// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/lithium.h" #include "src/v8.h" #include "src/scopes.h" #include "src/serialize.h" #if V8_TARGET_ARCH_IA32 #include "src/ia32/lithium-ia32.h" // NOLINT #include "src/ia32/lithium-codegen-ia32.h" // NOLINT #elif V8_TARGET_ARCH_X64 #include "src/x64/lithium-x64.h" // NOLINT #include "src/x64/lithium-codegen-x64.h" // NOLINT #elif V8_TARGET_ARCH_ARM #include "src/arm/lithium-arm.h" // NOLINT #include "src/arm/lithium-codegen-arm.h" // NOLINT #elif V8_TARGET_ARCH_PPC #include "src/ppc/lithium-ppc.h" // NOLINT #include "src/ppc/lithium-codegen-ppc.h" // NOLINT #elif V8_TARGET_ARCH_MIPS #include "src/mips/lithium-mips.h" // NOLINT #include "src/mips/lithium-codegen-mips.h" // NOLINT #elif V8_TARGET_ARCH_ARM64 #include "src/arm64/lithium-arm64.h" // NOLINT #include "src/arm64/lithium-codegen-arm64.h" // NOLINT #elif V8_TARGET_ARCH_MIPS64 #include "src/mips64/lithium-mips64.h" // NOLINT #include "src/mips64/lithium-codegen-mips64.h" // NOLINT #elif V8_TARGET_ARCH_X87 #include "src/x87/lithium-x87.h" // NOLINT #include "src/x87/lithium-codegen-x87.h" // NOLINT #else #error "Unknown architecture." #endif namespace v8 { namespace internal { void LOperand::PrintTo(StringStream* stream) { LUnallocated* unalloc = NULL; switch (kind()) { case INVALID: stream->Add("(0)"); break; case UNALLOCATED: unalloc = LUnallocated::cast(this); stream->Add("v%d", unalloc->virtual_register()); if (unalloc->basic_policy() == LUnallocated::FIXED_SLOT) { stream->Add("(=%dS)", unalloc->fixed_slot_index()); break; } switch (unalloc->extended_policy()) { case LUnallocated::NONE: break; case LUnallocated::FIXED_REGISTER: { int reg_index = unalloc->fixed_register_index(); if (reg_index < 0 || reg_index >= Register::kMaxNumAllocatableRegisters) { stream->Add("(=invalid_reg#%d)", reg_index); } else { const char* register_name = Register::AllocationIndexToString(reg_index); stream->Add("(=%s)", register_name); } break; } case LUnallocated::FIXED_DOUBLE_REGISTER: { int reg_index = unalloc->fixed_register_index(); if (reg_index < 0 || reg_index >= DoubleRegister::kMaxNumAllocatableRegisters) { stream->Add("(=invalid_double_reg#%d)", reg_index); } else { const char* double_register_name = DoubleRegister::AllocationIndexToString(reg_index); stream->Add("(=%s)", double_register_name); } break; } case LUnallocated::MUST_HAVE_REGISTER: stream->Add("(R)"); break; case LUnallocated::MUST_HAVE_DOUBLE_REGISTER: stream->Add("(D)"); break; case LUnallocated::WRITABLE_REGISTER: stream->Add("(WR)"); break; case LUnallocated::SAME_AS_FIRST_INPUT: stream->Add("(1)"); break; case LUnallocated::ANY: stream->Add("(-)"); break; } break; case CONSTANT_OPERAND: stream->Add("[constant:%d]", index()); break; case STACK_SLOT: stream->Add("[stack:%d]", index()); break; case DOUBLE_STACK_SLOT: stream->Add("[double_stack:%d]", index()); break; case REGISTER: { int reg_index = index(); if (reg_index < 0 || reg_index >= Register::kMaxNumAllocatableRegisters) { stream->Add("(=invalid_reg#%d|R)", reg_index); } else { stream->Add("[%s|R]", Register::AllocationIndexToString(reg_index)); } break; } case DOUBLE_REGISTER: { int reg_index = index(); if (reg_index < 0 || reg_index >= DoubleRegister::kMaxNumAllocatableRegisters) { stream->Add("(=invalid_double_reg#%d|R)", reg_index); } else { stream->Add("[%s|R]", DoubleRegister::AllocationIndexToString(reg_index)); } break; } } } template LSubKindOperand* LSubKindOperand::cache = NULL; template void LSubKindOperand::SetUpCache() { if (cache) return; cache = new LSubKindOperand[kNumCachedOperands]; for (int i = 0; i < kNumCachedOperands; i++) { cache[i].ConvertTo(kOperandKind, i); } } template void LSubKindOperand::TearDownCache() { delete[] cache; cache = NULL; } void LOperand::SetUpCaches() { #define LITHIUM_OPERAND_SETUP(name, type, number) L##name::SetUpCache(); LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_SETUP) #undef LITHIUM_OPERAND_SETUP } void LOperand::TearDownCaches() { #define LITHIUM_OPERAND_TEARDOWN(name, type, number) L##name::TearDownCache(); LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_TEARDOWN) #undef LITHIUM_OPERAND_TEARDOWN } bool LParallelMove::IsRedundant() const { for (int i = 0; i < move_operands_.length(); ++i) { if (!move_operands_[i].IsRedundant()) return false; } return true; } void LParallelMove::PrintDataTo(StringStream* stream) const { bool first = true; for (int i = 0; i < move_operands_.length(); ++i) { if (!move_operands_[i].IsEliminated()) { LOperand* source = move_operands_[i].source(); LOperand* destination = move_operands_[i].destination(); if (!first) stream->Add(" "); first = false; if (source->Equals(destination)) { destination->PrintTo(stream); } else { destination->PrintTo(stream); stream->Add(" = "); source->PrintTo(stream); } stream->Add(";"); } } } void LEnvironment::PrintTo(StringStream* stream) { stream->Add("[id=%d|", ast_id().ToInt()); if (deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { stream->Add("deopt_id=%d|", deoptimization_index()); } stream->Add("parameters=%d|", parameter_count()); stream->Add("arguments_stack_height=%d|", arguments_stack_height()); for (int i = 0; i < values_.length(); ++i) { if (i != 0) stream->Add(";"); if (values_[i] == NULL) { stream->Add("[hole]"); } else { values_[i]->PrintTo(stream); } } stream->Add("]"); } void LPointerMap::RecordPointer(LOperand* op, Zone* zone) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); pointer_operands_.Add(op, zone); } void LPointerMap::RemovePointer(LOperand* op) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); for (int i = 0; i < pointer_operands_.length(); ++i) { if (pointer_operands_[i]->Equals(op)) { pointer_operands_.Remove(i); --i; } } } void LPointerMap::RecordUntagged(LOperand* op, Zone* zone) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); untagged_operands_.Add(op, zone); } void LPointerMap::PrintTo(StringStream* stream) { stream->Add("{"); for (int i = 0; i < pointer_operands_.length(); ++i) { if (i != 0) stream->Add(";"); pointer_operands_[i]->PrintTo(stream); } stream->Add("}"); } int StackSlotOffset(int index) { if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return -(index + 1) * kPointerSize - StandardFrameConstants::kFixedFrameSizeFromFp; } else { // Incoming parameter. Skip the return address. return -(index + 1) * kPointerSize + kFPOnStackSize + kPCOnStackSize; } } LChunk::LChunk(CompilationInfo* info, HGraph* graph) : spill_slot_count_(0), info_(info), graph_(graph), instructions_(32, info->zone()), pointer_maps_(8, info->zone()), inlined_closures_(1, info->zone()), deprecation_dependencies_(MapLess(), MapAllocator(info->zone())), stability_dependencies_(MapLess(), MapAllocator(info->zone())) {} LLabel* LChunk::GetLabel(int block_id) const { HBasicBlock* block = graph_->blocks()->at(block_id); int first_instruction = block->first_instruction_index(); return LLabel::cast(instructions_[first_instruction]); } int LChunk::LookupDestination(int block_id) const { LLabel* cur = GetLabel(block_id); while (cur->replacement() != NULL) { cur = cur->replacement(); } return cur->block_id(); } Label* LChunk::GetAssemblyLabel(int block_id) const { LLabel* label = GetLabel(block_id); DCHECK(!label->HasReplacement()); return label->label(); } void LChunk::MarkEmptyBlocks() { LPhase phase("L_Mark empty blocks", this); for (int i = 0; i < graph()->blocks()->length(); ++i) { HBasicBlock* block = graph()->blocks()->at(i); int first = block->first_instruction_index(); int last = block->last_instruction_index(); LInstruction* first_instr = instructions()->at(first); LInstruction* last_instr = instructions()->at(last); LLabel* label = LLabel::cast(first_instr); if (last_instr->IsGoto()) { LGoto* goto_instr = LGoto::cast(last_instr); if (label->IsRedundant() && !label->is_loop_header()) { bool can_eliminate = true; for (int i = first + 1; i < last && can_eliminate; ++i) { LInstruction* cur = instructions()->at(i); if (cur->IsGap()) { LGap* gap = LGap::cast(cur); if (!gap->IsRedundant()) { can_eliminate = false; } } else { can_eliminate = false; } } if (can_eliminate) { label->set_replacement(GetLabel(goto_instr->block_id())); } } } } } void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) { LInstructionGap* gap = new (zone()) LInstructionGap(block); gap->set_hydrogen_value(instr->hydrogen_value()); int index = -1; if (instr->IsControl()) { instructions_.Add(gap, zone()); index = instructions_.length(); instructions_.Add(instr, zone()); } else { index = instructions_.length(); instructions_.Add(instr, zone()); instructions_.Add(gap, zone()); } if (instr->HasPointerMap()) { pointer_maps_.Add(instr->pointer_map(), zone()); instr->pointer_map()->set_lithium_position(index); } } LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) { return LConstantOperand::Create(constant->id(), zone()); } int LChunk::GetParameterStackSlot(int index) const { // The receiver is at index 0, the first parameter at index 1, so we // shift all parameter indexes down by the number of parameters, and // make sure they end up negative so they are distinguishable from // spill slots. int result = index - info()->num_parameters() - 1; DCHECK(result < 0); return result; } // A parameter relative to ebp in the arguments stub. int LChunk::ParameterAt(int index) { DCHECK(-1 <= index); // -1 is the receiver. return (1 + info()->scope()->num_parameters() - index) * kPointerSize; } LGap* LChunk::GetGapAt(int index) const { return LGap::cast(instructions_[index]); } bool LChunk::IsGapAt(int index) const { return instructions_[index]->IsGap(); } int LChunk::NearestGapPos(int index) const { while (!IsGapAt(index)) index--; return index; } void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) { GetGapAt(index)->GetOrCreateParallelMove( LGap::START, zone())->AddMove(from, to, zone()); } HConstant* LChunk::LookupConstant(LConstantOperand* operand) const { return HConstant::cast(graph_->LookupValue(operand->index())); } Representation LChunk::LookupLiteralRepresentation( LConstantOperand* operand) const { return graph_->LookupValue(operand->index())->representation(); } static void AddWeakObjectToCodeDependency(Isolate* isolate, Handle object, Handle code) { Handle cell = Code::WeakCellFor(code); Heap* heap = isolate->heap(); Handle dep(heap->LookupWeakObjectToCodeDependency(object)); dep = DependentCode::InsertWeakCode(dep, DependentCode::kWeakCodeGroup, cell); heap->AddWeakObjectToCodeDependency(object, dep); } void LChunk::RegisterWeakObjectsInOptimizedCode(Handle code) const { DCHECK(code->is_optimized_code()); ZoneList > maps(1, zone()); ZoneList > objects(1, zone()); int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::CELL && code->IsWeakObjectInOptimizedCode(it.rinfo()->target_cell())) { objects.Add(Handle(it.rinfo()->target_cell()), zone()); } else if (mode == RelocInfo::EMBEDDED_OBJECT && code->IsWeakObjectInOptimizedCode(it.rinfo()->target_object())) { if (it.rinfo()->target_object()->IsMap()) { Handle map(Map::cast(it.rinfo()->target_object())); maps.Add(map, zone()); } else { Handle object( HeapObject::cast(it.rinfo()->target_object())); objects.Add(object, zone()); } } } for (int i = 0; i < maps.length(); i++) { Map::AddDependentCode(maps.at(i), DependentCode::kWeakCodeGroup, code); } for (int i = 0; i < objects.length(); i++) { AddWeakObjectToCodeDependency(isolate(), objects.at(i), code); } if (FLAG_enable_ool_constant_pool) { code->constant_pool()->set_weak_object_state( ConstantPoolArray::WEAK_OBJECTS_IN_OPTIMIZED_CODE); } code->set_can_have_weak_objects(true); } void LChunk::CommitDependencies(Handle code) const { if (!code->is_optimized_code()) return; HandleScope scope(isolate()); for (MapSet::const_iterator it = deprecation_dependencies_.begin(), iend = deprecation_dependencies_.end(); it != iend; ++it) { Handle map = *it; DCHECK(!map->is_deprecated()); DCHECK(map->CanBeDeprecated()); Map::AddDependentCode(map, DependentCode::kTransitionGroup, code); } for (MapSet::const_iterator it = stability_dependencies_.begin(), iend = stability_dependencies_.end(); it != iend; ++it) { Handle map = *it; DCHECK(map->is_stable()); DCHECK(map->CanTransition()); Map::AddDependentCode(map, DependentCode::kPrototypeCheckGroup, code); } info_->CommitDependencies(code); RegisterWeakObjectsInOptimizedCode(code); } LChunk* LChunk::NewChunk(HGraph* graph) { DisallowHandleAllocation no_handles; DisallowHeapAllocation no_gc; graph->DisallowAddingNewValues(); int values = graph->GetMaximumValueID(); CompilationInfo* info = graph->info(); if (values > LUnallocated::kMaxVirtualRegisters) { info->AbortOptimization(kNotEnoughVirtualRegistersForValues); return NULL; } LAllocator allocator(values, graph); LChunkBuilder builder(info, graph, &allocator); LChunk* chunk = builder.Build(); if (chunk == NULL) return NULL; if (!allocator.Allocate(chunk)) { info->AbortOptimization(kNotEnoughVirtualRegistersRegalloc); return NULL; } chunk->set_allocated_double_registers( allocator.assigned_double_registers()); return chunk; } Handle LChunk::Codegen() { MacroAssembler assembler(info()->isolate(), NULL, 0); LOG_CODE_EVENT(info()->isolate(), CodeStartLinePosInfoRecordEvent( assembler.positions_recorder())); // Code serializer only takes unoptimized code. DCHECK(!info()->will_serialize()); LCodeGen generator(this, &assembler, info()); MarkEmptyBlocks(); if (generator.GenerateCode()) { generator.CheckEnvironmentUsage(); CodeGenerator::MakeCodePrologue(info(), "optimized"); Code::Flags flags = info()->flags(); Handle code = CodeGenerator::MakeCodeEpilogue(&assembler, flags, info()); generator.FinishCode(code); CommitDependencies(code); code->set_is_crankshafted(true); void* jit_handler_data = assembler.positions_recorder()->DetachJITHandlerData(); LOG_CODE_EVENT(info()->isolate(), CodeEndLinePosInfoRecordEvent(*code, jit_handler_data)); CodeGenerator::PrintCode(code, info()); DCHECK(!(info()->isolate()->serializer_enabled() && info()->GetMustNotHaveEagerFrame() && generator.NeedsEagerFrame())); return code; } assembler.AbortedCodeGeneration(); return Handle::null(); } void LChunk::set_allocated_double_registers(BitVector* allocated_registers) { allocated_double_registers_ = allocated_registers; BitVector* doubles = allocated_double_registers(); BitVector::Iterator iterator(doubles); while (!iterator.Done()) { if (info()->saves_caller_doubles()) { if (kDoubleSize == kPointerSize * 2) { spill_slot_count_ += 2; } else { spill_slot_count_++; } } iterator.Advance(); } } void LChunkBuilderBase::Abort(BailoutReason reason) { info()->AbortOptimization(reason); status_ = ABORTED; } void LChunkBuilderBase::Retry(BailoutReason reason) { info()->RetryOptimization(reason); status_ = ABORTED; } LEnvironment* LChunkBuilderBase::CreateEnvironment( HEnvironment* hydrogen_env, int* argument_index_accumulator, ZoneList* objects_to_materialize) { if (hydrogen_env == NULL) return NULL; LEnvironment* outer = CreateEnvironment(hydrogen_env->outer(), argument_index_accumulator, objects_to_materialize); BailoutId ast_id = hydrogen_env->ast_id(); DCHECK(!ast_id.IsNone() || hydrogen_env->frame_type() != JS_FUNCTION); int omitted_count = (hydrogen_env->frame_type() == JS_FUNCTION) ? 0 : hydrogen_env->specials_count(); int value_count = hydrogen_env->length() - omitted_count; LEnvironment* result = new(zone()) LEnvironment(hydrogen_env->closure(), hydrogen_env->frame_type(), ast_id, hydrogen_env->parameter_count(), argument_count_, value_count, outer, hydrogen_env->entry(), zone()); int argument_index = *argument_index_accumulator; // Store the environment description into the environment // (with holes for nested objects) for (int i = 0; i < hydrogen_env->length(); ++i) { if (hydrogen_env->is_special_index(i) && hydrogen_env->frame_type() != JS_FUNCTION) { continue; } LOperand* op; HValue* value = hydrogen_env->values()->at(i); CHECK(!value->IsPushArguments()); // Do not deopt outgoing arguments if (value->IsArgumentsObject() || value->IsCapturedObject()) { op = LEnvironment::materialization_marker(); } else { op = UseAny(value); } result->AddValue(op, value->representation(), value->CheckFlag(HInstruction::kUint32)); } // Recursively store the nested objects into the environment for (int i = 0; i < hydrogen_env->length(); ++i) { if (hydrogen_env->is_special_index(i)) continue; HValue* value = hydrogen_env->values()->at(i); if (value->IsArgumentsObject() || value->IsCapturedObject()) { AddObjectToMaterialize(value, objects_to_materialize, result); } } if (hydrogen_env->frame_type() == JS_FUNCTION) { *argument_index_accumulator = argument_index; } return result; } // Add an object to the supplied environment and object materialization list. // // Notes: // // We are building three lists here: // // 1. In the result->object_mapping_ list (added to by the // LEnvironment::Add*Object methods), we store the lengths (number // of fields) of the captured objects in depth-first traversal order, or // in case of duplicated objects, we store the index to the duplicate object // (with a tag to differentiate between captured and duplicated objects). // // 2. The object fields are stored in the result->values_ list // (added to by the LEnvironment.AddValue method) sequentially as lists // of fields with holes for nested objects (the holes will be expanded // later by LCodegen::AddToTranslation according to the // LEnvironment.object_mapping_ list). // // 3. The auxiliary objects_to_materialize array stores the hydrogen values // in the same order as result->object_mapping_ list. This is used // to detect duplicate values and calculate the corresponding object index. void LChunkBuilderBase::AddObjectToMaterialize(HValue* value, ZoneList* objects_to_materialize, LEnvironment* result) { int object_index = objects_to_materialize->length(); // Store the hydrogen value into the de-duplication array objects_to_materialize->Add(value, zone()); // Find out whether we are storing a duplicated value int previously_materialized_object = -1; for (int prev = 0; prev < object_index; ++prev) { if (objects_to_materialize->at(prev) == value) { previously_materialized_object = prev; break; } } // Store the captured object length (or duplicated object index) // into the environment. For duplicated objects, we stop here. int length = value->OperandCount(); bool is_arguments = value->IsArgumentsObject(); if (previously_materialized_object >= 0) { result->AddDuplicateObject(previously_materialized_object); return; } else { result->AddNewObject(is_arguments ? length - 1 : length, is_arguments); } // Store the captured object's fields into the environment for (int i = is_arguments ? 1 : 0; i < length; ++i) { LOperand* op; HValue* arg_value = value->OperandAt(i); if (arg_value->IsArgumentsObject() || arg_value->IsCapturedObject()) { // Insert a hole for nested objects op = LEnvironment::materialization_marker(); } else { DCHECK(!arg_value->IsPushArguments()); // For ordinary values, tell the register allocator we need the value // to be alive here op = UseAny(arg_value); } result->AddValue(op, arg_value->representation(), arg_value->CheckFlag(HInstruction::kUint32)); } // Recursively store all the nested captured objects into the environment for (int i = is_arguments ? 1 : 0; i < length; ++i) { HValue* arg_value = value->OperandAt(i); if (arg_value->IsArgumentsObject() || arg_value->IsCapturedObject()) { AddObjectToMaterialize(arg_value, objects_to_materialize, result); } } } LPhase::~LPhase() { if (ShouldProduceTraceOutput()) { isolate()->GetHTracer()->TraceLithium(name(), chunk_); } } } } // namespace v8::internal