// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/v8.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/graph-builder-tester.h" #include "test/cctest/compiler/value-helper.h" #include "src/compiler/node-matchers.h" #include "src/compiler/representation-change.h" using namespace v8::internal; using namespace v8::internal::compiler; namespace v8 { // for friendiness. namespace internal { namespace compiler { class RepresentationChangerTester : public HandleAndZoneScope, public GraphAndBuilders { public: explicit RepresentationChangerTester(int num_parameters = 0) : GraphAndBuilders(main_zone()), javascript_(main_zone()), jsgraph_(main_graph_, &main_common_, &javascript_, &main_machine_), changer_(&jsgraph_, &main_simplified_, main_isolate()) { Node* s = graph()->NewNode(common()->Start(num_parameters)); graph()->SetStart(s); } JSOperatorBuilder javascript_; JSGraph jsgraph_; RepresentationChanger changer_; Isolate* isolate() { return main_isolate(); } Graph* graph() { return main_graph_; } CommonOperatorBuilder* common() { return &main_common_; } JSGraph* jsgraph() { return &jsgraph_; } RepresentationChanger* changer() { return &changer_; } // TODO(titzer): use ValueChecker / ValueUtil void CheckInt32Constant(Node* n, int32_t expected) { Int32Matcher m(n); CHECK(m.HasValue()); CHECK_EQ(expected, m.Value()); } void CheckUint32Constant(Node* n, uint32_t expected) { Uint32Matcher m(n); CHECK(m.HasValue()); CHECK_EQ(static_cast(expected), static_cast(m.Value())); } void CheckFloat64Constant(Node* n, double expected) { Float64Matcher m(n); CHECK(m.HasValue()); CHECK_EQ(expected, m.Value()); } void CheckFloat32Constant(Node* n, float expected) { CHECK_EQ(IrOpcode::kFloat32Constant, n->opcode()); float fval = OpParameter(n->op()); CHECK_EQ(expected, fval); } void CheckHeapConstant(Node* n, HeapObject* expected) { HeapObjectMatcher m(n); CHECK(m.HasValue()); CHECK_EQ(expected, *m.Value().handle()); } void CheckNumberConstant(Node* n, double expected) { NumberMatcher m(n); CHECK_EQ(IrOpcode::kNumberConstant, n->opcode()); CHECK(m.HasValue()); CHECK_EQ(expected, m.Value()); } Node* Parameter(int index = 0) { return graph()->NewNode(common()->Parameter(index), graph()->start()); } void CheckTypeError(MachineTypeUnion from, MachineTypeUnion to) { changer()->testing_type_errors_ = true; changer()->type_error_ = false; Node* n = Parameter(0); Node* c = changer()->GetRepresentationFor(n, from, to); CHECK(changer()->type_error_); CHECK_EQ(n, c); } void CheckNop(MachineTypeUnion from, MachineTypeUnion to) { Node* n = Parameter(0); Node* c = changer()->GetRepresentationFor(n, from, to); CHECK_EQ(n, c); } }; } } } // namespace v8::internal::compiler static const MachineType all_reps[] = {kRepBit, kRepWord32, kRepWord64, kRepFloat32, kRepFloat64, kRepTagged}; TEST(BoolToBit_constant) { RepresentationChangerTester r; Node* true_node = r.jsgraph()->TrueConstant(); Node* true_bit = r.changer()->GetRepresentationFor(true_node, kRepTagged, kRepBit); r.CheckInt32Constant(true_bit, 1); Node* false_node = r.jsgraph()->FalseConstant(); Node* false_bit = r.changer()->GetRepresentationFor(false_node, kRepTagged, kRepBit); r.CheckInt32Constant(false_bit, 0); } TEST(BitToBool_constant) { RepresentationChangerTester r; for (int i = -5; i < 5; i++) { Node* node = r.jsgraph()->Int32Constant(i); Node* val = r.changer()->GetRepresentationFor(node, kRepBit, kRepTagged); r.CheckHeapConstant(val, i == 0 ? r.isolate()->heap()->false_value() : r.isolate()->heap()->true_value()); } } TEST(ToTagged_constant) { RepresentationChangerTester r; { FOR_FLOAT64_INPUTS(i) { Node* n = r.jsgraph()->Float64Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged); r.CheckNumberConstant(c, *i); } } { FOR_FLOAT64_INPUTS(i) { Node* n = r.jsgraph()->Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged); r.CheckNumberConstant(c, *i); } } { FOR_FLOAT32_INPUTS(i) { Node* n = r.jsgraph()->Float32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepTagged); r.CheckNumberConstant(c, *i); } } { FOR_INT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32, kRepTagged); r.CheckNumberConstant(c, *i); } } { FOR_UINT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32, kRepTagged); r.CheckNumberConstant(c, *i); } } } TEST(ToFloat64_constant) { RepresentationChangerTester r; { FOR_FLOAT64_INPUTS(i) { Node* n = r.jsgraph()->Float64Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat64); CHECK_EQ(n, c); } } { FOR_FLOAT64_INPUTS(i) { Node* n = r.jsgraph()->Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat64); r.CheckFloat64Constant(c, *i); } } { FOR_FLOAT32_INPUTS(i) { Node* n = r.jsgraph()->Float32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat64); r.CheckFloat64Constant(c, *i); } } { FOR_INT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32, kRepFloat64); r.CheckFloat64Constant(c, *i); } } { FOR_UINT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32, kRepFloat64); r.CheckFloat64Constant(c, *i); } } } static bool IsFloat32Int32(int32_t val) { return val >= -(1 << 23) && val <= (1 << 23); } static bool IsFloat32Uint32(uint32_t val) { return val <= (1 << 23); } TEST(ToFloat32_constant) { RepresentationChangerTester r; { FOR_FLOAT32_INPUTS(i) { Node* n = r.jsgraph()->Float32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat32); CHECK_EQ(n, c); } } { FOR_FLOAT32_INPUTS(i) { Node* n = r.jsgraph()->Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat32); r.CheckFloat32Constant(c, *i); } } { FOR_FLOAT32_INPUTS(i) { Node* n = r.jsgraph()->Float64Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat32); r.CheckFloat32Constant(c, *i); } } { FOR_INT32_INPUTS(i) { if (!IsFloat32Int32(*i)) continue; Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32, kRepFloat32); r.CheckFloat32Constant(c, static_cast(*i)); } } { FOR_UINT32_INPUTS(i) { if (!IsFloat32Uint32(*i)) continue; Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32, kRepFloat32); r.CheckFloat32Constant(c, static_cast(*i)); } } } TEST(ToInt32_constant) { RepresentationChangerTester r; { FOR_INT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32, kRepWord32); r.CheckInt32Constant(c, *i); } } { FOR_INT32_INPUTS(i) { if (!IsFloat32Int32(*i)) continue; Node* n = r.jsgraph()->Float32Constant(static_cast(*i)); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeInt32, kRepWord32); r.CheckInt32Constant(c, *i); } } { FOR_INT32_INPUTS(i) { Node* n = r.jsgraph()->Float64Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeInt32, kRepWord32); r.CheckInt32Constant(c, *i); } } { FOR_INT32_INPUTS(i) { Node* n = r.jsgraph()->Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeInt32, kRepWord32); r.CheckInt32Constant(c, *i); } } } TEST(ToUint32_constant) { RepresentationChangerTester r; { FOR_UINT32_INPUTS(i) { Node* n = r.jsgraph()->Int32Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32, kRepWord32); r.CheckUint32Constant(c, *i); } } { FOR_UINT32_INPUTS(i) { if (!IsFloat32Uint32(*i)) continue; Node* n = r.jsgraph()->Float32Constant(static_cast(*i)); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeUint32, kRepWord32); r.CheckUint32Constant(c, *i); } } { FOR_UINT32_INPUTS(i) { Node* n = r.jsgraph()->Float64Constant(*i); Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeUint32, kRepWord32); r.CheckUint32Constant(c, *i); } } { FOR_UINT32_INPUTS(i) { Node* n = r.jsgraph()->Constant(static_cast(*i)); Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeUint32, kRepWord32); r.CheckUint32Constant(c, *i); } } } static void CheckChange(IrOpcode::Value expected, MachineTypeUnion from, MachineTypeUnion to) { RepresentationChangerTester r; Node* n = r.Parameter(); Node* c = r.changer()->GetRepresentationFor(n, from, to); CHECK_NE(c, n); CHECK_EQ(expected, c->opcode()); CHECK_EQ(n, c->InputAt(0)); } static void CheckTwoChanges(IrOpcode::Value expected2, IrOpcode::Value expected1, MachineTypeUnion from, MachineTypeUnion to) { RepresentationChangerTester r; Node* n = r.Parameter(); Node* c1 = r.changer()->GetRepresentationFor(n, from, to); CHECK_NE(c1, n); CHECK_EQ(expected1, c1->opcode()); Node* c2 = c1->InputAt(0); CHECK_NE(c2, n); CHECK_EQ(expected2, c2->opcode()); CHECK_EQ(n, c2->InputAt(0)); } TEST(SingleChanges) { CheckChange(IrOpcode::kChangeBoolToBit, kRepTagged, kRepBit); CheckChange(IrOpcode::kChangeBitToBool, kRepBit, kRepTagged); CheckChange(IrOpcode::kChangeInt32ToTagged, kRepWord32 | kTypeInt32, kRepTagged); CheckChange(IrOpcode::kChangeUint32ToTagged, kRepWord32 | kTypeUint32, kRepTagged); CheckChange(IrOpcode::kChangeFloat64ToTagged, kRepFloat64, kRepTagged); CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged | kTypeInt32, kRepWord32); CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged | kTypeUint32, kRepWord32); CheckChange(IrOpcode::kChangeTaggedToFloat64, kRepTagged, kRepFloat64); // Int32,Uint32 <-> Float64 are actually machine conversions. CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32 | kTypeInt32, kRepFloat64); CheckChange(IrOpcode::kChangeUint32ToFloat64, kRepWord32 | kTypeUint32, kRepFloat64); CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64 | kTypeInt32, kRepWord32); CheckChange(IrOpcode::kChangeFloat64ToUint32, kRepFloat64 | kTypeUint32, kRepWord32); CheckChange(IrOpcode::kTruncateFloat64ToFloat32, kRepFloat64, kRepFloat32); // Int32,Uint32 <-> Float32 require two changes. CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64, IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeInt32, kRepFloat32); CheckTwoChanges(IrOpcode::kChangeUint32ToFloat64, IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeUint32, kRepFloat32); CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64, IrOpcode::kChangeFloat64ToInt32, kRepFloat32 | kTypeInt32, kRepWord32); CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64, IrOpcode::kChangeFloat64ToUint32, kRepFloat32 | kTypeUint32, kRepWord32); // Float32 <-> Tagged require two changes. CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64, IrOpcode::kChangeFloat64ToTagged, kRepFloat32, kRepTagged); CheckTwoChanges(IrOpcode::kChangeTaggedToFloat64, IrOpcode::kTruncateFloat64ToFloat32, kRepTagged, kRepFloat32); } TEST(SignednessInWord32) { RepresentationChangerTester r; // TODO(titzer): assume that uses of a word32 without a sign mean kTypeInt32. CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged, kRepWord32 | kTypeInt32); CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged, kRepWord32 | kTypeUint32); CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32, kRepFloat64); CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64, kRepWord32); CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64, IrOpcode::kTruncateFloat64ToFloat32, kRepWord32, kRepFloat32); CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64, IrOpcode::kChangeFloat64ToInt32, kRepFloat32, kRepWord32); } TEST(Nops) { RepresentationChangerTester r; // X -> X is always a nop for any single representation X. for (size_t i = 0; i < arraysize(all_reps); i++) { r.CheckNop(all_reps[i], all_reps[i]); } // 32-bit floats. r.CheckNop(kRepFloat32, kRepFloat32); r.CheckNop(kRepFloat32 | kTypeNumber, kRepFloat32); r.CheckNop(kRepFloat32, kRepFloat32 | kTypeNumber); // 32-bit or 64-bit words can be used as branch conditions (kRepBit). r.CheckNop(kRepWord32, kRepBit); r.CheckNop(kRepWord32, kRepBit | kTypeBool); r.CheckNop(kRepWord64, kRepBit); r.CheckNop(kRepWord64, kRepBit | kTypeBool); // 32-bit words can be used as smaller word sizes and vice versa, because // loads from memory implicitly sign or zero extend the value to the // full machine word size, and stores implicitly truncate. r.CheckNop(kRepWord32, kRepWord8); r.CheckNop(kRepWord32, kRepWord16); r.CheckNop(kRepWord32, kRepWord32); r.CheckNop(kRepWord8, kRepWord32); r.CheckNop(kRepWord16, kRepWord32); // kRepBit (result of comparison) is implicitly a wordish thing. r.CheckNop(kRepBit, kRepWord8); r.CheckNop(kRepBit | kTypeBool, kRepWord8); r.CheckNop(kRepBit, kRepWord16); r.CheckNop(kRepBit | kTypeBool, kRepWord16); r.CheckNop(kRepBit, kRepWord32); r.CheckNop(kRepBit | kTypeBool, kRepWord32); r.CheckNop(kRepBit, kRepWord64); r.CheckNop(kRepBit | kTypeBool, kRepWord64); } TEST(TypeErrors) { RepresentationChangerTester r; // Floats cannot be implicitly converted to/from comparison conditions. r.CheckTypeError(kRepFloat64, kRepBit); r.CheckTypeError(kRepFloat64, kRepBit | kTypeBool); r.CheckTypeError(kRepBit, kRepFloat64); r.CheckTypeError(kRepBit | kTypeBool, kRepFloat64); // Floats cannot be implicitly converted to/from comparison conditions. r.CheckTypeError(kRepFloat32, kRepBit); r.CheckTypeError(kRepFloat32, kRepBit | kTypeBool); r.CheckTypeError(kRepBit, kRepFloat32); r.CheckTypeError(kRepBit | kTypeBool, kRepFloat32); // Word64 is internal and shouldn't be implicitly converted. r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool); r.CheckTypeError(kRepWord64, kRepTagged); r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool); r.CheckTypeError(kRepTagged, kRepWord64); r.CheckTypeError(kRepTagged | kTypeBool, kRepWord64); // Word64 / Word32 shouldn't be implicitly converted. r.CheckTypeError(kRepWord64, kRepWord32); r.CheckTypeError(kRepWord32, kRepWord64); r.CheckTypeError(kRepWord64, kRepWord32 | kTypeInt32); r.CheckTypeError(kRepWord32 | kTypeInt32, kRepWord64); r.CheckTypeError(kRepWord64, kRepWord32 | kTypeUint32); r.CheckTypeError(kRepWord32 | kTypeUint32, kRepWord64); for (size_t i = 0; i < arraysize(all_reps); i++) { for (size_t j = 0; j < arraysize(all_reps); j++) { if (i == j) continue; // Only a single from representation is allowed. r.CheckTypeError(all_reps[i] | all_reps[j], kRepTagged); } } }