// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Flags: --allow-natives-syntax // Monkey-patch Float32Array. Float32Array = function(x) { this[0] = 0; }; assertTrue(isNaN(Math.fround(NaN))); assertTrue(isNaN(Math.fround(function() {}))); assertTrue(isNaN(Math.fround({ toString: function() { return NaN; } }))); assertTrue(isNaN(Math.fround({ valueOf: function() { return "abc"; } }))); assertTrue(isNaN(Math.fround(NaN))); assertTrue(isNaN(Math.fround(function() {}))); assertTrue(isNaN(Math.fround({ toString: function() { return NaN; } }))); assertTrue(isNaN(Math.fround({ valueOf: function() { return "abc"; } }))); function unopt(x) { return Math.fround(x); } function opt(y) { return Math.fround(y); } opt(0.1); opt(0.1); unopt(0.1); %NeverOptimizeFunction(unopt); %OptimizeFunctionOnNextCall(opt); function test(f) { assertEquals("Infinity", String(1/f(0))); assertEquals("-Infinity", String(1/f(-0))); assertEquals("Infinity", String(f(Infinity))); assertEquals("-Infinity", String(f(-Infinity))); assertEquals("Infinity", String(f(1E200))); assertEquals("-Infinity", String(f(-1E200))); assertEquals("Infinity", String(1/f(1E-300))); assertEquals("-Infinity", String(1/f(-1E-300))); } test(opt); test(unopt); mantissa_23_shift = Math.pow(2, -23); mantissa_29_shift = Math.pow(2, -23-29); // Javascript implementation of IEEE 754 to test double to single conversion. function ieee754float(sign_bit, exponent_bits, mantissa_23_bits, mantissa_29_bits) { this.sign_bit = sign_bit & 1; this.exponent_bits = exponent_bits & ((1 << 11) - 1); this.mantissa_23_bits = mantissa_23_bits & ((1 << 23) - 1); this.mantissa_29_bits = mantissa_29_bits & ((1 << 29) - 1); } ieee754float.prototype.returnSpecial = function() { if (mantissa_23_bits == 0 && mantissa_29_bits == 0) return sign * Infinity; return NaN; } ieee754float.prototype.toDouble = function() { var sign = this.sign_bit ? -1 : 1; var exponent = this.exponent_bits - 1023; if (exponent == -1023) returnSpecial(); var mantissa = 1 + this.mantissa_23_bits * mantissa_23_shift + this.mantissa_29_bits * mantissa_29_shift; return sign * Math.pow(2, exponent) * mantissa; } ieee754float.prototype.toSingle = function() { var sign = this.sign_bit ? -1 : 1; var exponent = this.exponent_bits - 1023; if (exponent == -1023) returnSpecial(); if (exponent > 127) return sign * Infinity; if (exponent < -126) return this.toSingleSubnormal(sign, exponent); var round = this.mantissa_29_bits >> 28; var mantissa = 1 + (this.mantissa_23_bits + round) * mantissa_23_shift; return sign * Math.pow(2, exponent) * mantissa; } ieee754float.prototype.toSingleSubnormal = function(sign, exponent) { var shift = -126 - exponent; if (shift > 24) return sign * 0; var round_mask = 1 << (shift - 1); var mantissa_23_bits = this.mantissa_23_bits + (1 << 23); var round = ((mantissa_23_bits & round_mask) != 0) | 0; if (round) { // Round to even if tied. var tied_mask = round_mask - 1; var result_last_bit_mask = 1 << shift; var tied = this.mantissa_29_bits == 0 && (mantissa_23_bits & tied_mask ) == 0; var result_already_even = (mantissa_23_bits & result_last_bit_mask) == 0; if (tied && result_already_even) round = 0; } mantissa_23_bits >>= shift; var mantissa = (mantissa_23_bits + round) * mantissa_23_shift; return sign * Math.pow(2, -126) * mantissa; } var pi = new ieee754float(0, 0x400, 0x490fda, 0x14442d18); assertEquals(pi.toSingle(), opt(pi.toDouble())); assertEquals(pi.toSingle(), unopt(pi.toDouble())); function fuzz_mantissa(sign, exp, m1inc, m2inc) { for (var m1 = 0; m1 < (1 << 23); m1 += m1inc) { for (var m2 = 0; m2 < (1 << 29); m2 += m2inc) { var float = new ieee754float(sign, exp, m1, m2); assertEquals(float.toSingle(), unopt(float.toDouble())); assertEquals(float.toSingle(), opt(float.toDouble())); } } } for (var sign = 0; sign < 2; sign++) { for (var exp = 1024 - 170; exp < 1024 + 170; exp++) { fuzz_mantissa(sign, exp, 1337 * exp - sign, 127913 * exp - sign); } }