// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include #include "src/base/bits.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/memory.h" #include "src/base/overflowing-math.h" #include "src/base/utils/random-number-generator.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/cpu-features.h" #include "src/codegen/machine-type.h" #include "src/common/globals.h" #include "src/flags/flags.h" #include "src/utils/utils.h" #include "src/utils/vector.h" #include "src/wasm/compilation-environment.h" #include "src/wasm/value-type.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-opcodes.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" #include "test/common/flag-utils.h" #include "test/common/wasm/flag-utils.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { namespace test_run_wasm_simd { namespace { using DoubleUnOp = double (*)(double); using DoubleBinOp = double (*)(double, double); using DoubleCompareOp = int64_t (*)(double, double); using FloatUnOp = float (*)(float); using FloatBinOp = float (*)(float, float); using FloatCompareOp = int (*)(float, float); using Int64UnOp = int64_t (*)(int64_t); using Int64BinOp = int64_t (*)(int64_t, int64_t); using Int64ShiftOp = int64_t (*)(int64_t, int); using Int32UnOp = int32_t (*)(int32_t); using Int32BinOp = int32_t (*)(int32_t, int32_t); using Int32CompareOp = int (*)(int32_t, int32_t); using Int32ShiftOp = int32_t (*)(int32_t, int); using Int16UnOp = int16_t (*)(int16_t); using Int16BinOp = int16_t (*)(int16_t, int16_t); using Int16CompareOp = int (*)(int16_t, int16_t); using Int16ShiftOp = int16_t (*)(int16_t, int); using Int8UnOp = int8_t (*)(int8_t); using Int8BinOp = int8_t (*)(int8_t, int8_t); using Int8CompareOp = int (*)(int8_t, int8_t); using Int8ShiftOp = int8_t (*)(int8_t, int); #define WASM_SIMD_TEST(name) \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ TestExecutionTier execution_tier); \ TEST(RunWasm_##name##_turbofan) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \ } \ TEST(RunWasm_##name##_liftoff) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \ } \ TEST(RunWasm_##name##_interpreter) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \ } \ TEST(RunWasm_##name##_simd_lowered) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kLowerSimd, TestExecutionTier::kTurbofan); \ } \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ TestExecutionTier execution_tier) // Generic expected value functions. template ::value>::type> T Negate(T a) { return -a; } // For signed integral types, use base::AddWithWraparound. template ::value>::type> T Add(T a, T b) { return a + b; } // For signed integral types, use base::SubWithWraparound. template ::value>::type> T Sub(T a, T b) { return a - b; } // For signed integral types, use base::MulWithWraparound. template ::value>::type> T Mul(T a, T b) { return a * b; } template T Minimum(T a, T b) { return std::min(a, b); } template T Maximum(T a, T b) { return std::max(a, b); } template T UnsignedMinimum(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) <= static_cast(b) ? a : b; } template T UnsignedMaximum(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >= static_cast(b) ? a : b; } int Equal(float a, float b) { return a == b ? -1 : 0; } template T Equal(T a, T b) { return a == b ? -1 : 0; } int NotEqual(float a, float b) { return a != b ? -1 : 0; } template T NotEqual(T a, T b) { return a != b ? -1 : 0; } int Less(float a, float b) { return a < b ? -1 : 0; } template T Less(T a, T b) { return a < b ? -1 : 0; } int LessEqual(float a, float b) { return a <= b ? -1 : 0; } template T LessEqual(T a, T b) { return a <= b ? -1 : 0; } int Greater(float a, float b) { return a > b ? -1 : 0; } template T Greater(T a, T b) { return a > b ? -1 : 0; } int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; } template T GreaterEqual(T a, T b) { return a >= b ? -1 : 0; } template T UnsignedLess(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) < static_cast(b) ? -1 : 0; } template T UnsignedLessEqual(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) <= static_cast(b) ? -1 : 0; } template T UnsignedGreater(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) > static_cast(b) ? -1 : 0; } template T UnsignedGreaterEqual(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >= static_cast(b) ? -1 : 0; } template T LogicalShiftLeft(T a, int shift) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) << (shift % (sizeof(T) * 8)); } template T LogicalShiftRight(T a, int shift) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >> (shift % (sizeof(T) * 8)); } // Define our own ArithmeticShiftRight instead of using the one from utils.h // because the shift amount needs to be taken modulo lane width. template T ArithmeticShiftRight(T a, int shift) { return a >> (shift % (sizeof(T) * 8)); } template T Abs(T a) { return std::abs(a); } // only used for F64x2 tests below int64_t Equal(double a, double b) { return a == b ? -1 : 0; } int64_t NotEqual(double a, double b) { return a != b ? -1 : 0; } int64_t Greater(double a, double b) { return a > b ? -1 : 0; } int64_t GreaterEqual(double a, double b) { return a >= b ? -1 : 0; } int64_t Less(double a, double b) { return a < b ? -1 : 0; } int64_t LessEqual(double a, double b) { return a <= b ? -1 : 0; } #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X // Only used for qfma and qfms tests below. // FMOperation holds the params (a, b, c) for a Multiply-Add or // Multiply-Subtract operation, and the expected result if the operation was // fused, rounded only once for the entire operation, or unfused, rounded after // multiply and again after add/subtract. template struct FMOperation { const T a; const T b; const T c; const T fused_result; const T unfused_result; }; // large_n is large number that overflows T when multiplied by itself, this is a // useful constant to test fused/unfused behavior. template constexpr T large_n = T(0); template <> constexpr double large_n = 1e200; template <> constexpr float large_n = 1e20; // Fused Multiply-Add performs a + b * c. template static constexpr FMOperation qfma_array[] = { {1.0f, 2.0f, 3.0f, 7.0f, 7.0f}, // fused: a + b * c = -inf + (positive overflow) = -inf // unfused: a + b * c = -inf + inf = NaN {-std::numeric_limits::infinity(), large_n, large_n, -std::numeric_limits::infinity(), std::numeric_limits::quiet_NaN()}, // fused: a + b * c = inf + (negative overflow) = inf // unfused: a + b * c = inf + -inf = NaN {std::numeric_limits::infinity(), -large_n, large_n, std::numeric_limits::infinity(), std::numeric_limits::quiet_NaN()}, // NaN {std::numeric_limits::quiet_NaN(), 2.0f, 3.0f, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()}, // -NaN {-std::numeric_limits::quiet_NaN(), 2.0f, 3.0f, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()}}; template static constexpr Vector> qfma_vector() { return ArrayVector(qfma_array); } // Fused Multiply-Subtract performs a - b * c. template static constexpr FMOperation qfms_array[]{ {1.0f, 2.0f, 3.0f, -5.0f, -5.0f}, // fused: a - b * c = inf - (positive overflow) = inf // unfused: a - b * c = inf - inf = NaN {std::numeric_limits::infinity(), large_n, large_n, std::numeric_limits::infinity(), std::numeric_limits::quiet_NaN()}, // fused: a - b * c = -inf - (negative overflow) = -inf // unfused: a - b * c = -inf - -inf = NaN {-std::numeric_limits::infinity(), -large_n, large_n, -std::numeric_limits::infinity(), std::numeric_limits::quiet_NaN()}, // NaN {std::numeric_limits::quiet_NaN(), 2.0f, 3.0f, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()}, // -NaN {-std::numeric_limits::quiet_NaN(), 2.0f, 3.0f, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()}}; template static constexpr Vector> qfms_vector() { return ArrayVector(qfms_array); } // Fused results only when fma3 feature is enabled, and running on TurboFan or // Liftoff (which can fall back to TurboFan if FMA is not implemented). bool ExpectFused(TestExecutionTier tier) { #ifdef V8_TARGET_ARCH_X64 return CpuFeatures::IsSupported(FMA3) && (tier == TestExecutionTier::kTurbofan || tier == TestExecutionTier::kLiftoff); #else return (tier == TestExecutionTier::kTurbofan || tier == TestExecutionTier::kLiftoff); #endif } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X } // namespace #define WASM_SIMD_CHECK_LANE_S(TYPE, value, LANE_TYPE, lane_value, lane_index) \ WASM_IF(WASM_##LANE_TYPE##_NE(WASM_LOCAL_GET(lane_value), \ WASM_SIMD_##TYPE##_EXTRACT_LANE( \ lane_index, WASM_LOCAL_GET(value))), \ WASM_RETURN1(WASM_ZERO)) // Unsigned Extracts are only available for I8x16, I16x8 types #define WASM_SIMD_CHECK_LANE_U(TYPE, value, LANE_TYPE, lane_value, lane_index) \ WASM_IF(WASM_##LANE_TYPE##_NE(WASM_LOCAL_GET(lane_value), \ WASM_SIMD_##TYPE##_EXTRACT_LANE_U( \ lane_index, WASM_LOCAL_GET(value))), \ WASM_RETURN1(WASM_ZERO)) // The macro below disables tests lowering for certain nodes where the simd // lowering doesn't work correctly. Early return here if the CPU does not // support SIMD as the graph will be implicitly lowered in that case. #define WASM_SIMD_TEST_NO_LOWERING(name) \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ TestExecutionTier execution_tier); \ TEST(RunWasm_##name##_turbofan) { \ if (!CpuFeatures::SupportsWasmSimd128()) return; \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \ } \ TEST(RunWasm_##name##_liftoff) { \ if (!CpuFeatures::SupportsWasmSimd128()) return; \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \ } \ TEST(RunWasm_##name##_interpreter) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \ } \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ TestExecutionTier execution_tier) // Returns true if the platform can represent the result. template bool PlatformCanRepresent(T x) { #if V8_TARGET_ARCH_ARM return std::fpclassify(x) != FP_SUBNORMAL; #else return true; #endif } // Returns true for very small and very large numbers. We skip these test // values for the approximation instructions, which don't work at the extremes. bool IsExtreme(float x) { float abs_x = std::fabs(x); const float kSmallFloatThreshold = 1.0e-32f; const float kLargeFloatThreshold = 1.0e32f; return abs_x != 0.0f && // 0 or -0 are fine. (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold); } #if V8_OS_AIX template bool MightReverseSign(T float_op) { return float_op == static_cast(Negate) || float_op == static_cast(std::abs); } #endif WASM_SIMD_TEST(S128Globals) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input and output vectors. int32_t* g0 = r.builder().AddGlobal(kWasmS128); int32_t* g1 = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(1, WASM_GLOBAL_GET(0)), WASM_ONE); FOR_INT32_INPUTS(x) { for (int i = 0; i < 4; i++) { WriteLittleEndianValue(&g0[i], x); } r.Call(); int32_t expected = x; for (int i = 0; i < 4; i++) { int32_t actual = ReadLittleEndianValue(&g1[i]); CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(F32x4Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. float* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_FLOAT32_INPUTS(x) { r.Call(x); float expected = x; for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); if (std::isnan(expected)) { CHECK(std::isnan(actual)); } else { CHECK_EQ(actual, expected); } } } } WASM_SIMD_TEST(F32x4ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input/output vector. float* g = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its (FP) index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))), WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_F32(0.0f))), WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_F32(1.0f))), WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE( 2, WASM_LOCAL_GET(temp1), WASM_F32(2.0f))), WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE( 3, WASM_LOCAL_GET(temp1), WASM_F32(3.0f))), WASM_ONE); r.Call(); for (int i = 0; i < 4; i++) { CHECK_EQ(static_cast(i), ReadLittleEndianValue(&g[i])); } } // Tests both signed and unsigned conversion. WASM_SIMD_TEST(F32x4ConvertI32x4) { WasmRunner r(execution_tier, lower_simd); // Create two output vectors to hold signed and unsigned results. float* g0 = r.builder().AddGlobal(kWasmS128); float* g1 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET( 0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET( 1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT32_INPUTS(x) { r.Call(x); float expected_signed = static_cast(x); float expected_unsigned = static_cast(static_cast(x)); for (int i = 0; i < 4; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g1[i])); } } } bool IsSameNan(float expected, float actual) { // Sign is non-deterministic. uint32_t expected_bits = bit_cast(expected) & ~0x80000000; uint32_t actual_bits = bit_cast(actual) & ~0x80000000; // Some implementations convert signaling NaNs to quiet NaNs. return (expected_bits == actual_bits) || ((expected_bits | 0x00400000) == actual_bits); } bool IsCanonical(float actual) { uint32_t actual_bits = bit_cast(actual); // Canonical NaN has quiet bit and no payload. return (actual_bits & 0xFFC00000) == actual_bits; } void CheckFloatResult(float x, float y, float expected, float actual, bool exact = true) { if (std::isnan(expected)) { CHECK(std::isnan(actual)); if (std::isnan(x) && IsSameNan(x, actual)) return; if (std::isnan(y) && IsSameNan(y, actual)) return; if (IsSameNan(expected, actual)) return; if (IsCanonical(actual)) return; // This is expected to assert; it's useful for debugging. CHECK_EQ(bit_cast(expected), bit_cast(actual)); } else { if (exact) { CHECK_EQ(expected, actual); // The sign of 0's must match. CHECK_EQ(std::signbit(expected), std::signbit(actual)); return; } // Otherwise, perform an approximate equality test. First check for // equality to handle +/-Infinity where approximate equality doesn't work. if (expected == actual) return; // 1% error allows all platforms to pass easily. constexpr float kApproximationError = 0.01f; float abs_error = std::abs(expected) * kApproximationError, min = expected - abs_error, max = expected + abs_error; CHECK_LE(min, actual); CHECK_GE(max, actual); } } // Test some values not included in the float inputs from value_helper. These // tests are useful for opcodes that are synthesized during code gen, like Min // and Max on ia32 and x64. static constexpr uint32_t nan_test_array[] = { // Bit patterns of quiet NaNs and signaling NaNs, with or without // additional payload. 0x7FC00000, 0xFFC00000, 0x7FFFFFFF, 0xFFFFFFFF, 0x7F876543, 0xFF876543, // NaN with top payload bit unset. 0x7FA00000, // Both Infinities. 0x7F800000, 0xFF800000, // Some "normal" numbers, 1 and -1. 0x3F800000, 0xBF800000}; #define FOR_FLOAT32_NAN_INPUTS(i) \ for (size_t i = 0; i < arraysize(nan_test_array); ++i) void RunF32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, FloatUnOp expected_op, bool exact = true) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. float* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_FLOAT32_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; // Extreme values have larger errors so skip them for approximation tests. if (!exact && IsExtreme(x)) continue; float expected = expected_op(x); #if V8_OS_AIX if (!MightReverseSign(expected_op)) expected = FpOpWorkaround(x, expected); #endif if (!PlatformCanRepresent(expected)) continue; r.Call(x); for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x, x, expected, actual, exact); } } FOR_FLOAT32_NAN_INPUTS(i) { float x = bit_cast(nan_test_array[i]); if (!PlatformCanRepresent(x)) continue; // Extreme values have larger errors so skip them for approximation tests. if (!exact && IsExtreme(x)) continue; float expected = expected_op(x); if (!PlatformCanRepresent(expected)) continue; r.Call(x); for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x, x, expected, actual, exact); } } } WASM_SIMD_TEST(F32x4Abs) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs); } WASM_SIMD_TEST(F32x4Neg) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate); } WASM_SIMD_TEST(F32x4Sqrt) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Sqrt, std::sqrt); } WASM_SIMD_TEST(F32x4RecipApprox) { FLAG_SCOPE(wasm_simd_post_mvp); RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox, base::Recip, false /* !exact */); } WASM_SIMD_TEST(F32x4RecipSqrtApprox) { FLAG_SCOPE(wasm_simd_post_mvp); RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox, base::RecipSqrt, false /* !exact */); } WASM_SIMD_TEST(F32x4Ceil) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Ceil, ceilf, true); } WASM_SIMD_TEST(F32x4Floor) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Floor, floorf, true); } WASM_SIMD_TEST(F32x4Trunc) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Trunc, truncf, true); } WASM_SIMD_TEST(F32x4NearestInt) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4NearestInt, nearbyintf, true); } void RunF32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, FloatBinOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. float* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_FLOAT32_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; FOR_FLOAT32_INPUTS(y) { if (!PlatformCanRepresent(y)) continue; float expected = expected_op(x, y); if (!PlatformCanRepresent(expected)) continue; r.Call(x, y); for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x, y, expected, actual, true /* exact */); } } } FOR_FLOAT32_NAN_INPUTS(i) { float x = bit_cast(nan_test_array[i]); if (!PlatformCanRepresent(x)) continue; FOR_FLOAT32_NAN_INPUTS(j) { float y = bit_cast(nan_test_array[j]); if (!PlatformCanRepresent(y)) continue; float expected = expected_op(x, y); if (!PlatformCanRepresent(expected)) continue; r.Call(x, y); for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x, y, expected, actual, true /* exact */); } } } } #undef FOR_FLOAT32_NAN_INPUTS WASM_SIMD_TEST(F32x4Add) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add); } WASM_SIMD_TEST(F32x4Sub) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub); } WASM_SIMD_TEST(F32x4Mul) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul); } WASM_SIMD_TEST(F32x4Div) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Div, base::Divide); } WASM_SIMD_TEST(F32x4Min) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin); } WASM_SIMD_TEST(F32x4Max) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax); } WASM_SIMD_TEST(F32x4Pmin) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmin, Minimum); } WASM_SIMD_TEST(F32x4Pmax) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmax, Maximum); } void RunF32x4CompareOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, FloatCompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. int32_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_FLOAT32_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; FOR_FLOAT32_INPUTS(y) { if (!PlatformCanRepresent(y)) continue; float diff = x - y; // Model comparison as subtraction. if (!PlatformCanRepresent(diff)) continue; r.Call(x, y); int32_t expected = expected_op(x, y); for (int i = 0; i < 4; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } WASM_SIMD_TEST(F32x4Eq) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal); } WASM_SIMD_TEST(F32x4Ne) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual); } WASM_SIMD_TEST(F32x4Gt) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater); } WASM_SIMD_TEST(F32x4Ge) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual); } WASM_SIMD_TEST(F32x4Lt) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less); } WASM_SIMD_TEST(F32x4Le) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual); } #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || \ V8_TARGET_ARCH_ARM // TODO(v8:10983) Prototyping sign select. template void RunSignSelect(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode signselect, WasmOpcode splat, std::array mask) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); T* output = r.builder().template AddGlobal(kWasmS128); // Splat 2 constant values, then use a mask that selects alternate lanes. BUILD(r, WASM_LOCAL_GET(0), WASM_SIMD_OP(splat), WASM_LOCAL_GET(1), WASM_SIMD_OP(splat), WASM_SIMD_CONSTANT(mask), WASM_SIMD_OP(signselect), kExprGlobalSet, 0, WASM_ONE); r.Call(1, 2); constexpr int lanes = kSimd128Size / sizeof(T); for (int i = 0; i < lanes; i += 2) { CHECK_EQ(1, ReadLittleEndianValue(&output[i])); } for (int i = 1; i < lanes; i += 2) { CHECK_EQ(2, ReadLittleEndianValue(&output[i])); } } WASM_SIMD_TEST_NO_LOWERING(I8x16SignSelect) { std::array mask = {0x80, 0, -1, 0, 0x80, 0, -1, 0, 0x80, 0, -1, 0, 0x80, 0, -1, 0}; RunSignSelect(execution_tier, lower_simd, kExprI8x16SignSelect, kExprI8x16Splat, mask); } WASM_SIMD_TEST_NO_LOWERING(I16x8SignSelect) { std::array selection = {0x8000, 0, -1, 0, 0x8000, 0, -1, 0}; std::array mask; memcpy(mask.data(), selection.data(), kSimd128Size); RunSignSelect(execution_tier, lower_simd, kExprI16x8SignSelect, kExprI16x8Splat, mask); } WASM_SIMD_TEST_NO_LOWERING(I32x4SignSelect) { std::array selection = {0x80000000, 0, -1, 0}; std::array mask; memcpy(mask.data(), selection.data(), kSimd128Size); RunSignSelect(execution_tier, lower_simd, kExprI32x4SignSelect, kExprI32x4Splat, mask); } WASM_SIMD_TEST_NO_LOWERING(I64x2SignSelect) { std::array selection = {0x8000000000000000, 0}; std::array mask; memcpy(mask.data(), selection.data(), kSimd128Size); RunSignSelect(execution_tier, lower_simd, kExprI64x2SignSelect, kExprI64x2Splat, mask); } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || // V8_TARGET_ARCH_ARM #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X WASM_SIMD_TEST_NO_LOWERING(F32x4Qfma) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. float* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1, value3 = 2; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_QFMA( WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1)), WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2)), WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value3)))), WASM_ONE); for (FMOperation x : qfma_vector()) { r.Call(x.a, x.b, x.c); float expected = ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x.a, x.b, expected, actual, true /* exact */); } } } WASM_SIMD_TEST_NO_LOWERING(F32x4Qfms) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. float* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1, value3 = 2; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_QFMS( WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1)), WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2)), WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value3)))), WASM_ONE); for (FMOperation x : qfms_vector()) { r.Call(x.a, x.b, x.c); float expected = ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; for (int i = 0; i < 4; i++) { float actual = ReadLittleEndianValue(&g[i]); CheckFloatResult(x.a, x.b, expected, actual, true /* exact */); } } } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X WASM_SIMD_TEST(I64x2Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. int64_t* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_INT64_INPUTS(x) { r.Call(x); int64_t expected = x; for (int i = 0; i < 2; i++) { int64_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(I64x2ExtractLane) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI64); r.AllocateLocal(kWasmS128); BUILD( r, WASM_LOCAL_SET(0, WASM_SIMD_I64x2_EXTRACT_LANE( 0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(0xFFFFFFFFFF)))), WASM_LOCAL_SET(1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))), WASM_SIMD_I64x2_EXTRACT_LANE(1, WASM_LOCAL_GET(1))); CHECK_EQ(0xFFFFFFFFFF, r.Call()); } WASM_SIMD_TEST(I64x2ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input/output vector. int64_t* g = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_I64V(-1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_I64V(0))), WASM_GLOBAL_SET(0, WASM_SIMD_I64x2_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_I64V(1))), WASM_ONE); r.Call(); for (int64_t i = 0; i < 2; i++) { CHECK_EQ(i, ReadLittleEndianValue(&g[i])); } } void RunI64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int64UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. int64_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT64_INPUTS(x) { r.Call(x); int64_t expected = expected_op(x); for (int i = 0; i < 2; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } WASM_SIMD_TEST(I64x2Neg) { RunI64x2UnOpTest(execution_tier, lower_simd, kExprI64x2Neg, base::NegateWithWraparound); } void RunI64x2ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int64ShiftOp expected_op) { // Intentionally shift by 64, should be no-op. for (int shift = 1; shift <= 64; shift++) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(1); int64_t* g_imm = r.builder().AddGlobal(kWasmS128); int64_t* g_mem = r.builder().AddGlobal(kWasmS128); byte value = 0; byte simd = r.AllocateLocal(kWasmS128); // Shift using an immediate, and shift using a value loaded from memory. BUILD( r, WASM_LOCAL_SET(simd, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd), WASM_I32V(shift))), WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP( opcode, WASM_LOCAL_GET(simd), WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), WASM_ONE); r.builder().WriteMemory(&memory[0], shift); FOR_INT64_INPUTS(x) { r.Call(x); int64_t expected = expected_op(x, shift); for (int i = 0; i < 2; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g_imm[i])); CHECK_EQ(expected, ReadLittleEndianValue(&g_mem[i])); } } } } WASM_SIMD_TEST(I64x2Shl) { RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I64x2ShrS) { RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I64x2ShrU) { RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrU, LogicalShiftRight); } void RunI64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int64BinOp expected_op) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Global to hold output. int64_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_INT64_INPUTS(x) { FOR_INT64_INPUTS(y) { r.Call(x, y); int64_t expected = expected_op(x, y); for (int i = 0; i < 2; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } WASM_SIMD_TEST(I64x2Add) { RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Add, base::AddWithWraparound); } WASM_SIMD_TEST(I64x2Sub) { RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Sub, base::SubWithWraparound); } #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X || \ V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS64 || \ V8_TARGET_ARCH_MIPS WASM_SIMD_TEST_NO_LOWERING(I64x2Eq) { RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Eq, Equal); } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X || // V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS64 || // V8_TARGET_ARCH_MIPS WASM_SIMD_TEST(F64x2Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. double* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_FLOAT64_INPUTS(x) { r.Call(x); double expected = x; for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); if (std::isnan(expected)) { CHECK(std::isnan(actual)); } else { CHECK_EQ(actual, expected); } } } } WASM_SIMD_TEST(F64x2ExtractLane) { WasmRunner r(execution_tier, lower_simd); byte param1 = 0; byte temp1 = r.AllocateLocal(kWasmF64); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_EXTRACT_LANE( 0, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(param1)))), WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(temp1))), WASM_SIMD_F64x2_EXTRACT_LANE(1, WASM_LOCAL_GET(temp2))); FOR_FLOAT64_INPUTS(x) { double actual = r.Call(x); double expected = x; if (std::isnan(expected)) { CHECK(std::isnan(actual)); } else { CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(F64x2ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up globals to hold input/output vector. double* g0 = r.builder().AddGlobal(kWasmS128); double* g1 = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its (FP) index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e100))), // Replace lane 0. WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_F64(0.0f))), // Replace lane 1. WASM_GLOBAL_SET(1, WASM_SIMD_F64x2_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_F64(1.0f))), WASM_ONE); r.Call(); CHECK_EQ(0., ReadLittleEndianValue(&g0[0])); CHECK_EQ(1e100, ReadLittleEndianValue(&g0[1])); CHECK_EQ(1e100, ReadLittleEndianValue(&g1[0])); CHECK_EQ(1., ReadLittleEndianValue(&g1[1])); } WASM_SIMD_TEST(F64x2ExtractLaneWithI64x2) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_L( WASM_F64_EQ(WASM_SIMD_F64x2_EXTRACT_LANE( 0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(1e15))), WASM_F64_REINTERPRET_I64(WASM_I64V(1e15))), WASM_I64V(1), WASM_I64V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(I64x2ExtractWithF64x2) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_L( WASM_I64_EQ(WASM_SIMD_I64x2_EXTRACT_LANE( 0, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e15))), WASM_I64_REINTERPRET_F64(WASM_F64(1e15))), WASM_I64V(1), WASM_I64V(0))); CHECK_EQ(1, r.Call()); } bool IsExtreme(double x) { double abs_x = std::fabs(x); const double kSmallFloatThreshold = 1.0e-298; const double kLargeFloatThreshold = 1.0e298; return abs_x != 0.0f && // 0 or -0 are fine. (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold); } bool IsSameNan(double expected, double actual) { // Sign is non-deterministic. uint64_t expected_bits = bit_cast(expected) & ~0x8000000000000000; uint64_t actual_bits = bit_cast(actual) & ~0x8000000000000000; // Some implementations convert signaling NaNs to quiet NaNs. return (expected_bits == actual_bits) || ((expected_bits | 0x0008000000000000) == actual_bits); } bool IsCanonical(double actual) { uint64_t actual_bits = bit_cast(actual); // Canonical NaN has quiet bit and no payload. return (actual_bits & 0xFFF8000000000000) == actual_bits; } void CheckDoubleResult(double x, double y, double expected, double actual, bool exact = true) { if (std::isnan(expected)) { CHECK(std::isnan(actual)); if (std::isnan(x) && IsSameNan(x, actual)) return; if (std::isnan(y) && IsSameNan(y, actual)) return; if (IsSameNan(expected, actual)) return; if (IsCanonical(actual)) return; // This is expected to assert; it's useful for debugging. CHECK_EQ(bit_cast(expected), bit_cast(actual)); } else { if (exact) { CHECK_EQ(expected, actual); // The sign of 0's must match. CHECK_EQ(std::signbit(expected), std::signbit(actual)); return; } // Otherwise, perform an approximate equality test. First check for // equality to handle +/-Infinity where approximate equality doesn't work. if (expected == actual) return; // 1% error allows all platforms to pass easily. constexpr double kApproximationError = 0.01f; double abs_error = std::abs(expected) * kApproximationError, min = expected - abs_error, max = expected + abs_error; CHECK_LE(min, actual); CHECK_GE(max, actual); } } // Test some values not included in the double inputs from value_helper. These // tests are useful for opcodes that are synthesized during code gen, like Min // and Max on ia32 and x64. static constexpr uint64_t double_nan_test_array[] = { // quiet NaNs, + and - 0x7FF8000000000001, 0xFFF8000000000001, // with payload 0x7FF8000000000011, 0xFFF8000000000011, // signaling NaNs, + and - 0x7FF0000000000001, 0xFFF0000000000001, // with payload 0x7FF0000000000011, 0xFFF0000000000011, // Both Infinities. 0x7FF0000000000000, 0xFFF0000000000000, // Some "normal" numbers, 1 and -1. 0x3FF0000000000000, 0xBFF0000000000000}; #define FOR_FLOAT64_NAN_INPUTS(i) \ for (size_t i = 0; i < arraysize(double_nan_test_array); ++i) void RunF64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, DoubleUnOp expected_op, bool exact = true) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. double* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_FLOAT64_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; // Extreme values have larger errors so skip them for approximation tests. if (!exact && IsExtreme(x)) continue; double expected = expected_op(x); #if V8_OS_AIX if (!MightReverseSign(expected_op)) expected = FpOpWorkaround(x, expected); #endif if (!PlatformCanRepresent(expected)) continue; r.Call(x); for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x, x, expected, actual, exact); } } FOR_FLOAT64_NAN_INPUTS(i) { double x = bit_cast(double_nan_test_array[i]); if (!PlatformCanRepresent(x)) continue; // Extreme values have larger errors so skip them for approximation tests. if (!exact && IsExtreme(x)) continue; double expected = expected_op(x); if (!PlatformCanRepresent(expected)) continue; r.Call(x); for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x, x, expected, actual, exact); } } } WASM_SIMD_TEST(F64x2Abs) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Abs, std::abs); } WASM_SIMD_TEST(F64x2Neg) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Neg, Negate); } WASM_SIMD_TEST(F64x2Sqrt) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Sqrt, std::sqrt); } WASM_SIMD_TEST(F64x2Ceil) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Ceil, ceil, true); } WASM_SIMD_TEST(F64x2Floor) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Floor, floor, true); } WASM_SIMD_TEST(F64x2Trunc) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Trunc, trunc, true); } WASM_SIMD_TEST(F64x2NearestInt) { RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2NearestInt, nearbyint, true); } void RunF64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, DoubleBinOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. double* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_FLOAT64_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; FOR_FLOAT64_INPUTS(y) { if (!PlatformCanRepresent(x)) continue; double expected = expected_op(x, y); if (!PlatformCanRepresent(expected)) continue; r.Call(x, y); for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x, y, expected, actual, true /* exact */); } } } FOR_FLOAT64_NAN_INPUTS(i) { double x = bit_cast(double_nan_test_array[i]); if (!PlatformCanRepresent(x)) continue; FOR_FLOAT64_NAN_INPUTS(j) { double y = bit_cast(double_nan_test_array[j]); double expected = expected_op(x, y); if (!PlatformCanRepresent(expected)) continue; r.Call(x, y); for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x, y, expected, actual, true /* exact */); } } } } #undef FOR_FLOAT64_NAN_INPUTS WASM_SIMD_TEST(F64x2Add) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Add, Add); } WASM_SIMD_TEST(F64x2Sub) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Sub, Sub); } WASM_SIMD_TEST(F64x2Mul) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Mul, Mul); } WASM_SIMD_TEST(F64x2Div) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Div, base::Divide); } WASM_SIMD_TEST(F64x2Pmin) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmin, Minimum); } WASM_SIMD_TEST(F64x2Pmax) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmax, Maximum); } void RunF64x2CompareOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, DoubleCompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. int64_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); // Make the lanes of each temp compare differently: // temp1 = y, x and temp2 = y, y. BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_REPLACE_LANE(1, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(value2))), WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_FLOAT64_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; FOR_FLOAT64_INPUTS(y) { if (!PlatformCanRepresent(y)) continue; double diff = x - y; // Model comparison as subtraction. if (!PlatformCanRepresent(diff)) continue; r.Call(x, y); int64_t expected0 = expected_op(x, y); int64_t expected1 = expected_op(y, y); CHECK_EQ(expected0, ReadLittleEndianValue(&g[0])); CHECK_EQ(expected1, ReadLittleEndianValue(&g[1])); } } } WASM_SIMD_TEST(F64x2Eq) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Eq, Equal); } WASM_SIMD_TEST(F64x2Ne) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ne, NotEqual); } WASM_SIMD_TEST(F64x2Gt) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Gt, Greater); } WASM_SIMD_TEST(F64x2Ge) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ge, GreaterEqual); } WASM_SIMD_TEST(F64x2Lt) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Lt, Less); } WASM_SIMD_TEST(F64x2Le) { RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Le, LessEqual); } WASM_SIMD_TEST(F64x2Min) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Min, JSMin); } WASM_SIMD_TEST(F64x2Max) { RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Max, JSMax); } WASM_SIMD_TEST(I64x2Mul) { RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Mul, base::MulWithWraparound); } #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X WASM_SIMD_TEST_NO_LOWERING(F64x2Qfma) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. double* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1, value3 = 2; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_QFMA( WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1)), WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2)), WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value3)))), WASM_ONE); for (FMOperation x : qfma_vector()) { r.Call(x.a, x.b, x.c); double expected = ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */); } } } WASM_SIMD_TEST_NO_LOWERING(F64x2Qfms) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Set up global to hold mask output. double* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform compare op, and write the result. byte value1 = 0, value2 = 1, value3 = 2; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_QFMS( WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1)), WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2)), WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value3)))), WASM_ONE); for (FMOperation x : qfms_vector()) { r.Call(x.a, x.b, x.c); double expected = ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; for (int i = 0; i < 2; i++) { double actual = ReadLittleEndianValue(&g[i]); CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */); } } } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X WASM_SIMD_TEST(I32x4Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. int32_t* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_INT32_INPUTS(x) { r.Call(x); int32_t expected = x; for (int i = 0; i < 4; i++) { int32_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(I32x4ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input/output vector. int32_t* g = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_I32V(0))), WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_I32V(1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE( 2, WASM_LOCAL_GET(temp1), WASM_I32V(2))), WASM_GLOBAL_SET(0, WASM_SIMD_I32x4_REPLACE_LANE( 3, WASM_LOCAL_GET(temp1), WASM_I32V(3))), WASM_ONE); r.Call(); for (int32_t i = 0; i < 4; i++) { CHECK_EQ(i, ReadLittleEndianValue(&g[i])); } } WASM_SIMD_TEST(I16x8Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. int16_t* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_INT16_INPUTS(x) { r.Call(x); int16_t expected = x; for (int i = 0; i < 8; i++) { int16_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } // Test values that do not fit in a int16. FOR_INT32_INPUTS(x) { r.Call(x); int16_t expected = truncate_to_int16(x); for (int i = 0; i < 8; i++) { int16_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(I16x8ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input/output vector. int16_t* g = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_I32V(0))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_I32V(1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 2, WASM_LOCAL_GET(temp1), WASM_I32V(2))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 3, WASM_LOCAL_GET(temp1), WASM_I32V(3))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 4, WASM_LOCAL_GET(temp1), WASM_I32V(4))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 5, WASM_LOCAL_GET(temp1), WASM_I32V(5))), WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE( 6, WASM_LOCAL_GET(temp1), WASM_I32V(6))), WASM_GLOBAL_SET(0, WASM_SIMD_I16x8_REPLACE_LANE( 7, WASM_LOCAL_GET(temp1), WASM_I32V(7))), WASM_ONE); r.Call(); for (int16_t i = 0; i < 8; i++) { CHECK_EQ(i, ReadLittleEndianValue(&g[i])); } } WASM_SIMD_TEST(I8x16BitMask) { WasmRunner r(execution_tier, lower_simd); byte value1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_REPLACE_LANE( 0, WASM_LOCAL_GET(value1), WASM_I32V(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_REPLACE_LANE( 1, WASM_LOCAL_GET(value1), WASM_I32V(-1))), WASM_SIMD_UNOP(kExprI8x16BitMask, WASM_LOCAL_GET(value1))); FOR_INT8_INPUTS(x) { int32_t actual = r.Call(x); // Lane 0 is always 0 (positive), lane 1 is always -1. int32_t expected = std::signbit(static_cast(x)) ? 0xFFFE : 0x0002; CHECK_EQ(actual, expected); } } WASM_SIMD_TEST(I16x8BitMask) { WasmRunner r(execution_tier, lower_simd); byte value1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_REPLACE_LANE( 0, WASM_LOCAL_GET(value1), WASM_I32V(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_REPLACE_LANE( 1, WASM_LOCAL_GET(value1), WASM_I32V(-1))), WASM_SIMD_UNOP(kExprI16x8BitMask, WASM_LOCAL_GET(value1))); FOR_INT16_INPUTS(x) { int32_t actual = r.Call(x); // Lane 0 is always 0 (positive), lane 1 is always -1. int32_t expected = std::signbit(static_cast(x)) ? 0xFE : 2; CHECK_EQ(actual, expected); } } WASM_SIMD_TEST(I32x4BitMask) { WasmRunner r(execution_tier, lower_simd); byte value1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_REPLACE_LANE( 0, WASM_LOCAL_GET(value1), WASM_I32V(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_REPLACE_LANE( 1, WASM_LOCAL_GET(value1), WASM_I32V(-1))), WASM_SIMD_UNOP(kExprI32x4BitMask, WASM_LOCAL_GET(value1))); FOR_INT32_INPUTS(x) { int32_t actual = r.Call(x); // Lane 0 is always 0 (positive), lane 1 is always -1. int32_t expected = std::signbit(static_cast(x)) ? 0xE : 2; CHECK_EQ(actual, expected); } } // TODO(v8:10997) Prototyping i64x2.bitmask. #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || \ V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS WASM_SIMD_TEST_NO_LOWERING(I64x2BitMask) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); byte value1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))), WASM_LOCAL_SET(value1, WASM_SIMD_I64x2_REPLACE_LANE( 0, WASM_LOCAL_GET(value1), WASM_I64V_1(0))), WASM_SIMD_UNOP(kExprI64x2BitMask, WASM_LOCAL_GET(value1))); for (int64_t x : compiler::ValueHelper::GetVector()) { int32_t actual = r.Call(x); // Lane 0 is always 0 (positive). int32_t expected = std::signbit(static_cast(x)) ? 0x2 : 0x0; CHECK_EQ(actual, expected); } } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || // V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS WASM_SIMD_TEST(I8x16Splat) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold output vector. int8_t* g = r.builder().AddGlobal(kWasmS128); byte param1 = 0; BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(param1))), WASM_ONE); FOR_INT8_INPUTS(x) { r.Call(x); int8_t expected = x; for (int i = 0; i < 16; i++) { int8_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } // Test values that do not fit in a int16. FOR_INT16_INPUTS(x) { r.Call(x); int8_t expected = truncate_to_int8(x); for (int i = 0; i < 16; i++) { int8_t actual = ReadLittleEndianValue(&g[i]); CHECK_EQ(actual, expected); } } } WASM_SIMD_TEST(I8x16ReplaceLane) { WasmRunner r(execution_tier, lower_simd); // Set up a global to hold input/output vector. int8_t* g = r.builder().AddGlobal(kWasmS128); // Build function to replace each lane with its index. byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 0, WASM_LOCAL_GET(temp1), WASM_I32V(0))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 1, WASM_LOCAL_GET(temp1), WASM_I32V(1))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 2, WASM_LOCAL_GET(temp1), WASM_I32V(2))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 3, WASM_LOCAL_GET(temp1), WASM_I32V(3))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 4, WASM_LOCAL_GET(temp1), WASM_I32V(4))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 5, WASM_LOCAL_GET(temp1), WASM_I32V(5))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 6, WASM_LOCAL_GET(temp1), WASM_I32V(6))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 7, WASM_LOCAL_GET(temp1), WASM_I32V(7))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 8, WASM_LOCAL_GET(temp1), WASM_I32V(8))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 9, WASM_LOCAL_GET(temp1), WASM_I32V(9))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 10, WASM_LOCAL_GET(temp1), WASM_I32V(10))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 11, WASM_LOCAL_GET(temp1), WASM_I32V(11))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 12, WASM_LOCAL_GET(temp1), WASM_I32V(12))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 13, WASM_LOCAL_GET(temp1), WASM_I32V(13))), WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE( 14, WASM_LOCAL_GET(temp1), WASM_I32V(14))), WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_REPLACE_LANE( 15, WASM_LOCAL_GET(temp1), WASM_I32V(15))), WASM_ONE); r.Call(); for (int8_t i = 0; i < 16; i++) { CHECK_EQ(i, ReadLittleEndianValue(&g[i])); } } // Use doubles to ensure exact conversion. int32_t ConvertToInt(double val, bool unsigned_integer) { if (std::isnan(val)) return 0; if (unsigned_integer) { if (val < 0) return 0; if (val > kMaxUInt32) return kMaxUInt32; return static_cast(val); } else { if (val < kMinInt) return kMinInt; if (val > kMaxInt) return kMaxInt; return static_cast(val); } } // Tests both signed and unsigned conversion. WASM_SIMD_TEST(I32x4ConvertF32x4) { WasmRunner r(execution_tier, lower_simd); // Create two output vectors to hold signed and unsigned results. int32_t* g0 = r.builder().AddGlobal(kWasmS128); int32_t* g1 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET( 0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET( 1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_FLOAT32_INPUTS(x) { if (!PlatformCanRepresent(x)) continue; r.Call(x); int32_t expected_signed = ConvertToInt(x, false); int32_t expected_unsigned = ConvertToInt(x, true); for (int i = 0; i < 4; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g1[i])); } } } // Tests both signed and unsigned conversion from I16x8 (unpacking). WASM_SIMD_TEST(I32x4ConvertI16x8) { WasmRunner r(execution_tier, lower_simd); // Create four output vectors to hold signed and unsigned results. int32_t* g0 = r.builder().AddGlobal(kWasmS128); int32_t* g1 = r.builder().AddGlobal(kWasmS128); int32_t* g2 = r.builder().AddGlobal(kWasmS128); int32_t* g3 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT16_INPUTS(x) { r.Call(x); int32_t expected_signed = static_cast(x); int32_t expected_unsigned = static_cast(static_cast(x)); for (int i = 0; i < 4; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_signed, ReadLittleEndianValue(&g1[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g2[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g3[i])); } } } // TODO(v8:10972) Prototyping i64x2 convert from i32x4. // Tests both signed and unsigned conversion from I32x4 (unpacking). #if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 WASM_SIMD_TEST_NO_LOWERING(I64x2ConvertI32x4) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Create four output vectors to hold signed and unsigned results. int64_t* g0 = r.builder().AddGlobal(kWasmS128); int64_t* g1 = r.builder().AddGlobal(kWasmS128); int64_t* g2 = r.builder().AddGlobal(kWasmS128); int64_t* g3 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4Low, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4Low, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT32_INPUTS(x) { r.Call(x); int64_t expected_signed = static_cast(x); int64_t expected_unsigned = static_cast(static_cast(x)); for (int i = 0; i < 2; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_signed, ReadLittleEndianValue(&g1[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g2[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g3[i])); } } } #endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 void RunI32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int32UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. int32_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT32_INPUTS(x) { r.Call(x); int32_t expected = expected_op(x); for (int i = 0; i < 4; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } WASM_SIMD_TEST(I32x4Neg) { RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg, base::NegateWithWraparound); } WASM_SIMD_TEST(I32x4Abs) { RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Abs, std::abs); } WASM_SIMD_TEST(S128Not) { RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not, [](int32_t x) { return ~x; }); } #if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || \ V8_TARGET_ARCH_IA32 // TODO(v8:11086) Prototype i32x4.extadd_pairwise_i16x8_{s,u} template void RunExtAddPairwiseTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode ext_add_pairwise, WasmOpcode splat) { FLAG_SCOPE(wasm_simd_post_mvp); constexpr int num_lanes = kSimd128Size / sizeof(Wide); WasmRunner r(execution_tier, lower_simd); Wide* g = r.builder().template AddGlobal(kWasmS128); // TODO(v8:11086) We splat the same value, so pairwise adding ends up adding // the same value to itself, consider a more complicated test, like having 2 // vectors, and shuffling them. BUILD(r, WASM_LOCAL_GET(0), WASM_SIMD_OP(splat), WASM_SIMD_OP(ext_add_pairwise), kExprGlobalSet, 0, WASM_ONE); for (Narrow x : compiler::ValueHelper::GetVector()) { r.Call(x); Wide expected = AddLong(x, x); for (int i = 0; i < num_lanes; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8S) { RunExtAddPairwiseTest(execution_tier, lower_simd, kExprI32x4ExtAddPairwiseI16x8S, kExprI16x8Splat); } WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8U) { RunExtAddPairwiseTest(execution_tier, lower_simd, kExprI32x4ExtAddPairwiseI16x8U, kExprI16x8Splat); } WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16S) { RunExtAddPairwiseTest(execution_tier, lower_simd, kExprI16x8ExtAddPairwiseI8x16S, kExprI8x16Splat); } WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16U) { RunExtAddPairwiseTest(execution_tier, lower_simd, kExprI16x8ExtAddPairwiseI8x16U, kExprI8x16Splat); } #endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || // V8_TARGET_ARCH_IA32 void RunI32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int32BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. int32_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test values, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); FOR_INT32_INPUTS(x) { FOR_INT32_INPUTS(y) { r.Call(x, y); int32_t expected = expected_op(x, y); for (int i = 0; i < 4; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } WASM_SIMD_TEST(I32x4Add) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add, base::AddWithWraparound); } WASM_SIMD_TEST(I32x4Sub) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub, base::SubWithWraparound); } WASM_SIMD_TEST(I32x4Mul) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul, base::MulWithWraparound); } WASM_SIMD_TEST(I32x4MinS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum); } WASM_SIMD_TEST(I32x4MaxS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum); } WASM_SIMD_TEST(I32x4MinU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU, UnsignedMinimum); } WASM_SIMD_TEST(I32x4MaxU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU, UnsignedMaximum); } WASM_SIMD_TEST(S128And) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And, [](int32_t x, int32_t y) { return x & y; }); } WASM_SIMD_TEST(S128Or) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or, [](int32_t x, int32_t y) { return x | y; }); } WASM_SIMD_TEST(S128Xor) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor, [](int32_t x, int32_t y) { return x ^ y; }); } // Bitwise operation, doesn't really matter what simd type we test it with. WASM_SIMD_TEST(S128AndNot) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128AndNot, [](int32_t x, int32_t y) { return x & ~y; }); } WASM_SIMD_TEST(I32x4Eq) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal); } WASM_SIMD_TEST(I32x4Ne) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual); } WASM_SIMD_TEST(I32x4LtS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less); } WASM_SIMD_TEST(I32x4LeS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual); } WASM_SIMD_TEST(I32x4GtS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater); } WASM_SIMD_TEST(I32x4GeS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual); } WASM_SIMD_TEST(I32x4LtU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess); } WASM_SIMD_TEST(I32x4LeU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I32x4GtU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater); } WASM_SIMD_TEST(I32x4GeU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU, UnsignedGreaterEqual); } void RunI32x4ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int32ShiftOp expected_op) { // Intentionally shift by 32, should be no-op. for (int shift = 1; shift <= 32; shift++) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(1); int32_t* g_imm = r.builder().AddGlobal(kWasmS128); int32_t* g_mem = r.builder().AddGlobal(kWasmS128); byte value = 0; byte simd = r.AllocateLocal(kWasmS128); // Shift using an immediate, and shift using a value loaded from memory. BUILD( r, WASM_LOCAL_SET(simd, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd), WASM_I32V(shift))), WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP( opcode, WASM_LOCAL_GET(simd), WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), WASM_ONE); r.builder().WriteMemory(&memory[0], shift); FOR_INT32_INPUTS(x) { r.Call(x); int32_t expected = expected_op(x, shift); for (int i = 0; i < 4; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g_imm[i])); CHECK_EQ(expected, ReadLittleEndianValue(&g_mem[i])); } } } } WASM_SIMD_TEST(I32x4Shl) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I32x4ShrS) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I32x4ShrU) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU, LogicalShiftRight); } // Tests both signed and unsigned conversion from I8x16 (unpacking). WASM_SIMD_TEST(I16x8ConvertI8x16) { WasmRunner r(execution_tier, lower_simd); // Create four output vectors to hold signed and unsigned results. int16_t* g0 = r.builder().AddGlobal(kWasmS128); int16_t* g1 = r.builder().AddGlobal(kWasmS128); int16_t* g2 = r.builder().AddGlobal(kWasmS128); int16_t* g3 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High, WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT8_INPUTS(x) { r.Call(x); int16_t expected_signed = static_cast(x); int16_t expected_unsigned = static_cast(static_cast(x)); for (int i = 0; i < 8; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_signed, ReadLittleEndianValue(&g1[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g2[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g3[i])); } } } // Tests both signed and unsigned conversion from I32x4 (packing). WASM_SIMD_TEST(I16x8ConvertI32x4) { WasmRunner r(execution_tier, lower_simd); // Create output vectors to hold signed and unsigned results. int16_t* g0 = r.builder().AddGlobal(kWasmS128); int16_t* g1 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET( 0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET( 1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT32_INPUTS(x) { r.Call(x); int16_t expected_signed = Saturate(x); int16_t expected_unsigned = Saturate(x); for (int i = 0; i < 8; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g1[i])); } } } void RunI16x8UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int16UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. int16_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT16_INPUTS(x) { r.Call(x); int16_t expected = expected_op(x); for (int i = 0; i < 8; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } WASM_SIMD_TEST(I16x8Neg) { RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg, base::NegateWithWraparound); } WASM_SIMD_TEST(I16x8Abs) { RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Abs, Abs); } template void RunI16x8BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, OpType expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. T* g = r.builder().template AddGlobal(kWasmS128); // Build fn to splat test values, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); for (T x : compiler::ValueHelper::GetVector()) { for (T y : compiler::ValueHelper::GetVector()) { r.Call(x, y); T expected = expected_op(x, y); for (int i = 0; i < 8; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } WASM_SIMD_TEST(I16x8Add) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add, base::AddWithWraparound); } WASM_SIMD_TEST(I16x8AddSatS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatS, SaturateAdd); } WASM_SIMD_TEST(I16x8Sub) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub, base::SubWithWraparound); } WASM_SIMD_TEST(I16x8SubSatS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatS, SaturateSub); } WASM_SIMD_TEST(I16x8Mul) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul, base::MulWithWraparound); } WASM_SIMD_TEST(I16x8MinS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum); } WASM_SIMD_TEST(I16x8MaxS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum); } WASM_SIMD_TEST(I16x8AddSatU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatU, SaturateAdd); } WASM_SIMD_TEST(I16x8SubSatU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatU, SaturateSub); } WASM_SIMD_TEST(I16x8MinU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU, UnsignedMinimum); } WASM_SIMD_TEST(I16x8MaxU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU, UnsignedMaximum); } WASM_SIMD_TEST(I16x8Eq) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal); } WASM_SIMD_TEST(I16x8Ne) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual); } WASM_SIMD_TEST(I16x8LtS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less); } WASM_SIMD_TEST(I16x8LeS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual); } WASM_SIMD_TEST(I16x8GtS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater); } WASM_SIMD_TEST(I16x8GeS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual); } WASM_SIMD_TEST(I16x8GtU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater); } WASM_SIMD_TEST(I16x8GeU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I16x8LtU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess); } WASM_SIMD_TEST(I16x8LeU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I16x8RoundingAverageU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8RoundingAverageU, base::RoundingAverageUnsigned); } #if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 // TODO(v8:10971) Prototype i16x8.q15mulr_sat_s WASM_SIMD_TEST_NO_LOWERING(I16x8Q15MulRSatS) { FLAG_SCOPE(wasm_simd_post_mvp); RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Q15MulRSatS, SaturateRoundingQMul); } #endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 namespace { enum class MulHalf { kLow, kHigh }; // Helper to run ext mul tests. It will splat 2 input values into 2 v128, call // the mul op on these operands, and set the result into a global. // It will zero the top or bottom half of one of the operands, this will catch // mistakes if we are multiply the incorrect halves. template void RunExtMulTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, OpType expected_op, WasmOpcode splat, MulHalf half) { WasmRunner r(execution_tier, lower_simd); int lane_to_zero = half == MulHalf::kLow ? 1 : 0; T* g = r.builder().template AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET( 0, WASM_SIMD_BINOP( opcode, WASM_SIMD_I64x2_REPLACE_LANE( lane_to_zero, WASM_SIMD_UNOP(splat, WASM_LOCAL_GET(0)), WASM_I64V_1(0)), WASM_SIMD_UNOP(splat, WASM_LOCAL_GET(1)))), WASM_ONE); constexpr int lanes = kSimd128Size / sizeof(T); for (S x : compiler::ValueHelper::GetVector()) { for (S y : compiler::ValueHelper::GetVector()) { r.Call(x, y); T expected = expected_op(x, y); for (int i = 0; i < lanes; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } } // namespace WASM_SIMD_TEST(I16x8ExtMulLowI8x16S) { RunExtMulTest(execution_tier, lower_simd, kExprI16x8ExtMulLowI8x16S, MultiplyLong, kExprI8x16Splat, MulHalf::kLow); } WASM_SIMD_TEST(I16x8ExtMulHighI8x16S) { RunExtMulTest(execution_tier, lower_simd, kExprI16x8ExtMulHighI8x16S, MultiplyLong, kExprI8x16Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I16x8ExtMulLowI8x16U) { RunExtMulTest(execution_tier, lower_simd, kExprI16x8ExtMulLowI8x16U, MultiplyLong, kExprI8x16Splat, MulHalf::kLow); } WASM_SIMD_TEST(I16x8ExtMulHighI8x16U) { RunExtMulTest(execution_tier, lower_simd, kExprI16x8ExtMulHighI8x16U, MultiplyLong, kExprI8x16Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I32x4ExtMulLowI16x8S) { RunExtMulTest(execution_tier, lower_simd, kExprI32x4ExtMulLowI16x8S, MultiplyLong, kExprI16x8Splat, MulHalf::kLow); } WASM_SIMD_TEST(I32x4ExtMulHighI16x8S) { RunExtMulTest(execution_tier, lower_simd, kExprI32x4ExtMulHighI16x8S, MultiplyLong, kExprI16x8Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I32x4ExtMulLowI16x8U) { RunExtMulTest(execution_tier, lower_simd, kExprI32x4ExtMulLowI16x8U, MultiplyLong, kExprI16x8Splat, MulHalf::kLow); } WASM_SIMD_TEST(I32x4ExtMulHighI16x8U) { RunExtMulTest(execution_tier, lower_simd, kExprI32x4ExtMulHighI16x8U, MultiplyLong, kExprI16x8Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I64x2ExtMulLowI32x4S) { RunExtMulTest(execution_tier, lower_simd, kExprI64x2ExtMulLowI32x4S, MultiplyLong, kExprI32x4Splat, MulHalf::kLow); } WASM_SIMD_TEST(I64x2ExtMulHighI32x4S) { RunExtMulTest(execution_tier, lower_simd, kExprI64x2ExtMulHighI32x4S, MultiplyLong, kExprI32x4Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I64x2ExtMulLowI32x4U) { RunExtMulTest(execution_tier, lower_simd, kExprI64x2ExtMulLowI32x4U, MultiplyLong, kExprI32x4Splat, MulHalf::kLow); } WASM_SIMD_TEST(I64x2ExtMulHighI32x4U) { RunExtMulTest(execution_tier, lower_simd, kExprI64x2ExtMulHighI32x4U, MultiplyLong, kExprI32x4Splat, MulHalf::kHigh); } WASM_SIMD_TEST(I32x4DotI16x8S) { WasmRunner r(execution_tier, lower_simd); int32_t* g = r.builder().template AddGlobal(kWasmS128); byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET( 0, WASM_SIMD_BINOP(kExprI32x4DotI16x8S, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); for (int16_t x : compiler::ValueHelper::GetVector()) { for (int16_t y : compiler::ValueHelper::GetVector()) { r.Call(x, y); // x * y * 2 can overflow (0x8000), the behavior is to wraparound. int32_t expected = base::MulWithWraparound(x * y, 2); for (int i = 0; i < 4; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } void RunI16x8ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int16ShiftOp expected_op) { // Intentionally shift by 16, should be no-op. for (int shift = 1; shift <= 16; shift++) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(1); int16_t* g_imm = r.builder().AddGlobal(kWasmS128); int16_t* g_mem = r.builder().AddGlobal(kWasmS128); byte value = 0; byte simd = r.AllocateLocal(kWasmS128); // Shift using an immediate, and shift using a value loaded from memory. BUILD( r, WASM_LOCAL_SET(simd, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd), WASM_I32V(shift))), WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP( opcode, WASM_LOCAL_GET(simd), WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), WASM_ONE); r.builder().WriteMemory(&memory[0], shift); FOR_INT16_INPUTS(x) { r.Call(x); int16_t expected = expected_op(x, shift); for (int i = 0; i < 8; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g_imm[i])); CHECK_EQ(expected, ReadLittleEndianValue(&g_mem[i])); } } } } WASM_SIMD_TEST(I16x8Shl) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I16x8ShrS) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I16x8ShrU) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU, LogicalShiftRight); } void RunI8x16UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int8UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. int8_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT8_INPUTS(x) { r.Call(x); int8_t expected = expected_op(x); for (int i = 0; i < 16; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } WASM_SIMD_TEST(I8x16Neg) { RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg, base::NegateWithWraparound); } WASM_SIMD_TEST(I8x16Abs) { RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Abs, Abs); } #if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM // TODO(v8:11002) Prototype i8x16.popcnt. WASM_SIMD_TEST_NO_LOWERING(I8x16Popcnt) { FLAG_SCOPE(wasm_simd_post_mvp); WasmRunner r(execution_tier, lower_simd); // Global to hold output. int8_t* g = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform unop, and write the result. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET( 0, WASM_SIMD_UNOP(kExprI8x16Popcnt, WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_UINT8_INPUTS(x) { r.Call(x); unsigned expected = base::bits::CountPopulation(x); for (int i = 0; i < 16; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } #endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM // Tests both signed and unsigned conversion from I16x8 (packing). WASM_SIMD_TEST(I8x16ConvertI16x8) { WasmRunner r(execution_tier, lower_simd); // Create output vectors to hold signed and unsigned results. int8_t* g0 = r.builder().AddGlobal(kWasmS128); int8_t* g1 = r.builder().AddGlobal(kWasmS128); // Build fn to splat test value, perform conversions, and write the results. byte value = 0; byte temp1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET( 0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp1))), WASM_GLOBAL_SET( 1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp1))), WASM_ONE); FOR_INT16_INPUTS(x) { r.Call(x); int8_t expected_signed = Saturate(x); int8_t expected_unsigned = Saturate(x); for (int i = 0; i < 16; i++) { CHECK_EQ(expected_signed, ReadLittleEndianValue(&g0[i])); CHECK_EQ(expected_unsigned, ReadLittleEndianValue(&g1[i])); } } } template void RunI8x16BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, OpType expected_op) { WasmRunner r(execution_tier, lower_simd); // Global to hold output. T* g = r.builder().template AddGlobal(kWasmS128); // Build fn to splat test values, perform binop, and write the result. byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value2))), WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_ONE); for (T x : compiler::ValueHelper::GetVector()) { for (T y : compiler::ValueHelper::GetVector()) { r.Call(x, y); T expected = expected_op(x, y); for (int i = 0; i < 16; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g[i])); } } } } WASM_SIMD_TEST(I8x16Add) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add, base::AddWithWraparound); } WASM_SIMD_TEST(I8x16AddSatS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatS, SaturateAdd); } WASM_SIMD_TEST(I8x16Sub) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub, base::SubWithWraparound); } WASM_SIMD_TEST(I8x16SubSatS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatS, SaturateSub); } WASM_SIMD_TEST(I8x16MinS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum); } WASM_SIMD_TEST(I8x16MaxS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum); } WASM_SIMD_TEST(I8x16AddSatU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatU, SaturateAdd); } WASM_SIMD_TEST(I8x16SubSatU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatU, SaturateSub); } WASM_SIMD_TEST(I8x16MinU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU, UnsignedMinimum); } WASM_SIMD_TEST(I8x16MaxU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU, UnsignedMaximum); } WASM_SIMD_TEST(I8x16Eq) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal); } WASM_SIMD_TEST(I8x16Ne) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual); } WASM_SIMD_TEST(I8x16GtS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater); } WASM_SIMD_TEST(I8x16GeS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual); } WASM_SIMD_TEST(I8x16LtS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less); } WASM_SIMD_TEST(I8x16LeS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual); } WASM_SIMD_TEST(I8x16GtU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater); } WASM_SIMD_TEST(I8x16GeU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I8x16LtU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess); } WASM_SIMD_TEST(I8x16LeU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I8x16Mul) { FLAG_SCOPE(wasm_simd_post_mvp); RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul, base::MulWithWraparound); } WASM_SIMD_TEST(I8x16RoundingAverageU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16RoundingAverageU, base::RoundingAverageUnsigned); } void RunI8x16ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int8ShiftOp expected_op) { // Intentionally shift by 8, should be no-op. for (int shift = 1; shift <= 8; shift++) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(1); int8_t* g_imm = r.builder().AddGlobal(kWasmS128); int8_t* g_mem = r.builder().AddGlobal(kWasmS128); byte value = 0; byte simd = r.AllocateLocal(kWasmS128); // Shift using an immediate, and shift using a value loaded from memory. BUILD( r, WASM_LOCAL_SET(simd, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))), WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd), WASM_I32V(shift))), WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP( opcode, WASM_LOCAL_GET(simd), WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), WASM_ONE); r.builder().WriteMemory(&memory[0], shift); FOR_INT8_INPUTS(x) { r.Call(x); int8_t expected = expected_op(x, shift); for (int i = 0; i < 16; i++) { CHECK_EQ(expected, ReadLittleEndianValue(&g_imm[i])); CHECK_EQ(expected, ReadLittleEndianValue(&g_mem[i])); } } } } WASM_SIMD_TEST(I8x16Shl) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I8x16ShrS) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I8x16ShrU) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU, LogicalShiftRight); } // Test Select by making a mask where the 0th and 3rd lanes are true and the // rest false, and comparing for non-equality with zero to convert to a boolean // vector. #define WASM_SIMD_SELECT_TEST(format) \ WASM_SIMD_TEST(S##format##Select) { \ WasmRunner r(execution_tier, lower_simd); \ byte val1 = 0; \ byte val2 = 1; \ byte src1 = r.AllocateLocal(kWasmS128); \ byte src2 = r.AllocateLocal(kWasmS128); \ byte zero = r.AllocateLocal(kWasmS128); \ byte mask = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_LOCAL_SET(src1, \ WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val1))), \ WASM_LOCAL_SET(src2, \ WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val2))), \ WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 1, WASM_LOCAL_GET(zero), WASM_I32V(-1))), \ WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 2, WASM_LOCAL_GET(mask), WASM_I32V(-1))), \ WASM_LOCAL_SET( \ mask, \ WASM_SIMD_SELECT( \ format, WASM_LOCAL_GET(src1), WASM_LOCAL_GET(src2), \ WASM_SIMD_BINOP(kExprI##format##Ne, WASM_LOCAL_GET(mask), \ WASM_LOCAL_GET(zero)))), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 1), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 2), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \ \ CHECK_EQ(1, r.Call(0x12, 0x34)); \ } WASM_SIMD_SELECT_TEST(32x4) WASM_SIMD_SELECT_TEST(16x8) WASM_SIMD_SELECT_TEST(8x16) // Test Select by making a mask where the 0th and 3rd lanes are non-zero and the // rest 0. The mask is not the result of a comparison op. #define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format) \ WASM_SIMD_TEST(S##format##NonCanonicalSelect) { \ WasmRunner r(execution_tier, \ lower_simd); \ byte val1 = 0; \ byte val2 = 1; \ byte combined = 2; \ byte src1 = r.AllocateLocal(kWasmS128); \ byte src2 = r.AllocateLocal(kWasmS128); \ byte zero = r.AllocateLocal(kWasmS128); \ byte mask = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_LOCAL_SET(src1, \ WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val1))), \ WASM_LOCAL_SET(src2, \ WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val2))), \ WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 1, WASM_LOCAL_GET(zero), WASM_I32V(0xF))), \ WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 2, WASM_LOCAL_GET(mask), WASM_I32V(0xF))), \ WASM_LOCAL_SET(mask, WASM_SIMD_SELECT(format, WASM_LOCAL_GET(src1), \ WASM_LOCAL_GET(src2), \ WASM_LOCAL_GET(mask))), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 1), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 2), \ WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \ \ CHECK_EQ(1, r.Call(0x12, 0x34, 0x32)); \ } WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4) WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8) WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16) // Test binary ops with two lane test patterns, all lanes distinct. template void RunBinaryLaneOpTest( TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, const std::array& expected) { WasmRunner r(execution_tier, lower_simd); // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. T* src0 = r.builder().AddGlobal(kWasmS128); T* src1 = r.builder().AddGlobal(kWasmS128); static const int kElems = kSimd128Size / sizeof(T); for (int i = 0; i < kElems; i++) { WriteLittleEndianValue(&src0[i], i); WriteLittleEndianValue(&src1[i], kElems + i); } if (simd_op == kExprI8x16Shuffle) { BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_SHUFFLE_OP(simd_op, expected, WASM_GLOBAL_GET(0), WASM_GLOBAL_GET(1))), WASM_ONE); } else { BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(simd_op, WASM_GLOBAL_GET(0), WASM_GLOBAL_GET(1))), WASM_ONE); } CHECK_EQ(1, r.Call()); for (size_t i = 0; i < expected.size(); i++) { CHECK_EQ(ReadLittleEndianValue(&src0[i]), expected[i]); } } WASM_SIMD_TEST(I32x4AddHoriz) { FLAG_SCOPE(wasm_simd_post_mvp); // Inputs are [0 1 2 3] and [4 5 6 7]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprI32x4AddHoriz, {{1, 5, 9, 13}}); } WASM_SIMD_TEST(I16x8AddHoriz) { FLAG_SCOPE(wasm_simd_post_mvp); // Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprI16x8AddHoriz, {{1, 5, 9, 13, 17, 21, 25, 29}}); } WASM_SIMD_TEST(F32x4AddHoriz) { FLAG_SCOPE(wasm_simd_post_mvp); // Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprF32x4AddHoriz, {{1.0f, 5.0f, 9.0f, 13.0f}}); } // Test shuffle ops. void RunShuffleOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, const std::array& shuffle) { // Test the original shuffle. RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, shuffle); // Test a non-canonical (inputs reversed) version of the shuffle. std::array other_shuffle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size; RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, other_shuffle); // Test the swizzle (one-operand) version of the shuffle. std::array swizzle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1); RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, swizzle); // Test the non-canonical swizzle (one-operand) version of the shuffle. std::array other_swizzle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size; RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, other_swizzle); } #define SHUFFLE_LIST(V) \ V(S128Identity) \ V(S32x4Dup) \ V(S32x4ZipLeft) \ V(S32x4ZipRight) \ V(S32x4UnzipLeft) \ V(S32x4UnzipRight) \ V(S32x4TransposeLeft) \ V(S32x4TransposeRight) \ V(S32x2Reverse) \ V(S32x4Irregular) \ V(S32x4Rotate) \ V(S16x8Dup) \ V(S16x8ZipLeft) \ V(S16x8ZipRight) \ V(S16x8UnzipLeft) \ V(S16x8UnzipRight) \ V(S16x8TransposeLeft) \ V(S16x8TransposeRight) \ V(S16x4Reverse) \ V(S16x2Reverse) \ V(S16x8Irregular) \ V(S8x16Dup) \ V(S8x16ZipLeft) \ V(S8x16ZipRight) \ V(S8x16UnzipLeft) \ V(S8x16UnzipRight) \ V(S8x16TransposeLeft) \ V(S8x16TransposeRight) \ V(S8x8Reverse) \ V(S8x4Reverse) \ V(S8x2Reverse) \ V(S8x16Irregular) enum ShuffleKey { #define SHUFFLE_ENUM_VALUE(Name) k##Name, SHUFFLE_LIST(SHUFFLE_ENUM_VALUE) #undef SHUFFLE_ENUM_VALUE kNumShuffleKeys }; using Shuffle = std::array; using ShuffleMap = std::map; ShuffleMap test_shuffles = { {kS128Identity, {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}}, {kS32x4Dup, {{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}}, {kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}}, {kS32x4ZipRight, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}}, {kS32x4UnzipLeft, {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}}, {kS32x4UnzipRight, {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}}, {kS32x4TransposeLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}}, {kS32x4TransposeRight, {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}}, {kS32x2Reverse, // swizzle only {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}}, {kS32x4Irregular, {{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}}, {kS32x4Rotate, {{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3}}}, {kS16x8Dup, {{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}}, {kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}}, {kS16x8ZipRight, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}}, {kS16x8UnzipLeft, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}}, {kS16x8UnzipRight, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}}, {kS16x8TransposeLeft, {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}}, {kS16x8TransposeRight, {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}}, {kS16x4Reverse, // swizzle only {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}}, {kS16x2Reverse, // swizzle only {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}}, {kS16x8Irregular, {{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}}, {kS8x16Dup, {{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}}, {kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, {kS8x16ZipRight, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}}, {kS8x16UnzipLeft, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}}, {kS8x16UnzipRight, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}}, {kS8x16TransposeLeft, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}}, {kS8x16TransposeRight, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}}, {kS8x8Reverse, // swizzle only {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}}, {kS8x4Reverse, // swizzle only {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}}, {kS8x2Reverse, // swizzle only {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}}, {kS8x16Irregular, {{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, }; #define SHUFFLE_TEST(Name) \ WASM_SIMD_TEST(Name) { \ ShuffleMap::const_iterator it = test_shuffles.find(k##Name); \ DCHECK_NE(it, test_shuffles.end()); \ RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, \ it->second); \ } SHUFFLE_LIST(SHUFFLE_TEST) #undef SHUFFLE_TEST #undef SHUFFLE_LIST // Test shuffles that blend the two vectors (elements remain in their lanes.) WASM_SIMD_TEST(S8x16Blend) { std::array expected; for (int bias = 1; bias < kSimd128Size; bias++) { for (int i = 0; i < bias; i++) expected[i] = i; for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size; RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected); } } // Test shuffles that concatenate the two vectors. WASM_SIMD_TEST(S8x16Concat) { std::array expected; // n is offset or bias of concatenation. for (int n = 1; n < kSimd128Size; ++n) { int i = 0; // last kLanes - n bytes of first vector. for (int j = n; j < kSimd128Size; ++j) { expected[i++] = j; } // first n bytes of second vector for (int j = 0; j < n; ++j) { expected[i++] = j + kSimd128Size; } RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected); } } WASM_SIMD_TEST(ShuffleShufps) { // We reverse engineer the shufps immediates into 8x16 shuffles. std::array expected; for (int mask = 0; mask < 256; mask++) { // Each iteration of this loop sets byte[i] of the 32x4 lanes. // Low 2 lanes (2-bits each) select from first input. uint8_t index0 = (mask & 3) * 4; uint8_t index1 = ((mask >> 2) & 3) * 4; // Next 2 bits select from src2, so add 16 to the index. uint8_t index2 = ((mask >> 4) & 3) * 4 + 16; uint8_t index3 = ((mask >> 6) & 3) * 4 + 16; for (int i = 0; i < 4; i++) { expected[0 + i] = index0 + i; expected[4 + i] = index1 + i; expected[8 + i] = index2 + i; expected[12 + i] = index3 + i; } RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected); } } struct SwizzleTestArgs { const Shuffle input; const Shuffle indices; const Shuffle expected; }; static constexpr SwizzleTestArgs swizzle_test_args[] = { {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {15, 0, 14, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7}, {0, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8}}, {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, {15, 13, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0}}, // all indices are out of range {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {16, 17, 18, 19, 20, 124, 125, 126, 127, -1, -2, -3, -4, -5, -6, -7}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}}; static constexpr Vector swizzle_test_vector = ArrayVector(swizzle_test_args); WASM_SIMD_TEST(I8x16Swizzle) { // RunBinaryLaneOpTest set up the two globals to be consecutive integers, // [0-15] and [16-31]. Using [0-15] as the indices will not sufficiently test // swizzle since the expected result is a no-op, using [16-31] will result in // all 0s. WasmRunner r(execution_tier, lower_simd); static const int kElems = kSimd128Size / sizeof(uint8_t); uint8_t* dst = r.builder().AddGlobal(kWasmS128); uint8_t* src0 = r.builder().AddGlobal(kWasmS128); uint8_t* src1 = r.builder().AddGlobal(kWasmS128); BUILD( r, WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(kExprI8x16Swizzle, WASM_GLOBAL_GET(1), WASM_GLOBAL_GET(2))), WASM_ONE); for (SwizzleTestArgs si : swizzle_test_vector) { for (int i = 0; i < kElems; i++) { WriteLittleEndianValue(&src0[i], si.input[i]); WriteLittleEndianValue(&src1[i], si.indices[i]); } CHECK_EQ(1, r.Call()); for (int i = 0; i < kElems; i++) { CHECK_EQ(ReadLittleEndianValue(&dst[i]), si.expected[i]); } } } // Combine 3 shuffles a, b, and c by applying both a and b and then applying c // to those two results. Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) { Shuffle result; for (int i = 0; i < kSimd128Size; ++i) { result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size]; } return result; } const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) { return test_shuffles[static_cast(rng->NextInt(kNumShuffleKeys))]; } // Test shuffles that are random combinations of 3 test shuffles. Completely // random shuffles almost always generate the slow general shuffle code, so // don't exercise as many code paths. WASM_SIMD_TEST(I8x16ShuffleFuzz) { v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); static const int kTests = 100; for (int i = 0; i < kTests; ++i) { auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng), GetRandomTestShuffle(rng)); RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, shuffle); } } void AppendShuffle(const Shuffle& shuffle, std::vector* buffer) { byte opcode[] = {WASM_SIMD_OP(kExprI8x16Shuffle)}; for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]); for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i])); } void BuildShuffle(const std::vector& shuffles, std::vector* buffer) { // Perform the leaf shuffles on globals 0 and 1. size_t row_index = (shuffles.size() - 1) / 2; for (size_t i = row_index; i < shuffles.size(); ++i) { byte operands[] = {WASM_GLOBAL_GET(0), WASM_GLOBAL_GET(1)}; for (size_t j = 0; j < arraysize(operands); ++j) buffer->push_back(operands[j]); AppendShuffle(shuffles[i], buffer); } // Now perform inner shuffles in the correct order on operands on the stack. do { for (size_t i = row_index / 2; i < row_index; ++i) { AppendShuffle(shuffles[i], buffer); } row_index /= 2; } while (row_index != 0); byte epilog[] = {kExprGlobalSet, static_cast(0), WASM_ONE}; for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]); } void RunWasmCode(TestExecutionTier execution_tier, LowerSimd lower_simd, const std::vector& code, std::array* result) { WasmRunner r(execution_tier, lower_simd); // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. int8_t* src0 = r.builder().AddGlobal(kWasmS128); int8_t* src1 = r.builder().AddGlobal(kWasmS128); for (int i = 0; i < kSimd128Size; ++i) { WriteLittleEndianValue(&src0[i], i); WriteLittleEndianValue(&src1[i], kSimd128Size + i); } r.Build(code.data(), code.data() + code.size()); CHECK_EQ(1, r.Call()); for (size_t i = 0; i < kSimd128Size; i++) { (*result)[i] = ReadLittleEndianValue(&src0[i]); } } // Test multiple shuffles executed in sequence. WASM_SIMD_TEST(S8x16MultiShuffleFuzz) { // Don't compare interpreter results with itself. if (execution_tier == TestExecutionTier::kInterpreter) { return; } v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); static const int kShuffles = 100; for (int i = 0; i < kShuffles; ++i) { // Create an odd number in [3..23] of random test shuffles so we can build // a complete binary tree (stored as a heap) of shuffle operations. The leaf // shuffles operate on the test pattern inputs, while the interior shuffles // operate on the results of the two child shuffles. int num_shuffles = rng->NextInt(10) * 2 + 3; std::vector shuffles; for (int j = 0; j < num_shuffles; ++j) { shuffles.push_back(GetRandomTestShuffle(rng)); } // Generate the code for the shuffle expression. std::vector buffer; BuildShuffle(shuffles, &buffer); // Run the code using the interpreter to get the expected result. std::array expected; RunWasmCode(TestExecutionTier::kInterpreter, kNoLowerSimd, buffer, &expected); // Run the SIMD or scalar lowered compiled code and compare results. std::array result; RunWasmCode(execution_tier, lower_simd, buffer, &result); for (size_t i = 0; i < kSimd128Size; ++i) { CHECK_EQ(result[i], expected[i]); } } } // Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer // result. Use relational ops on numeric vectors to create the boolean vector // test inputs. Test inputs with all true, all false, one true, and one false. #define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes, int_type) \ WASM_SIMD_TEST(ReductionTest##lanes) { \ FLAG_SCOPE(wasm_simd_post_mvp); \ WasmRunner r(execution_tier, lower_simd); \ if (lanes == 2 && lower_simd == kLowerSimd) return; \ byte zero = r.AllocateLocal(kWasmS128); \ byte one_one = r.AllocateLocal(kWasmS128); \ byte reduced = r.AllocateLocal(kWasmI32); \ BUILD(r, WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(int_type(0))), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_LOCAL_GET(zero), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_LOCAL_GET(zero), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_LOCAL_GET(zero), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_LOCAL_GET(zero), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET(one_one, \ WASM_SIMD_I##format##_REPLACE_LANE( \ lanes - 1, WASM_LOCAL_GET(zero), int_type(1))), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_LOCAL_GET(one_one), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_LOCAL_GET(one_one), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_LOCAL_GET(one_one), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_LOCAL_SET( \ reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_LOCAL_GET(one_one), \ WASM_LOCAL_GET(zero)))), \ WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_ONE); \ CHECK_EQ(1, r.Call()); \ } WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4, WASM_I32V) WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8, WASM_I32V) WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16, WASM_I32V) WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))), WASM_I32_REINTERPRET_F32(WASM_F32(30.5))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE( 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))), WASM_F32_REINTERPRET_I32(WASM_I32V(15))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4ExtractLane) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmF32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(0, WASM_SIMD_F32x4_EXTRACT_LANE( 0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5)))), WASM_LOCAL_SET(1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(0))), WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1))); CHECK_EQ(30.5, r.Call()); } WASM_SIMD_TEST(SimdF32x4AddWithI32x4) { // Choose two floating point values whose sum is normal and exactly // representable as a float. const int kOne = 0x3F800000; const int kTwo = 0x40000000; WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_F32_EQ( WASM_SIMD_F32x4_EXTRACT_LANE( 0, WASM_SIMD_BINOP(kExprF32x4Add, WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)), WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))), WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)), WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdI32x4AddWithF32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_I32_EQ( WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_BINOP(kExprI32x4Add, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)), WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))), WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)), WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdI32x4Local) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(0))); CHECK_EQ(31, r.Call()); } WASM_SIMD_TEST(SimdI32x4SplatFromExtract) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(0, WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))), WASM_LOCAL_SET(1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0))), WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1))); CHECK_EQ(76, r.Call()); } WASM_SIMD_TEST(SimdI32x4For) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), WASM_LOCAL_SET(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_LOCAL_GET(1), WASM_I32V(53))), WASM_LOCAL_SET(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_LOCAL_GET(1), WASM_I32V(23))), WASM_LOCAL_SET(0, WASM_I32V(0)), WASM_LOOP( WASM_LOCAL_SET( 1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_LOCAL_GET(1), WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))), WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))), WASM_LOCAL_SET(0, WASM_I32V(1)), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(1)), WASM_I32V(36)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1)), WASM_I32V(58)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_LOCAL_GET(1)), WASM_I32V(28)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_LOCAL_GET(1)), WASM_I32V(36)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_LOCAL_GET(0)); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4For) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))), WASM_LOCAL_SET(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_LOCAL_GET(1), WASM_F32(19.5))), WASM_LOCAL_SET(0, WASM_I32V(0)), WASM_LOOP( WASM_LOCAL_SET( 1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_LOCAL_GET(1), WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))), WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))), WASM_LOCAL_SET(0, WASM_I32V(1)), WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(1)), WASM_F32(27.25)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_LOCAL_GET(1)), WASM_F32(25.5)), WASM_LOCAL_SET(0, WASM_I32V(0))), WASM_LOCAL_GET(0)); CHECK_EQ(1, r.Call()); } template void SetVectorByLanes(T* v, const std::array& arr) { for (int lane = 0; lane < numLanes; lane++) { WriteLittleEndianValue(&v[lane], arr[lane]); } } template const T GetScalar(T* v, int lane) { constexpr int kElems = kSimd128Size / sizeof(T); const int index = lane; USE(kElems); DCHECK(index >= 0 && index < kElems); return ReadLittleEndianValue(&v[index]); } WASM_SIMD_TEST(SimdI32x4GetGlobal) { WasmRunner r(execution_tier, lower_simd); // Pad the globals with a few unused slots to get a non-zero offset. r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused int32_t* global = r.builder().AddGlobal(kWasmS128); SetVectorByLanes(global, {{0, 1, 2, 3}}); r.AllocateLocal(kWasmI32); BUILD( r, WASM_LOCAL_SET(1, WASM_I32V(1)), WASM_IF(WASM_I32_NE(WASM_I32V(0), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GLOBAL_GET(4))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(1), WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GLOBAL_GET(4))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(2), WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GLOBAL_GET(4))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(3), WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GLOBAL_GET(4))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_LOCAL_GET(1)); CHECK_EQ(1, r.Call(0)); } WASM_SIMD_TEST(SimdI32x4SetGlobal) { WasmRunner r(execution_tier, lower_simd); // Pad the globals with a few unused slots to get a non-zero offset. r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused int32_t* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))), WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GLOBAL_GET(4), WASM_I32V(34))), WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GLOBAL_GET(4), WASM_I32V(45))), WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GLOBAL_GET(4), WASM_I32V(56))), WASM_I32V(1)); CHECK_EQ(1, r.Call(0)); CHECK_EQ(GetScalar(global, 0), 23); CHECK_EQ(GetScalar(global, 1), 34); CHECK_EQ(GetScalar(global, 2), 45); CHECK_EQ(GetScalar(global, 3), 56); } WASM_SIMD_TEST(SimdF32x4GetGlobal) { WasmRunner r(execution_tier, lower_simd); float* global = r.builder().AddGlobal(kWasmS128); SetVectorByLanes(global, {{0.0, 1.5, 2.25, 3.5}}); r.AllocateLocal(kWasmI32); BUILD( r, WASM_LOCAL_SET(1, WASM_I32V(1)), WASM_IF(WASM_F32_NE(WASM_F32(0.0), WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GLOBAL_GET(0))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(1.5), WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GLOBAL_GET(0))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(2.25), WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GLOBAL_GET(0))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(3.5), WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GLOBAL_GET(0))), WASM_LOCAL_SET(1, WASM_I32V(0))), WASM_LOCAL_GET(1)); CHECK_EQ(1, r.Call(0)); } WASM_SIMD_TEST(SimdF32x4SetGlobal) { WasmRunner r(execution_tier, lower_simd); float* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))), WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GLOBAL_GET(0), WASM_F32(45.5))), WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GLOBAL_GET(0), WASM_F32(32.25))), WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GLOBAL_GET(0), WASM_F32(65.0))), WASM_I32V(1)); CHECK_EQ(1, r.Call(0)); CHECK_EQ(GetScalar(global, 0), 13.5f); CHECK_EQ(GetScalar(global, 1), 45.5f); CHECK_EQ(GetScalar(global, 2), 32.25f); CHECK_EQ(GetScalar(global, 3), 65.0f); } #if V8_TARGET_ARCH_ARM64 // TODO(v8:11168): Prototyping prefetch. WASM_SIMD_TEST(SimdPrefetch) { FLAG_SCOPE(wasm_simd_post_mvp); { // Test PrefetchT. WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchT), ZERO_ALIGNMENT, ZERO_OFFSET, WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO))); FOR_INT32_INPUTS(i) { r.builder().WriteMemory(&memory[0], i); CHECK_EQ(i, r.Call()); } } { // Test PrefetchNT. WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchNT), ZERO_ALIGNMENT, ZERO_OFFSET, WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO))); FOR_INT32_INPUTS(i) { r.builder().WriteMemory(&memory[0], i); CHECK_EQ(i, r.Call()); } } { // Test OOB. WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); // Prefetch kWasmPageSize+1 but still load from 0. BUILD(r, WASM_I32V(kWasmPageSize + 1), WASM_SIMD_OP(kExprPrefetchNT), ZERO_ALIGNMENT, ZERO_OFFSET, WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO))); FOR_INT32_INPUTS(i) { r.builder().WriteMemory(&memory[0], i); CHECK_EQ(i, r.Call()); } } } #endif // V8_TARGET_ARCH_ARM64 WASM_SIMD_TEST(SimdLoadStoreLoad) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); // Load memory, store it, then reload it and extract the first lane. Use a // non-zero offset into the memory of 1 lane (4 bytes) to test indexing. BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(8), WASM_SIMD_LOAD_MEM(WASM_I32V(4))), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(8)))); FOR_INT32_INPUTS(i) { int32_t expected = i; r.builder().WriteMemory(&memory[1], expected); CHECK_EQ(expected, r.Call()); } { // OOB tests for loads. WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_LOAD_MEM(WASM_LOCAL_GET(0)))); for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1); offset < kWasmPageSize; ++offset) { CHECK_TRAP(r.Call(offset)); } } { // OOB tests for stores. WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_SIMD_STORE_MEM(WASM_LOCAL_GET(0), WASM_SIMD_LOAD_MEM(WASM_ZERO)), WASM_ONE); for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1); offset < kWasmPageSize; ++offset) { CHECK_TRAP(r.Call(offset)); } } } WASM_SIMD_TEST(SimdLoadStoreLoadMemargOffset) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); constexpr byte offset_1 = 4; constexpr byte offset_2 = 8; // Load from memory at offset_1, store to offset_2, load from offset_2, and // extract first lane. We use non-zero memarg offsets to test offset decoding. BUILD( r, WASM_SIMD_STORE_MEM_OFFSET( offset_2, WASM_ZERO, WASM_SIMD_LOAD_MEM_OFFSET(offset_1, WASM_ZERO)), WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_LOAD_MEM_OFFSET(offset_2, WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t expected = i; // Index 1 of memory (int32_t) will be bytes 4 to 8. r.builder().WriteMemory(&memory[1], expected); CHECK_EQ(expected, r.Call()); } { // OOB tests for loads with offsets. for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1); offset < kWasmPageSize; ++offset) { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_LOAD_MEM_OFFSET(U32V_3(offset), WASM_ZERO))); CHECK_TRAP(r.Call()); } } { // OOB tests for stores with offsets for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1); offset < kWasmPageSize; ++offset) { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); BUILD(r, WASM_SIMD_STORE_MEM_OFFSET(U32V_3(offset), WASM_ZERO, WASM_SIMD_LOAD_MEM(WASM_ZERO)), WASM_ONE); CHECK_TRAP(r.Call(offset)); } } } // Test a multi-byte opcode with offset values that encode into valid opcodes. // This is to exercise decoding logic and make sure we get the lengths right. WASM_SIMD_TEST(S128Load8SplatOffset) { // This offset is [82, 22] when encoded, which contains valid opcodes. constexpr int offset = 4354; WasmRunner r(execution_tier, lower_simd); int8_t* memory = r.builder().AddMemoryElems(kWasmPageSize); int8_t* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET( 0, WASM_SIMD_LOAD_OP_OFFSET(kExprS128Load8Splat, WASM_I32V(0), U32V_2(offset))), WASM_ONE); // We don't really care about all valid values, so just test for 1. int8_t x = 7; r.builder().WriteMemory(&memory[offset], x); r.Call(); for (int i = 0; i < 16; i++) { CHECK_EQ(x, ReadLittleEndianValue(&global[i])); } } template void RunLoadSplatTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode op) { constexpr int lanes = 16 / sizeof(T); constexpr int mem_index = 16; // Load from mem index 16 (bytes). WasmRunner r(execution_tier, lower_simd); T* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); T* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))), WASM_ONE); for (T x : compiler::ValueHelper::GetVector()) { // 16-th byte in memory is lanes-th element (size T) of memory. r.builder().WriteMemory(&memory[lanes], x); r.Call(); for (int i = 0; i < lanes; i++) { CHECK_EQ(x, ReadLittleEndianValue(&global[i])); } } // Test for OOB. { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))), WASM_ONE); // Load splats load sizeof(T) bytes. for (uint32_t offset = kWasmPageSize - (sizeof(T) - 1); offset < kWasmPageSize; ++offset) { CHECK_TRAP(r.Call(offset)); } } } WASM_SIMD_TEST(S128Load8Splat) { RunLoadSplatTest(execution_tier, lower_simd, kExprS128Load8Splat); } WASM_SIMD_TEST(S128Load16Splat) { RunLoadSplatTest(execution_tier, lower_simd, kExprS128Load16Splat); } WASM_SIMD_TEST(S128Load32Splat) { RunLoadSplatTest(execution_tier, lower_simd, kExprS128Load32Splat); } WASM_SIMD_TEST(S128Load64Splat) { RunLoadSplatTest(execution_tier, lower_simd, kExprS128Load64Splat); } template void RunLoadExtendTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode op) { static_assert(sizeof(S) < sizeof(T), "load extend should go from smaller to larger type"); constexpr int lanes_s = 16 / sizeof(S); constexpr int lanes_t = 16 / sizeof(T); constexpr int mem_index = 16; // Load from mem index 16 (bytes). // Load extends always load 64 bits, so alignment values can be from 0 to 3. for (byte alignment = 0; alignment <= 3; alignment++) { WasmRunner r(execution_tier, lower_simd); S* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(S)); T* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_ALIGNMENT( op, WASM_I32V(mem_index), alignment)), WASM_ONE); for (S x : compiler::ValueHelper::GetVector()) { for (int i = 0; i < lanes_s; i++) { // 16-th byte in memory is lanes-th element (size T) of memory. r.builder().WriteMemory(&memory[lanes_s + i], x); } r.Call(); for (int i = 0; i < lanes_t; i++) { CHECK_EQ(static_cast(x), ReadLittleEndianValue(&global[i])); } } } // Test for offset. { WasmRunner r(execution_tier, lower_simd); S* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(S)); T* global = r.builder().AddGlobal(kWasmS128); constexpr byte offset = sizeof(S); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, offset)), WASM_ONE); // Let max_s be the max_s value for type S, we set up the memory as such: // memory = [max_s, max_s - 1, ... max_s - (lane_s - 1)]. constexpr S max_s = std::numeric_limits::max(); for (int i = 0; i < lanes_s; i++) { // Integer promotion due to -, static_cast to narrow. r.builder().WriteMemory(&memory[i], static_cast(max_s - i)); } r.Call(); // Loads will be offset by sizeof(S), so will always start from (max_s - 1). for (int i = 0; i < lanes_t; i++) { // Integer promotion due to -, static_cast to narrow. T expected = static_cast(max_s - i - 1); CHECK_EQ(expected, ReadLittleEndianValue(&global[i])); } } // Test for OOB. { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(S)); r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))), WASM_ONE); // Load extends load 8 bytes, so should trap from -7. for (uint32_t offset = kWasmPageSize - 7; offset < kWasmPageSize; ++offset) { CHECK_TRAP(r.Call(offset)); } } } WASM_SIMD_TEST(S128Load8x8U) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load8x8U); } WASM_SIMD_TEST(S128Load8x8S) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load8x8S); } WASM_SIMD_TEST(S128Load16x4U) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load16x4U); } WASM_SIMD_TEST(S128Load16x4S) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load16x4S); } WASM_SIMD_TEST(S128Load32x2U) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load32x2U); } WASM_SIMD_TEST(S128Load32x2S) { RunLoadExtendTest(execution_tier, lower_simd, kExprS128Load32x2S); } template void RunLoadZeroTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode op) { constexpr int lanes_s = kSimd128Size / sizeof(S); constexpr int mem_index = 16; // Load from mem index 16 (bytes). constexpr S sentinel = S{-1}; S* memory; S* global; auto initialize_builder = [=](WasmRunner* r) -> std::tuple { S* memory = r->builder().AddMemoryElems(kWasmPageSize / sizeof(S)); S* global = r->builder().AddGlobal(kWasmS128); r->builder().RandomizeMemory(); r->builder().WriteMemory(&memory[lanes_s], sentinel); return std::make_tuple(memory, global); }; // Check all supported alignments. constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(S)); for (byte alignment = 0; alignment <= max_alignment; alignment++) { WasmRunner r(execution_tier, lower_simd); std::tie(memory, global) = initialize_builder(&r); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))), WASM_ONE); r.Call(); // Only first lane is set to sentinel. CHECK_EQ(sentinel, ReadLittleEndianValue(&global[0])); // The other lanes are zero. for (int i = 1; i < lanes_s; i++) { CHECK_EQ(S{0}, ReadLittleEndianValue(&global[i])); } } { // Use memarg to specific offset. WasmRunner r(execution_tier, lower_simd); std::tie(memory, global) = initialize_builder(&r); BUILD( r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, mem_index)), WASM_ONE); r.Call(); // Only first lane is set to sentinel. CHECK_EQ(sentinel, ReadLittleEndianValue(&global[0])); // The other lanes are zero. for (int i = 1; i < lanes_s; i++) { CHECK_EQ(S{0}, ReadLittleEndianValue(&global[i])); } } // Test for OOB. { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(S)); r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))), WASM_ONE); // Load extends load sizeof(S) bytes. for (uint32_t offset = kWasmPageSize - (sizeof(S) - 1); offset < kWasmPageSize; ++offset) { CHECK_TRAP(r.Call(offset)); } } } WASM_SIMD_TEST(S128Load32Zero) { RunLoadZeroTest(execution_tier, lower_simd, kExprS128Load32Zero); } WASM_SIMD_TEST(S128Load64Zero) { RunLoadZeroTest(execution_tier, lower_simd, kExprS128Load64Zero); } #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || \ V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_MIPS64 // TODO(v8:10975): Prototyping load lane and store lane. template void RunLoadLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode load_op, WasmOpcode splat_op) { FLAG_SCOPE(wasm_simd_post_mvp); if (execution_tier == TestExecutionTier::kLiftoff) { // Not yet implemented. return; } WasmOpcode const_op = splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const; constexpr int lanes_s = kSimd128Size / sizeof(T); constexpr int mem_index = 16; // Load from mem index 16 (bytes). constexpr int splat_value = 33; T sentinel = T{-1}; T* memory; T* global; auto build_fn = [=, &memory, &global](WasmRunner& r, int mem_index, int lane, int alignment, int offset) { memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); global = r.builder().AddGlobal(kWasmS128); r.builder().WriteMemory(&memory[lanes_s], sentinel); // Splat splat_value, then only load and replace a single lane with the // sentinel value. BUILD(r, WASM_I32V(mem_index), const_op, splat_value, WASM_SIMD_OP(splat_op), WASM_SIMD_OP(load_op), alignment, offset, lane, kExprGlobalSet, 0, WASM_ONE); }; auto check_results = [=](T* global, int sentinel_lane = 0) { // Only one lane is loaded, the rest of the lanes are unchanged. for (int i = 0; i < lanes_s; i++) { T expected = i == sentinel_lane ? sentinel : static_cast(splat_value); CHECK_EQ(expected, ReadLittleEndianValue(&global[i])); } }; for (int lane_index = 0; lane_index < lanes_s; ++lane_index) { WasmRunner r(execution_tier, lower_simd); build_fn(r, mem_index, lane_index, /*alignment=*/0, /*offset=*/0); r.Call(); check_results(global, lane_index); } // Check all possible alignments. constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T)); for (byte alignment = 0; alignment <= max_alignment; ++alignment) { WasmRunner r(execution_tier, lower_simd); build_fn(r, mem_index, /*lane=*/0, alignment, /*offset=*/0); r.Call(); check_results(global); } { // Use memarg to specify offset. int lane_index = 0; WasmRunner r(execution_tier, lower_simd); build_fn(r, /*mem_index=*/0, /*lane=*/0, /*alignment=*/0, /*offset=*/mem_index); r.Call(); check_results(global, lane_index); } // Test for OOB. { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_LOCAL_GET(0), const_op, splat_value, WASM_SIMD_OP(splat_op), WASM_SIMD_OP(load_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, kExprGlobalSet, 0, WASM_ONE); // Load lane load sizeof(T) bytes. for (uint32_t index = kWasmPageSize - (sizeof(T) - 1); index < kWasmPageSize; ++index) { CHECK_TRAP(r.Call(index)); } } } WASM_SIMD_TEST_NO_LOWERING(S128Load8Lane) { RunLoadLaneTest(execution_tier, lower_simd, kExprS128Load8Lane, kExprI8x16Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Load16Lane) { RunLoadLaneTest(execution_tier, lower_simd, kExprS128Load16Lane, kExprI16x8Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Load32Lane) { RunLoadLaneTest(execution_tier, lower_simd, kExprS128Load32Lane, kExprI32x4Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Load64Lane) { RunLoadLaneTest(execution_tier, lower_simd, kExprS128Load64Lane, kExprI64x2Splat); } template void RunStoreLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode store_op, WasmOpcode splat_op) { FLAG_SCOPE(wasm_simd_post_mvp); if (execution_tier == TestExecutionTier::kLiftoff) { // Not yet implemented. return; } constexpr int lanes = kSimd128Size / sizeof(T); constexpr int mem_index = 16; // Store to mem index 16 (bytes). constexpr int splat_value = 33; WasmOpcode const_op = splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const; T* memory; // Will be set by build_fn. auto build_fn = [=, &memory](WasmRunner& r, int mem_index, int lane_index, int alignment, int offset) { memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); // Splat splat_value, then only Store and replace a single lane. BUILD(r, WASM_I32V(mem_index), const_op, splat_value, WASM_SIMD_OP(splat_op), WASM_SIMD_OP(store_op), alignment, offset, lane_index, WASM_ONE); r.builder().BlankMemory(); }; auto check_results = [=](WasmRunner& r, T* memory) { for (int i = 0; i < lanes; i++) { CHECK_EQ(0, r.builder().ReadMemory(&memory[i])); } CHECK_EQ(splat_value, r.builder().ReadMemory(&memory[lanes])); for (int i = lanes + 1; i < lanes * 2; i++) { CHECK_EQ(0, r.builder().ReadMemory(&memory[i])); } }; for (int lane_index = 0; lane_index < lanes; lane_index++) { WasmRunner r(execution_tier, lower_simd); build_fn(r, mem_index, lane_index, ZERO_ALIGNMENT, ZERO_OFFSET); r.Call(); check_results(r, memory); } // Check all possible alignments. constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T)); for (byte alignment = 0; alignment <= max_alignment; ++alignment) { WasmRunner r(execution_tier, lower_simd); build_fn(r, mem_index, /*lane_index=*/0, alignment, ZERO_OFFSET); r.Call(); check_results(r, memory); } { // Use memarg for offset. WasmRunner r(execution_tier, lower_simd); build_fn(r, /*mem_index=*/0, /*lane_index=*/0, ZERO_ALIGNMENT, mem_index); r.Call(); check_results(r, memory); } // OOB stores { WasmRunner r(execution_tier, lower_simd); r.builder().AddMemoryElems(kWasmPageSize / sizeof(T)); BUILD(r, WASM_LOCAL_GET(0), const_op, splat_value, WASM_SIMD_OP(splat_op), WASM_SIMD_OP(store_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, WASM_ONE); // StoreLane stores sizeof(T) bytes. for (uint32_t index = kWasmPageSize - (sizeof(T) - 1); index < kWasmPageSize; ++index) { CHECK_TRAP(r.Call(index)); } } } WASM_SIMD_TEST_NO_LOWERING(S128Store8Lane) { RunStoreLaneTest(execution_tier, lower_simd, kExprS128Store8Lane, kExprI8x16Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Store16Lane) { RunStoreLaneTest(execution_tier, lower_simd, kExprS128Store16Lane, kExprI16x8Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Store32Lane) { RunStoreLaneTest(execution_tier, lower_simd, kExprS128Store32Lane, kExprI32x4Splat); } WASM_SIMD_TEST_NO_LOWERING(S128Store64Lane) { RunStoreLaneTest(execution_tier, lower_simd, kExprS128Store64Lane, kExprI64x2Splat); } #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_MIPS64 #define WASM_SIMD_ANYTRUE_TEST(format, lanes, max, param_type) \ WASM_SIMD_TEST(S##format##AnyTrue) { \ FLAG_SCOPE(wasm_simd_post_mvp); \ WasmRunner r(execution_tier, lower_simd); \ if (lanes == 2 && lower_simd == kLowerSimd) return; \ byte simd = r.AllocateLocal(kWasmS128); \ BUILD( \ r, \ WASM_LOCAL_SET(simd, WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(0))), \ WASM_SIMD_UNOP(kExprV##format##AnyTrue, WASM_LOCAL_GET(simd))); \ CHECK_EQ(1, r.Call(max)); \ CHECK_EQ(1, r.Call(5)); \ CHECK_EQ(0, r.Call(0)); \ } WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff, int32_t) WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff, int32_t) WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff, int32_t) // Special any true test cases that splats a -0.0 double into a i64x2. // This is specifically to ensure that our implementation correct handles that // 0.0 and -0.0 will be different in an anytrue (IEEE753 says they are equals). WASM_SIMD_TEST(V32x4AnytrueWithNegativeZero) { WasmRunner r(execution_tier, lower_simd); byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(simd, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))), WASM_SIMD_UNOP(kExprV32x4AnyTrue, WASM_LOCAL_GET(simd))); CHECK_EQ(1, r.Call(0x8000000000000000)); CHECK_EQ(0, r.Call(0x0000000000000000)); } #define WASM_SIMD_ALLTRUE_TEST(format, lanes, max, param_type) \ WASM_SIMD_TEST(V##format##AllTrue) { \ FLAG_SCOPE(wasm_simd_post_mvp); \ WasmRunner r(execution_tier, lower_simd); \ if (lanes == 2 && lower_simd == kLowerSimd) return; \ byte simd = r.AllocateLocal(kWasmS128); \ BUILD( \ r, \ WASM_LOCAL_SET(simd, WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(0))), \ WASM_SIMD_UNOP(kExprV##format##AllTrue, WASM_LOCAL_GET(simd))); \ CHECK_EQ(1, r.Call(max)); \ CHECK_EQ(1, r.Call(0x1)); \ CHECK_EQ(0, r.Call(0)); \ } WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff, int32_t) WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff, int32_t) WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff, int32_t) WASM_SIMD_TEST(BitSelect) { WasmRunner r(execution_tier, lower_simd); byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET( simd, WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)), WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)), WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0)))), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(simd))); CHECK_EQ(0x01020304, r.Call(0xFFFFFFFF)); } void RunSimdConstTest(TestExecutionTier execution_tier, LowerSimd lower_simd, const std::array& expected) { WasmRunner r(execution_tier, lower_simd); byte temp1 = r.AllocateLocal(kWasmS128); uint8_t* src0 = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_GLOBAL_SET(temp1, WASM_SIMD_CONSTANT(expected)), WASM_ONE); CHECK_EQ(1, r.Call()); for (size_t i = 0; i < expected.size(); i++) { CHECK_EQ(ReadLittleEndianValue(&src0[i]), expected[i]); } } WASM_SIMD_TEST(S128Const) { std::array expected; // Test for generic constant for (int i = 0; i < kSimd128Size; i++) { expected[i] = i; } RunSimdConstTest(execution_tier, lower_simd, expected); // Keep the first 4 lanes as 0, set the remaining ones. for (int i = 0; i < 4; i++) { expected[i] = 0; } for (int i = 4; i < kSimd128Size; i++) { expected[i] = i; } RunSimdConstTest(execution_tier, lower_simd, expected); // Check sign extension logic used to pack int32s into int64. expected = {0}; // Set the top bit of lane 3 (top bit of first int32), the rest can be 0. expected[3] = 0x80; RunSimdConstTest(execution_tier, lower_simd, expected); } WASM_SIMD_TEST(S128ConstAllZero) { std::array expected = {0}; RunSimdConstTest(execution_tier, lower_simd, expected); } WASM_SIMD_TEST(S128ConstAllOnes) { std::array expected; // Test for generic constant for (int i = 0; i < kSimd128Size; i++) { expected[i] = 0xff; } RunSimdConstTest(execution_tier, lower_simd, expected); } void RunI8x16MixedRelationalOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int8BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); byte temp3 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))), WASM_LOCAL_SET(temp3, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_SIMD_I8x16_EXTRACT_LANE(0, WASM_LOCAL_GET(temp3))); CHECK_EQ(expected_op(0xff, static_cast(0x7fff)), r.Call(0xff, 0x7fff)); CHECK_EQ(expected_op(0xfe, static_cast(0x7fff)), r.Call(0xfe, 0x7fff)); CHECK_EQ(expected_op(0xff, static_cast(0x7ffe)), r.Call(0xff, 0x7ffe)); } WASM_SIMD_TEST(I8x16LeUMixed) { RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I8x16LtUMixed) { RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess); } WASM_SIMD_TEST(I8x16GeUMixed) { RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I8x16GtUMixed) { RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater); } void RunI16x8MixedRelationalOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode opcode, Int16BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte value1 = 0, value2 = 1; byte temp1 = r.AllocateLocal(kWasmS128); byte temp2 = r.AllocateLocal(kWasmS128); byte temp3 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))), WASM_LOCAL_SET(temp2, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value2))), WASM_LOCAL_SET(temp3, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1), WASM_LOCAL_GET(temp2))), WASM_SIMD_I16x8_EXTRACT_LANE(0, WASM_LOCAL_GET(temp3))); CHECK_EQ(expected_op(0xffff, static_cast(0x7fffffff)), r.Call(0xffff, 0x7fffffff)); CHECK_EQ(expected_op(0xfeff, static_cast(0x7fffffff)), r.Call(0xfeff, 0x7fffffff)); CHECK_EQ(expected_op(0xffff, static_cast(0x7ffffeff)), r.Call(0xffff, 0x7ffffeff)); } WASM_SIMD_TEST(I16x8LeUMixed) { RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I16x8LtUMixed) { RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess); } WASM_SIMD_TEST(I16x8GeUMixed) { RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I16x8GtUMixed) { RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater); } WASM_SIMD_TEST(I16x8ExtractLaneU_I8x16Splat) { // Test that we are correctly signed/unsigned extending when extracting. WasmRunner r(execution_tier, lower_simd); byte simd_val = r.AllocateLocal(kWasmS128); BUILD(r, WASM_LOCAL_SET(simd_val, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(0))), WASM_SIMD_I16x8_EXTRACT_LANE_U(0, WASM_LOCAL_GET(simd_val))); CHECK_EQ(0xfafa, r.Call(0xfa)); } #define WASM_EXTRACT_I16x8_TEST(Sign, Type) \ WASM_SIMD_TEST(I16X8ExtractLane##Sign) { \ WasmRunner r(execution_tier, lower_simd); \ byte int_val = r.AllocateLocal(kWasmI32); \ byte simd_val = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_LOCAL_SET(simd_val, \ WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(int_val))), \ WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 0), \ WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 2), \ WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 4), \ WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 6), WASM_ONE); \ FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \ } WASM_EXTRACT_I16x8_TEST(S, UINT16) WASM_EXTRACT_I16x8_TEST(I, INT16) #undef WASM_EXTRACT_I16x8_TEST #define WASM_EXTRACT_I8x16_TEST(Sign, Type) \ WASM_SIMD_TEST(I8x16ExtractLane##Sign) { \ WasmRunner r(execution_tier, lower_simd); \ byte int_val = r.AllocateLocal(kWasmI32); \ byte simd_val = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_LOCAL_SET(simd_val, \ WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(int_val))), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 1), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 3), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 5), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 7), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 9), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 10), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 11), \ WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 13), \ WASM_ONE); \ FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \ } WASM_EXTRACT_I8x16_TEST(S, UINT8) WASM_EXTRACT_I8x16_TEST(I, INT8) #undef WASM_EXTRACT_I8x16_TEST #undef WASM_SIMD_TEST #undef WASM_SIMD_CHECK_LANE_S #undef WASM_SIMD_CHECK_LANE_U #undef TO_BYTE #undef WASM_SIMD_OP #undef WASM_SIMD_SPLAT #undef WASM_SIMD_UNOP #undef WASM_SIMD_BINOP #undef WASM_SIMD_SHIFT_OP #undef WASM_SIMD_CONCAT_OP #undef WASM_SIMD_SELECT #undef WASM_SIMD_F64x2_SPLAT #undef WASM_SIMD_F64x2_EXTRACT_LANE #undef WASM_SIMD_F64x2_REPLACE_LANE #undef WASM_SIMD_F32x4_SPLAT #undef WASM_SIMD_F32x4_EXTRACT_LANE #undef WASM_SIMD_F32x4_REPLACE_LANE #undef WASM_SIMD_I64x2_SPLAT #undef WASM_SIMD_I64x2_EXTRACT_LANE #undef WASM_SIMD_I64x2_REPLACE_LANE #undef WASM_SIMD_I32x4_SPLAT #undef WASM_SIMD_I32x4_EXTRACT_LANE #undef WASM_SIMD_I32x4_REPLACE_LANE #undef WASM_SIMD_I16x8_SPLAT #undef WASM_SIMD_I16x8_EXTRACT_LANE #undef WASM_SIMD_I16x8_EXTRACT_LANE_U #undef WASM_SIMD_I16x8_REPLACE_LANE #undef WASM_SIMD_I8x16_SPLAT #undef WASM_SIMD_I8x16_EXTRACT_LANE #undef WASM_SIMD_I8x16_EXTRACT_LANE_U #undef WASM_SIMD_I8x16_REPLACE_LANE #undef WASM_SIMD_I8x16_SHUFFLE_OP #undef WASM_SIMD_LOAD_MEM #undef WASM_SIMD_LOAD_MEM_OFFSET #undef WASM_SIMD_STORE_MEM #undef WASM_SIMD_STORE_MEM_OFFSET #undef WASM_SIMD_SELECT_TEST #undef WASM_SIMD_NON_CANONICAL_SELECT_TEST #undef WASM_SIMD_BOOL_REDUCTION_TEST #undef WASM_SIMD_TEST_NO_LOWERING #undef WASM_SIMD_ANYTRUE_TEST #undef WASM_SIMD_ALLTRUE_TEST #undef WASM_SIMD_F64x2_QFMA #undef WASM_SIMD_F64x2_QFMS #undef WASM_SIMD_F32x4_QFMA #undef WASM_SIMD_F32x4_QFMS #undef WASM_SIMD_LOAD_OP #undef WASM_SIMD_LOAD_OP_OFFSET #undef WASM_SIMD_LOAD_OP_ALIGNMENT } // namespace test_run_wasm_simd } // namespace wasm } // namespace internal } // namespace v8