// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen.h" #include "codegen-inl.h" #include "virtual-frame.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // VirtualFrame implementation. #define __ masm_-> // On entry to a function, the virtual frame already contains the // receiver and the parameters. All initial frame elements are in // memory. VirtualFrame::VirtualFrame(CodeGenerator* cgen) : cgen_(cgen), masm_(cgen->masm()), elements_(0), parameter_count_(cgen->scope()->num_parameters()), local_count_(0), stack_pointer_(parameter_count_), // 0-based index of TOS. frame_pointer_(kIllegalIndex) { for (int i = 0; i < parameter_count_ + 1; i++) { elements_.Add(FrameElement::MemoryElement()); } } // Clear the dirty bit for the element at a given index if it is a // valid element. The stack address corresponding to the element must // be allocated on the physical stack, or the first element above the // stack pointer so it can be allocated by a single push instruction. void VirtualFrame::RawSyncElementAt(int index) { FrameElement element = elements_[index]; if (!element.is_valid() || element.is_synced()) return; if (index <= stack_pointer_) { // Emit code to write elements below the stack pointer to their // (already allocated) stack address. switch (element.type()) { case FrameElement::INVALID: // Fall through. case FrameElement::MEMORY: // There was an early bailout for invalid and synced elements // (memory elements are always synced). UNREACHABLE(); break; case FrameElement::REGISTER: __ str(element.reg(), MemOperand(fp, fp_relative(index))); break; case FrameElement::CONSTANT: { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), Operand(element.handle())); __ str(temp.reg(), MemOperand(fp, fp_relative(index))); break; } case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing_element = elements_[backing_index]; if (backing_element.is_memory()) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ ldr(temp.reg(), MemOperand(fp, fp_relative(backing_index))); __ str(temp.reg(), MemOperand(fp, fp_relative(index))); } else { ASSERT(backing_element.is_register()); __ str(backing_element.reg(), MemOperand(fp, fp_relative(index))); } break; } } } else { // Push elements above the stack pointer to allocate space and // sync them. Space should have already been allocated in the // actual frame for all the elements below this one. ASSERT(index == stack_pointer_ + 1); stack_pointer_++; switch (element.type()) { case FrameElement::INVALID: // Fall through. case FrameElement::MEMORY: // There was an early bailout for invalid and synced elements // (memory elements are always synced). UNREACHABLE(); break; case FrameElement::REGISTER: __ push(element.reg()); break; case FrameElement::CONSTANT: { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), Operand(element.handle())); __ push(temp.reg()); break; } case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing = elements_[backing_index]; ASSERT(backing.is_memory() || backing.is_register()); if (backing.is_memory()) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ ldr(temp.reg(), MemOperand(fp, fp_relative(backing_index))); __ push(temp.reg()); } else { __ push(backing.reg()); } break; } } } elements_[index].set_sync(); } void VirtualFrame::MergeTo(VirtualFrame* expected) { Comment cmnt(masm_, "[ Merge frame"); // We should always be merging the code generator's current frame to an // expected frame. ASSERT(cgen_->frame() == this); // Adjust the stack pointer upward (toward the top of the virtual // frame) if necessary. if (stack_pointer_ < expected->stack_pointer_) { int difference = expected->stack_pointer_ - stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ sub(sp, sp, Operand(difference * kPointerSize)); } MergeMoveRegistersToMemory(expected); MergeMoveRegistersToRegisters(expected); MergeMoveMemoryToRegisters(expected); // Fix any sync bit problems. for (int i = 0; i <= stack_pointer_; i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (source.is_synced() && !target.is_synced()) { elements_[i].clear_sync(); } else if (!source.is_synced() && target.is_synced()) { SyncElementAt(i); } } // Adjust the stack point downard if necessary. if (stack_pointer_ > expected->stack_pointer_) { int difference = stack_pointer_ - expected->stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ add(sp, sp, Operand(difference * kPointerSize)); } // At this point, the frames should be identical. ASSERT(Equals(expected)); } void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) { ASSERT(stack_pointer_ >= expected->stack_pointer_); // Move registers, constants, and copies to memory. Perform moves // from the top downward in the frame in order to leave the backing // stores of copies in registers. // // Moving memory-backed copies to memory requires a spare register // for the memory-to-memory moves. Since we are performing a merge, // we use esi (which is already saved in the frame). We keep track // of the index of the frame element esi is caching or kIllegalIndex // if esi has not been disturbed. for (int i = 0; i < elements_.length(); i++) { ASSERT(elements_[i].is_memory()); ASSERT(expected->elements_[i].is_memory()); } } void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) { } void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame *expected) { } void VirtualFrame::Enter() { Comment cmnt(masm_, "[ Enter JS frame"); #ifdef DEBUG // Verify that r1 contains a JS function. The following code relies // on r2 being available for use. { Label map_check, done; __ tst(r1, Operand(kSmiTagMask)); __ b(ne, &map_check); __ stop("VirtualFrame::Enter - r1 is not a function (smi check)."); __ bind(&map_check); __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r2, Operand(JS_FUNCTION_TYPE)); __ b(eq, &done); __ stop("VirtualFrame::Enter - r1 is not a function (map check)."); __ bind(&done); } #endif // DEBUG // We are about to push four values to the frame. Adjust(4); __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); // Adjust FP to point to saved FP. frame_pointer_ = elements_.length() - 2; __ add(fp, sp, Operand(2 * kPointerSize)); cgen_->allocator()->Unuse(r1); cgen_->allocator()->Unuse(lr); } void VirtualFrame::Exit() { Comment cmnt(masm_, "[ Exit JS frame"); // Drop the execution stack down to the frame pointer and restore the caller // frame pointer and return address. __ mov(sp, fp); __ ldm(ia_w, sp, fp.bit() | lr.bit()); } void VirtualFrame::AllocateStackSlots(int count) { ASSERT(height() == 0); local_count_ = count; Adjust(count); if (count > 0) { Comment cmnt(masm_, "[ Allocate space for locals"); // Initialize stack slots with 'undefined' value. __ mov(ip, Operand(Factory::undefined_value())); for (int i = 0; i < count; i++) { __ push(ip); } } } void VirtualFrame::SaveContextRegister() { UNIMPLEMENTED(); } void VirtualFrame::RestoreContextRegister() { UNIMPLEMENTED(); } void VirtualFrame::PushReceiverSlotAddress() { UNIMPLEMENTED(); } // Before changing an element which is copied, adjust so that the // first copy becomes the new backing store and all the other copies // are updated. If the original was in memory, the new backing store // is allocated to a register. Return a copy of the new backing store // or an invalid element if the original was not a copy. FrameElement VirtualFrame::AdjustCopies(int index) { UNIMPLEMENTED(); return FrameElement::InvalidElement(); } void VirtualFrame::TakeFrameSlotAt(int index) { UNIMPLEMENTED(); } void VirtualFrame::StoreToFrameSlotAt(int index) { UNIMPLEMENTED(); } void VirtualFrame::PushTryHandler(HandlerType type) { // Grow the expression stack by handler size less one (the return address // is already pushed by a call instruction). Adjust(kHandlerSize - 1); __ PushTryHandler(IN_JAVASCRIPT, type); } Result VirtualFrame::RawCallStub(CodeStub* stub, int frame_arg_count) { ASSERT(cgen_->HasValidEntryRegisters()); __ CallStub(stub); Result result = cgen_->allocator()->Allocate(r0); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallRuntime(Runtime::Function* f, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); ASSERT(cgen_->HasValidEntryRegisters()); __ CallRuntime(f, frame_arg_count); Result result = cgen_->allocator()->Allocate(r0); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); ASSERT(cgen_->HasValidEntryRegisters()); __ CallRuntime(id, frame_arg_count); Result result = cgen_->allocator()->Allocate(r0); ASSERT(result.is_valid()); return result; } Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags, Result* arg_count_register, int frame_arg_count) { ASSERT(arg_count_register->reg().is(r0)); PrepareForCall(frame_arg_count, frame_arg_count); arg_count_register->Unuse(); __ InvokeBuiltin(id, flags); Result result = cgen_->allocator()->Allocate(r0); return result; } Result VirtualFrame::RawCallCodeObject(Handle code, RelocInfo::Mode rmode) { ASSERT(cgen_->HasValidEntryRegisters()); __ Call(code, rmode); Result result = cgen_->allocator()->Allocate(r0); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallCodeObject(Handle code, RelocInfo::Mode rmode, Result* arg, int dropped_args) { int spilled_args = 0; switch (code->kind()) { case Code::LOAD_IC: ASSERT(arg->reg().is(r2)); ASSERT(dropped_args == 0); spilled_args = 1; break; case Code::KEYED_STORE_IC: ASSERT(arg->reg().is(r0)); ASSERT(dropped_args == 0); spilled_args = 2; break; default: // No other types of code objects are called with values // in exactly one register. UNREACHABLE(); break; } PrepareForCall(spilled_args, dropped_args); arg->Unuse(); return RawCallCodeObject(code, rmode); } Result VirtualFrame::CallCodeObject(Handle code, RelocInfo::Mode rmode, Result* arg0, Result* arg1, int dropped_args) { int spilled_args = 1; switch (code->kind()) { case Code::STORE_IC: ASSERT(arg0->reg().is(r0)); ASSERT(arg1->reg().is(r2)); ASSERT(dropped_args == 0); spilled_args = 1; break; case Code::BUILTIN: ASSERT(*code == Builtins::builtin(Builtins::JSConstructCall)); ASSERT(arg0->reg().is(r0)); ASSERT(arg1->reg().is(r1)); spilled_args = dropped_args + 1; break; default: // No other types of code objects are called with values // in exactly two registers. UNREACHABLE(); break; } PrepareForCall(spilled_args, dropped_args); arg0->Unuse(); arg1->Unuse(); return RawCallCodeObject(code, rmode); } void VirtualFrame::Drop(int count) { ASSERT(height() >= count); int num_virtual_elements = (elements_.length() - 1) - stack_pointer_; // Emit code to lower the stack pointer if necessary. if (num_virtual_elements < count) { int num_dropped = count - num_virtual_elements; stack_pointer_ -= num_dropped; __ add(sp, sp, Operand(num_dropped * kPointerSize)); } // Discard elements from the virtual frame and free any registers. for (int i = 0; i < count; i++) { FrameElement dropped = elements_.RemoveLast(); if (dropped.is_register()) { Unuse(dropped.reg()); } } } Result VirtualFrame::Pop() { UNIMPLEMENTED(); Result invalid(cgen_); return invalid; } void VirtualFrame::EmitPop(Register reg) { ASSERT(stack_pointer_ == elements_.length() - 1); stack_pointer_--; elements_.RemoveLast(); __ pop(reg); } void VirtualFrame::EmitPush(Register reg) { ASSERT(stack_pointer_ == elements_.length() - 1); elements_.Add(FrameElement::MemoryElement()); stack_pointer_++; __ push(reg); } #undef __ } } // namespace v8::internal