(double); // NOLINT const int kPointerSize = sizeof(void*); // NOLINT const int kIntptrSize = sizeof(intptr_t); // NOLINT #if V8_HOST_ARCH_64_BIT const int kPointerSizeLog2 = 3; const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000); #else const int kPointerSizeLog2 = 2; const intptr_t kIntptrSignBit = 0x80000000; #endif // Mask for the sign bit in a smi. const intptr_t kSmiSignMask = kIntptrSignBit; const int kObjectAlignmentBits = kPointerSizeLog2; const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; const intptr_t kObjectAlignmentMask = kObjectAlignment - 1; // Desired alignment for pointers. const intptr_t kPointerAlignment = (1 << kPointerSizeLog2); const intptr_t kPointerAlignmentMask = kPointerAlignment - 1; // Desired alignment for maps. #if V8_HOST_ARCH_64_BIT const intptr_t kMapAlignmentBits = kObjectAlignmentBits; #else const intptr_t kMapAlignmentBits = kObjectAlignmentBits + 3; #endif const intptr_t kMapAlignment = (1 << kMapAlignmentBits); const intptr_t kMapAlignmentMask = kMapAlignment - 1; // Tag information for Failure. const int kFailureTag = 3; const int kFailureTagSize = 2; const intptr_t kFailureTagMask = (1 << kFailureTagSize) - 1; const int kBitsPerByte = 8; const int kBitsPerByteLog2 = 3; const int kBitsPerPointer = kPointerSize * kBitsPerByte; const int kBitsPerInt = kIntSize * kBitsPerByte; // IEEE 754 single precision floating point number bit layout. const uint32_t kBinary32SignMask = 0x80000000u; const uint32_t kBinary32ExponentMask = 0x7f800000u; const uint32_t kBinary32MantissaMask = 0x007fffffu; const int kBinary32ExponentBias = 127; const int kBinary32MaxExponent = 0xFE; const int kBinary32MinExponent = 0x01; const int kBinary32MantissaBits = 23; const int kBinary32ExponentShift = 23; // Zap-value: The value used for zapping dead objects. // Should be a recognizable hex value tagged as a heap object pointer. #ifdef V8_HOST_ARCH_64_BIT const Address kZapValue = reinterpret_cast
(V8_UINT64_C(0xdeadbeedbeadbeed)); const Address kHandleZapValue = reinterpret_cast
(V8_UINT64_C(0x1baddead0baddead)); const Address kFromSpaceZapValue = reinterpret_cast
(V8_UINT64_C(0x1beefdad0beefdad)); #else const Address kZapValue = reinterpret_cast
(0xdeadbeed); const Address kHandleZapValue = reinterpret_cast
(0xbaddead); const Address kFromSpaceZapValue = reinterpret_cast
(0xbeefdad); #endif // Number of bits to represent the page size for paged spaces. The value of 13 // gives 8K bytes per page. const int kPageSizeBits = 13; // On Intel architecture, cache line size is 64 bytes. // On ARM it may be less (32 bytes), but as far this constant is // used for aligning data, it doesn't hurt to align on a greater value. const int kProcessorCacheLineSize = 64; // Constants relevant to double precision floating point numbers. // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no // other bits set. const uint64_t kQuietNaNMask = static_cast(0xfff) << 51; // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes // (sorted alphabetically) class AccessorInfo; class Allocation; class Arguments; class Assembler; class AssertNoAllocation; class BreakableStatement; class Code; class CodeGenerator; class CodeStub; class Context; class Debug; class Debugger; class DebugInfo; class Descriptor; class DescriptorArray; class Expression; class ExternalReference; class FixedArray; class FunctionEntry; class FunctionLiteral; class FunctionTemplateInfo; class NumberDictionary; class StringDictionary; class FreeStoreAllocationPolicy; template class Handle; class Heap; class HeapObject; class IC; class InterceptorInfo; class IterationStatement; class Array; class JSArray; class JSFunction; class JSObject; class LargeObjectSpace; template class List; class LookupResult; class MacroAssembler; class Map; class MapSpace; class MarkCompactCollector; class NewSpace; class NodeVisitor; class Object; class OldSpace; class Property; class Proxy; class RegExpNode; struct RegExpCompileData; class RegExpTree; class RegExpCompiler; class RegExpVisitor; class Scope; template class ScopeInfo; class Script; class Slot; class Smi; template class SplayTree; class Statement; class String; class Struct; class SwitchStatement; class AstVisitor; class Variable; class VariableProxy; class RelocInfo; class Deserializer; class MessageLocation; class ObjectGroup; class TickSample; class VirtualMemory; class Mutex; class ZoneScopeInfo; typedef bool (*WeakSlotCallback)(Object** pointer); // ----------------------------------------------------------------------------- // Miscellaneous // NOTE: SpaceIterator depends on AllocationSpace enumeration values being // consecutive. enum AllocationSpace { NEW_SPACE, // Semispaces collected with copying collector. OLD_POINTER_SPACE, // May contain pointers to new space. OLD_DATA_SPACE, // Must not have pointers to new space. CODE_SPACE, // No pointers to new space, marked executable. MAP_SPACE, // Only and all map objects. CELL_SPACE, // Only and all cell objects. LO_SPACE, // Promoted large objects. FIRST_SPACE = NEW_SPACE, LAST_SPACE = LO_SPACE, FIRST_PAGED_SPACE = OLD_POINTER_SPACE, LAST_PAGED_SPACE = CELL_SPACE }; const int kSpaceTagSize = 3; const int kSpaceTagMask = (1 << kSpaceTagSize) - 1; // A flag that indicates whether objects should be pretenured when // allocated (allocated directly into the old generation) or not // (allocated in the young generation if the object size and type // allows). enum PretenureFlag { NOT_TENURED, TENURED }; enum GarbageCollector { SCAVENGER, MARK_COMPACTOR }; enum Executability { NOT_EXECUTABLE, EXECUTABLE }; enum VisitMode { VISIT_ALL, VISIT_ALL_IN_SCAVENGE, VISIT_ONLY_STRONG }; // Flag indicating whether code is built into the VM (one of the natives files). enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE }; // A CodeDesc describes a buffer holding instructions and relocation // information. The instructions start at the beginning of the buffer // and grow forward, the relocation information starts at the end of // the buffer and grows backward. // // |<--------------- buffer_size ---------------->| // |<-- instr_size -->| |<-- reloc_size -->| // +==================+========+==================+ // | instructions | free | reloc info | // +==================+========+==================+ // ^ // | // buffer struct CodeDesc { byte* buffer; int buffer_size; int instr_size; int reloc_size; Assembler* origin; }; // Callback function on object slots, used for iterating heap object slots in // HeapObjects, global pointers to heap objects, etc. The callback allows the // callback function to change the value of the slot. typedef void (*ObjectSlotCallback)(HeapObject** pointer); // Callback function used for iterating objects in heap spaces, // for example, scanning heap objects. typedef int (*HeapObjectCallback)(HeapObject* obj); // Callback function used for checking constraints when copying/relocating // objects. Returns true if an object can be copied/relocated from its // old_addr to a new_addr. typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr); // Callback function on inline caches, used for iterating over inline caches // in compiled code. typedef void (*InlineCacheCallback)(Code* code, Address ic); // State for inline cache call sites. Aliased as IC::State. enum InlineCacheState { // Has never been executed. UNINITIALIZED, // Has been executed but monomorhic state has been delayed. PREMONOMORPHIC, // Has been executed and only one receiver type has been seen. MONOMORPHIC, // Like MONOMORPHIC but check failed due to prototype. MONOMORPHIC_PROTOTYPE_FAILURE, // Multiple receiver types have been seen. MEGAMORPHIC, // Special states for debug break or step in prepare stubs. DEBUG_BREAK, DEBUG_PREPARE_STEP_IN }; enum InLoopFlag { NOT_IN_LOOP, IN_LOOP }; enum CallFunctionFlags { NO_CALL_FUNCTION_FLAGS = 0, RECEIVER_MIGHT_BE_VALUE = 1 << 0 // Receiver might not be a JSObject. }; // Type of properties. // Order of properties is significant. // Must fit in the BitField PropertyDetails::TypeField. // A copy of this is in mirror-debugger.js. enum PropertyType { NORMAL = 0, // only in slow mode FIELD = 1, // only in fast mode CONSTANT_FUNCTION = 2, // only in fast mode CALLBACKS = 3, INTERCEPTOR = 4, // only in lookup results, not in descriptors. MAP_TRANSITION = 5, // only in fast mode CONSTANT_TRANSITION = 6, // only in fast mode NULL_DESCRIPTOR = 7, // only in fast mode // All properties before MAP_TRANSITION are real. FIRST_PHANTOM_PROPERTY_TYPE = MAP_TRANSITION, // There are no IC stubs for NULL_DESCRIPTORS. Therefore, // NULL_DESCRIPTOR can be used as the type flag for IC stubs for // nonexistent properties. NONEXISTENT = NULL_DESCRIPTOR }; // Whether to remove map transitions and constant transitions from a // DescriptorArray. enum TransitionFlag { REMOVE_TRANSITIONS, KEEP_TRANSITIONS }; // Union used for fast testing of specific double values. union DoubleRepresentation { double value; int64_t bits; DoubleRepresentation(double x) { value = x; } }; // AccessorCallback struct AccessorDescriptor { Object* (*getter)(Object* object, void* data); Object* (*setter)(JSObject* object, Object* value, void* data); void* data; }; // Logging and profiling. // A StateTag represents a possible state of the VM. When compiled with // ENABLE_VMSTATE_TRACKING, the logger maintains a stack of these. // Creating a VMState object enters a state by pushing on the stack, and // destroying a VMState object leaves a state by popping the current state // from the stack. #define STATE_TAG_LIST(V) \ V(JS) \ V(GC) \ V(COMPILER) \ V(OTHER) \ V(EXTERNAL) enum StateTag { #define DEF_STATE_TAG(name) name, STATE_TAG_LIST(DEF_STATE_TAG) #undef DEF_STATE_TAG // Pseudo-types. state_tag_count }; // ----------------------------------------------------------------------------- // Macros // Testers for test. #define HAS_SMI_TAG(value) \ ((reinterpret_cast(value) & kSmiTagMask) == kSmiTag) #define HAS_FAILURE_TAG(value) \ ((reinterpret_cast(value) & kFailureTagMask) == kFailureTag) // OBJECT_SIZE_ALIGN returns the value aligned HeapObject size #define OBJECT_SIZE_ALIGN(value) \ (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask) // POINTER_SIZE_ALIGN returns the value aligned as a pointer. #define POINTER_SIZE_ALIGN(value) \ (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask) // MAP_SIZE_ALIGN returns the value aligned as a map pointer. #define MAP_SIZE_ALIGN(value) \ (((value) + kMapAlignmentMask) & ~kMapAlignmentMask) // The expression OFFSET_OF(type, field) computes the byte-offset // of the specified field relative to the containing type. This // corresponds to 'offsetof' (in stddef.h), except that it doesn't // use 0 or NULL, which causes a problem with the compiler warnings // we have enabled (which is also why 'offsetof' doesn't seem to work). // Here we simply use the non-zero value 4, which seems to work. #define OFFSET_OF(type, field) \ (reinterpret_cast(&(reinterpret_cast(4)->field)) - 4) // The expression ARRAY_SIZE(a) is a compile-time constant of type // size_t which represents the number of elements of the given // array. You should only use ARRAY_SIZE on statically allocated // arrays. #define ARRAY_SIZE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast(!(sizeof(a) % sizeof(*(a))))) // The USE(x) template is used to silence C++ compiler warnings // issued for (yet) unused variables (typically parameters). template static inline void USE(T) { } // FUNCTION_ADDR(f) gets the address of a C function f. #define FUNCTION_ADDR(f) \ (reinterpret_cast(reinterpret_cast(f))) // FUNCTION_CAST(addr) casts an address into a function // of type F. Used to invoke generated code from within C. template F FUNCTION_CAST(Address addr) { return reinterpret_cast(reinterpret_cast(addr)); } // A macro to disallow the evil copy constructor and operator= functions // This should be used in the private: declarations for a class #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName(); \ DISALLOW_COPY_AND_ASSIGN(TypeName) // Support for tracking C++ memory allocation. Insert TRACK_MEMORY("Fisk") // inside a C++ class and new and delete will be overloaded so logging is // performed. // This file (globals.h) is included before log.h, so we use direct calls to // the Logger rather than the LOG macro. #ifdef DEBUG #define TRACK_MEMORY(name) \ void* operator new(size_t size) { \ void* result = ::operator new(size); \ Logger::NewEvent(name, result, size); \ return result; \ } \ void operator delete(void* object) { \ Logger::DeleteEvent(name, object); \ ::operator delete(object); \ } #else #define TRACK_MEMORY(name) #endif // define used for helping GCC to make better inlining. Don't bother for debug // builds. On GCC 3.4.5 using __attribute__((always_inline)) causes compilation // errors in debug build. #if defined(__GNUC__) && !defined(DEBUG) #if (__GNUC__ >= 4) #define INLINE(header) inline header __attribute__((always_inline)) #else #define INLINE(header) inline __attribute__((always_inline)) header #endif #else #define INLINE(header) inline header #endif // Feature flags bit positions. They are mostly based on the CPUID spec. // (We assign CPUID itself to one of the currently reserved bits -- // feel free to change this if needed.) enum CpuFeature { SSE3 = 32, // x86 SSE2 = 26, // x86 CMOV = 15, // x86 RDTSC = 4, // x86 CPUID = 10, // x86 VFP3 = 1, // ARM ARMv7 = 2, // ARM SAHF = 0}; // x86 } } // namespace v8::internal #endif // V8_GLOBALS_H_