// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This module contains the platform-specific code. This make the rest of the // code less dependent on operating system, compilers and runtime libraries. // This module does specifically not deal with differences between different // processor architecture. // The platform classes have the same definition for all platforms. The // implementation for a particular platform is put in platform_.cc. // The build system then uses the implementation for the target platform. // // This design has been chosen because it is simple and fast. Alternatively, // the platform dependent classes could have been implemented using abstract // superclasses with virtual methods and having specializations for each // platform. This design was rejected because it was more complicated and // slower. It would require factory methods for selecting the right // implementation and the overhead of virtual methods for performance // sensitive like mutex locking/unlocking. #ifndef V8_PLATFORM_H_ #define V8_PLATFORM_H_ // Windows specific stuff. #ifdef WIN32 // Microsoft Visual C++ specific stuff. #ifdef _MSC_VER enum { FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL }; #define INFINITY HUGE_VAL namespace v8 { namespace internal { int isfinite(double x); } } int isnan(double x); int isinf(double x); int isless(double x, double y); int isgreater(double x, double y); int fpclassify(double x); int signbit(double x); int strncasecmp(const char* s1, const char* s2, int n); #endif // _MSC_VER // MinGW specific stuff. #ifdef __MINGW32__ // Needed for va_list. #include #endif // __MINGW32__ // Random is missing on both Visual Studio and MinGW. int random(); #endif // WIN32 // GCC specific stuff #ifdef __GNUC__ #define __GNUC_VERSION__ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100) // Unfortunately, the INFINITY macro cannot be used with the '-pedantic' // warning flag and certain versions of GCC due to a bug: // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931 // For now, we use the more involved template-based version from , but // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x) // __GNUC_PREREQ is not defined in GCC for Mac OS X, so we define our own macro #if __GNUC_VERSION__ >= 29600 && __GNUC_VERSION__ < 40100 #include #undef INFINITY #define INFINITY std::numeric_limits::infinity() #endif #endif // __GNUC__ namespace v8 { namespace internal { double ceiling(double x); // Forward declarations. class Socket; // ---------------------------------------------------------------------------- // OS // // This class has static methods for the different platform specific // functions. Add methods here to cope with differences between the // supported platforms. class OS { public: // Initializes the platform OS support. Called once at VM startup. static void Setup(); // Returns the accumulated user time for thread. This routine // can be used for profiling. The implementation should // strive for high-precision timer resolution, preferable // micro-second resolution. static int GetUserTime(uint32_t* secs, uint32_t* usecs); // Get a tick counter normalized to one tick per microsecond. // Used for calculating time intervals. static int64_t Ticks(); // Returns current time as the number of milliseconds since // 00:00:00 UTC, January 1, 1970. static double TimeCurrentMillis(); // Returns a string identifying the current time zone. The // timestamp is used for determining if DST is in effect. static char* LocalTimezone(double time); // Returns the local time offset in milliseconds east of UTC without // taking daylight savings time into account. static double LocalTimeOffset(); // Returns the daylight savings offset for the given time. static double DaylightSavingsOffset(double time); static FILE* FOpen(const char* path, const char* mode); // Print output to console. This is mostly used for debugging output. // On platforms that has standard terminal output, the output // should go to stdout. static void Print(const char* format, ...); static void VPrint(const char* format, va_list args); // Print error output to console. This is mostly used for error message // output. On platforms that has standard terminal output, the output // should go to stderr. static void PrintError(const char* format, ...); static void VPrintError(const char* format, va_list args); // Allocate/Free memory used by JS heap. Pages are readable/writable, but // they are not guaranteed to be executable unless 'executable' is true. // Returns the address of allocated memory, or NULL if failed. static void* Allocate(const size_t requested, size_t* allocated, bool executable); static void Free(void* buf, const size_t length); // Get the Alignment guaranteed by Allocate(). static size_t AllocateAlignment(); // Returns an indication of whether a pointer is in a space that // has been allocated by Allocate(). This method may conservatively // always return false, but giving more accurate information may // improve the robustness of the stack dump code in the presence of // heap corruption. static bool IsOutsideAllocatedSpace(void* pointer); // Sleep for a number of milliseconds. static void Sleep(const int milliseconds); // Abort the current process. static void Abort(); // Debug break. static void DebugBreak(); // Walk the stack. static const int kStackWalkError = -1; static const int kStackWalkMaxNameLen = 256; static const int kStackWalkMaxTextLen = 256; struct StackFrame { void* address; char text[kStackWalkMaxTextLen]; }; static int StackWalk(StackFrame* frames, int frames_size); // Factory method for creating platform dependent Mutex. // Please use delete to reclaim the storage for the returned Mutex. static Mutex* CreateMutex(); // Factory method for creating platform dependent Semaphore. // Please use delete to reclaim the storage for the returned Semaphore. static Semaphore* CreateSemaphore(int count); // Factory method for creating platform dependent Socket. // Please use delete to reclaim the storage for the returned Socket. static Socket* CreateSocket(); class MemoryMappedFile { public: static MemoryMappedFile* create(const char* name, int size, void* initial); virtual ~MemoryMappedFile() { } virtual void* memory() = 0; }; // Safe formatting print. Ensures that str is always null-terminated. // Returns the number of chars written, or -1 if output was truncated. static int SNPrintF(Vector str, const char* format, ...); static int VSNPrintF(Vector str, const char* format, va_list args); static char* StrChr(char* str, int c); static void StrNCpy(Vector dest, const char* src, size_t n); static char* StrDup(const char* str); static char* StrNDup(const char* str, size_t n); // Support for profiler. Can do nothing, in which case ticks // occuring in shared libraries will not be properly accounted // for. static void LogSharedLibraryAddresses(); // Returns the double constant NAN static double nan_value(); // Returns the activation frame alignment constraint or zero if // the platform doesn't care. Guaranteed to be a power of two. static int ActivationFrameAlignment(); private: static const int msPerSecond = 1000; DISALLOW_IMPLICIT_CONSTRUCTORS(OS); }; class VirtualMemory { public: // Reserves virtual memory with size. explicit VirtualMemory(size_t size); ~VirtualMemory(); // Returns whether the memory has been reserved. bool IsReserved(); // Returns the start address of the reserved memory. void* address() { ASSERT(IsReserved()); return address_; }; // Returns the size of the reserved memory. size_t size() { return size_; } // Commits real memory. Returns whether the operation succeeded. bool Commit(void* address, size_t size, bool executable); // Uncommit real memory. Returns whether the operation succeeded. bool Uncommit(void* address, size_t size); private: void* address_; // Start address of the virtual memory. size_t size_; // Size of the virtual memory. }; // ---------------------------------------------------------------------------- // ThreadHandle // // A ThreadHandle represents a thread identifier for a thread. The ThreadHandle // does not own the underlying os handle. Thread handles can be used for // refering to threads and testing equality. class ThreadHandle { public: enum Kind { SELF, INVALID }; explicit ThreadHandle(Kind kind); // Destructor. ~ThreadHandle(); // Test for thread running. bool IsSelf() const; // Test for valid thread handle. bool IsValid() const; // Get platform-specific data. class PlatformData; PlatformData* thread_handle_data() { return data_; } // Initialize the handle to kind void Initialize(Kind kind); private: PlatformData* data_; // Captures platform dependent data. }; // ---------------------------------------------------------------------------- // Thread // // Thread objects are used for creating and running threads. When the start() // method is called the new thread starts running the run() method in the new // thread. The Thread object should not be deallocated before the thread has // terminated. class Thread: public ThreadHandle { public: // Opaque data type for thread-local storage keys. enum LocalStorageKey {}; // Create new thread. Thread(); virtual ~Thread(); // Start new thread by calling the Run() method in the new thread. void Start(); // Wait until thread terminates. void Join(); // Abstract method for run handler. virtual void Run() = 0; // Thread-local storage. static LocalStorageKey CreateThreadLocalKey(); static void DeleteThreadLocalKey(LocalStorageKey key); static void* GetThreadLocal(LocalStorageKey key); static void SetThreadLocal(LocalStorageKey key, void* value); // A hint to the scheduler to let another thread run. static void YieldCPU(); private: class PlatformData; PlatformData* data_; DISALLOW_COPY_AND_ASSIGN(Thread); }; // ---------------------------------------------------------------------------- // Mutex // // Mutexes are used for serializing access to non-reentrant sections of code. // The implementations of mutex should allow for nested/recursive locking. class Mutex { public: virtual ~Mutex() {} // Locks the given mutex. If the mutex is currently unlocked, it becomes // locked and owned by the calling thread, and immediately. If the mutex // is already locked by another thread, suspends the calling thread until // the mutex is unlocked. virtual int Lock() = 0; // Unlocks the given mutex. The mutex is assumed to be locked and owned by // the calling thread on entrance. virtual int Unlock() = 0; }; // ---------------------------------------------------------------------------- // ScopedLock // // Stack-allocated ScopedLocks provide block-scoped locking and unlocking // of a mutex. class ScopedLock { public: explicit ScopedLock(Mutex* mutex): mutex_(mutex) { mutex_->Lock(); } ~ScopedLock() { mutex_->Unlock(); } private: Mutex* mutex_; DISALLOW_COPY_AND_ASSIGN(ScopedLock); }; // ---------------------------------------------------------------------------- // Semaphore // // A semaphore object is a synchronization object that maintains a count. The // count is decremented each time a thread completes a wait for the semaphore // object and incremented each time a thread signals the semaphore. When the // count reaches zero, threads waiting for the semaphore blocks until the // count becomes non-zero. class Semaphore { public: virtual ~Semaphore() {} // Suspends the calling thread until the counter is non zero // and then decrements the semaphore counter. virtual void Wait() = 0; // Increments the semaphore counter. virtual void Signal() = 0; }; // ---------------------------------------------------------------------------- // Socket // class Socket { public: virtual ~Socket() {} // Server initialization. virtual bool Bind (const int port) = 0; virtual bool Listen(int backlog) const = 0; virtual Socket* Accept() const = 0; // Client initialization. virtual bool Connect(const char* host, const char* port) = 0; // Data Transimission virtual int Send(const char* data, int len) const = 0; virtual bool SendAll(const char* data, int len) const = 0; virtual int Receive(char* data, int len) const = 0; virtual bool IsValid() const = 0; static bool Setup(); static int LastError(); static uint16_t HToN(uint16_t value); static uint16_t NToH(uint16_t value); static uint32_t HToN(uint32_t value); static uint32_t NToH(uint32_t value); }; #ifdef ENABLE_LOGGING_AND_PROFILING // ---------------------------------------------------------------------------- // Sampler // // A sampler periodically samples the state of the VM and optionally // (if used for profiling) the program counter and stack pointer for // the thread that created it. // TickSample captures the information collected for each sample. class TickSample { public: TickSample() : pc(0), sp(0), fp(0), state(OTHER) {} unsigned int pc; // Instruction pointer. unsigned int sp; // Stack pointer. unsigned int fp; // Frame pointer. StateTag state; // The state of the VM. SmartPointer
stack; // Call stack, null-terminated. inline TickSample& operator=(const TickSample& rhs) { if (this == &rhs) return *this; pc = rhs.pc; sp = rhs.sp; fp = rhs.fp; state = rhs.state; DeleteArray(stack.Detach()); stack = rhs.stack; return *this; } inline void InitStack(int depth) { stack = SmartPointer
(NewArray
(depth + 1)); // null-terminate stack[depth] = 0; } }; class Sampler { public: // Initialize sampler. explicit Sampler(int interval, bool profiling); virtual ~Sampler(); // This method is called for each sampling period with the current // program counter. virtual void Tick(TickSample* sample) = 0; // Start and stop sampler. void Start(); void Stop(); // Is the sampler used for profiling. inline bool IsProfiling() { return profiling_; } class PlatformData; protected: inline bool IsActive() { return active_; } private: int interval_; bool profiling_; bool active_; PlatformData* data_; // Platform specific data. DISALLOW_IMPLICIT_CONSTRUCTORS(Sampler); }; #endif // ENABLE_LOGGING_AND_PROFILING } } // namespace v8::internal #endif // V8_PLATFORM_H_