// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_PARSER_H_ #define V8_PARSER_H_ #include "src/allocation.h" #include "src/ast.h" #include "src/compiler.h" // For CachedDataMode #include "src/preparse-data.h" #include "src/preparse-data-format.h" #include "src/preparser.h" #include "src/scopes.h" namespace v8 { class ScriptCompiler; namespace internal { class CompilationInfo; class ParserLog; class PositionStack; class Target; template class ZoneListWrapper; class FunctionEntry BASE_EMBEDDED { public: enum { kStartPositionIndex, kEndPositionIndex, kLiteralCountIndex, kPropertyCountIndex, kStrictModeIndex, kSize }; explicit FunctionEntry(Vector backing) : backing_(backing) { } FunctionEntry() : backing_() { } int start_pos() { return backing_[kStartPositionIndex]; } int end_pos() { return backing_[kEndPositionIndex]; } int literal_count() { return backing_[kLiteralCountIndex]; } int property_count() { return backing_[kPropertyCountIndex]; } StrictMode strict_mode() { DCHECK(backing_[kStrictModeIndex] == SLOPPY || backing_[kStrictModeIndex] == STRICT); return static_cast(backing_[kStrictModeIndex]); } bool is_valid() { return !backing_.is_empty(); } private: Vector backing_; }; // Wrapper around ScriptData to provide parser-specific functionality. class ParseData { public: explicit ParseData(ScriptData* script_data) : script_data_(script_data) { CHECK(IsAligned(script_data->length(), sizeof(unsigned))); CHECK(IsSane()); } void Initialize(); FunctionEntry GetFunctionEntry(int start); int FunctionCount(); bool HasError(); unsigned* Data() { // Writable data as unsigned int array. return reinterpret_cast(const_cast(script_data_->data())); } private: bool IsSane(); unsigned Magic(); unsigned Version(); int FunctionsSize(); int Length() const { // Script data length is already checked to be a multiple of unsigned size. return script_data_->length() / sizeof(unsigned); } ScriptData* script_data_; int function_index_; DISALLOW_COPY_AND_ASSIGN(ParseData); }; // ---------------------------------------------------------------------------- // REGEXP PARSING // A BufferedZoneList is an automatically growing list, just like (and backed // by) a ZoneList, that is optimized for the case of adding and removing // a single element. The last element added is stored outside the backing list, // and if no more than one element is ever added, the ZoneList isn't even // allocated. // Elements must not be NULL pointers. template class BufferedZoneList { public: BufferedZoneList() : list_(NULL), last_(NULL) {} // Adds element at end of list. This element is buffered and can // be read using last() or removed using RemoveLast until a new Add or until // RemoveLast or GetList has been called. void Add(T* value, Zone* zone) { if (last_ != NULL) { if (list_ == NULL) { list_ = new(zone) ZoneList(initial_size, zone); } list_->Add(last_, zone); } last_ = value; } T* last() { DCHECK(last_ != NULL); return last_; } T* RemoveLast() { DCHECK(last_ != NULL); T* result = last_; if ((list_ != NULL) && (list_->length() > 0)) last_ = list_->RemoveLast(); else last_ = NULL; return result; } T* Get(int i) { DCHECK((0 <= i) && (i < length())); if (list_ == NULL) { DCHECK_EQ(0, i); return last_; } else { if (i == list_->length()) { DCHECK(last_ != NULL); return last_; } else { return list_->at(i); } } } void Clear() { list_ = NULL; last_ = NULL; } int length() { int length = (list_ == NULL) ? 0 : list_->length(); return length + ((last_ == NULL) ? 0 : 1); } ZoneList* GetList(Zone* zone) { if (list_ == NULL) { list_ = new(zone) ZoneList(initial_size, zone); } if (last_ != NULL) { list_->Add(last_, zone); last_ = NULL; } return list_; } private: ZoneList* list_; T* last_; }; // Accumulates RegExp atoms and assertions into lists of terms and alternatives. class RegExpBuilder: public ZoneObject { public: explicit RegExpBuilder(Zone* zone); void AddCharacter(uc16 character); // "Adds" an empty expression. Does nothing except consume a // following quantifier void AddEmpty(); void AddAtom(RegExpTree* tree); void AddAssertion(RegExpTree* tree); void NewAlternative(); // '|' void AddQuantifierToAtom( int min, int max, RegExpQuantifier::QuantifierType type); RegExpTree* ToRegExp(); private: void FlushCharacters(); void FlushText(); void FlushTerms(); Zone* zone() const { return zone_; } Zone* zone_; bool pending_empty_; ZoneList* characters_; BufferedZoneList terms_; BufferedZoneList text_; BufferedZoneList alternatives_; #ifdef DEBUG enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_; #define LAST(x) last_added_ = x; #else #define LAST(x) #endif }; class RegExpParser BASE_EMBEDDED { public: RegExpParser(FlatStringReader* in, Handle* error, bool multiline_mode, Zone* zone); static bool ParseRegExp(FlatStringReader* input, bool multiline, RegExpCompileData* result, Zone* zone); RegExpTree* ParsePattern(); RegExpTree* ParseDisjunction(); RegExpTree* ParseGroup(); RegExpTree* ParseCharacterClass(); // Parses a {...,...} quantifier and stores the range in the given // out parameters. bool ParseIntervalQuantifier(int* min_out, int* max_out); // Parses and returns a single escaped character. The character // must not be 'b' or 'B' since they are usually handle specially. uc32 ParseClassCharacterEscape(); // Checks whether the following is a length-digit hexadecimal number, // and sets the value if it is. bool ParseHexEscape(int length, uc32* value); uc32 ParseOctalLiteral(); // Tries to parse the input as a back reference. If successful it // stores the result in the output parameter and returns true. If // it fails it will push back the characters read so the same characters // can be reparsed. bool ParseBackReferenceIndex(int* index_out); CharacterRange ParseClassAtom(uc16* char_class); RegExpTree* ReportError(Vector message); void Advance(); void Advance(int dist); void Reset(int pos); // Reports whether the pattern might be used as a literal search string. // Only use if the result of the parse is a single atom node. bool simple(); bool contains_anchor() { return contains_anchor_; } void set_contains_anchor() { contains_anchor_ = true; } int captures_started() { return captures_ == NULL ? 0 : captures_->length(); } int position() { return next_pos_ - 1; } bool failed() { return failed_; } static const int kMaxCaptures = 1 << 16; static const uc32 kEndMarker = (1 << 21); private: enum SubexpressionType { INITIAL, CAPTURE, // All positive values represent captures. POSITIVE_LOOKAHEAD, NEGATIVE_LOOKAHEAD, GROUPING }; class RegExpParserState : public ZoneObject { public: RegExpParserState(RegExpParserState* previous_state, SubexpressionType group_type, int disjunction_capture_index, Zone* zone) : previous_state_(previous_state), builder_(new(zone) RegExpBuilder(zone)), group_type_(group_type), disjunction_capture_index_(disjunction_capture_index) {} // Parser state of containing expression, if any. RegExpParserState* previous_state() { return previous_state_; } bool IsSubexpression() { return previous_state_ != NULL; } // RegExpBuilder building this regexp's AST. RegExpBuilder* builder() { return builder_; } // Type of regexp being parsed (parenthesized group or entire regexp). SubexpressionType group_type() { return group_type_; } // Index in captures array of first capture in this sub-expression, if any. // Also the capture index of this sub-expression itself, if group_type // is CAPTURE. int capture_index() { return disjunction_capture_index_; } private: // Linked list implementation of stack of states. RegExpParserState* previous_state_; // Builder for the stored disjunction. RegExpBuilder* builder_; // Stored disjunction type (capture, look-ahead or grouping), if any. SubexpressionType group_type_; // Stored disjunction's capture index (if any). int disjunction_capture_index_; }; Isolate* isolate() { return isolate_; } Zone* zone() const { return zone_; } uc32 current() { return current_; } bool has_more() { return has_more_; } bool has_next() { return next_pos_ < in()->length(); } uc32 Next(); FlatStringReader* in() { return in_; } void ScanForCaptures(); Isolate* isolate_; Zone* zone_; Handle* error_; ZoneList* captures_; FlatStringReader* in_; uc32 current_; int next_pos_; // The capture count is only valid after we have scanned for captures. int capture_count_; bool has_more_; bool multiline_; bool simple_; bool contains_anchor_; bool is_scanned_for_captures_; bool failed_; }; // ---------------------------------------------------------------------------- // JAVASCRIPT PARSING class Parser; class SingletonLogger; class ParserTraits { public: struct Type { // TODO(marja): To be removed. The Traits object should contain all the data // it needs. typedef v8::internal::Parser* Parser; // Used by FunctionState and BlockState. typedef v8::internal::Scope Scope; typedef v8::internal::Scope* ScopePtr; typedef Variable GeneratorVariable; typedef v8::internal::Zone Zone; typedef v8::internal::AstProperties AstProperties; typedef Vector ParameterIdentifierVector; // Return types for traversing functions. typedef const AstRawString* Identifier; typedef v8::internal::Expression* Expression; typedef Yield* YieldExpression; typedef v8::internal::FunctionLiteral* FunctionLiteral; typedef v8::internal::Literal* Literal; typedef ObjectLiteral::Property* ObjectLiteralProperty; typedef ZoneList* ExpressionList; typedef ZoneList* PropertyList; typedef ZoneList* StatementList; // For constructing objects returned by the traversing functions. typedef AstNodeFactory Factory; }; class Checkpoint; explicit ParserTraits(Parser* parser) : parser_(parser) {} // Custom operations executed when FunctionStates are created and destructed. template static void SetUpFunctionState(FunctionState* function_state, Zone* zone) { Isolate* isolate = zone->isolate(); function_state->saved_ast_node_id_ = isolate->ast_node_id(); isolate->set_ast_node_id(BailoutId::FirstUsable().ToInt()); } template static void TearDownFunctionState(FunctionState* function_state, Zone* zone) { if (function_state->outer_function_state_ != NULL) { zone->isolate()->set_ast_node_id(function_state->saved_ast_node_id_); } } // Helper functions for recursive descent. bool IsEvalOrArguments(const AstRawString* identifier) const; V8_INLINE bool IsFutureStrictReserved(const AstRawString* identifier) const; // Returns true if the expression is of type "this.foo". static bool IsThisProperty(Expression* expression); static bool IsIdentifier(Expression* expression); static const AstRawString* AsIdentifier(Expression* expression) { DCHECK(IsIdentifier(expression)); return expression->AsVariableProxy()->raw_name(); } static bool IsBoilerplateProperty(ObjectLiteral::Property* property) { return ObjectLiteral::IsBoilerplateProperty(property); } static bool IsArrayIndex(const AstRawString* string, uint32_t* index) { return string->AsArrayIndex(index); } // Functions for encapsulating the differences between parsing and preparsing; // operations interleaved with the recursive descent. static void PushLiteralName(FuncNameInferrer* fni, const AstRawString* id) { fni->PushLiteralName(id); } void PushPropertyName(FuncNameInferrer* fni, Expression* expression); static void InferFunctionName(FuncNameInferrer* fni, FunctionLiteral* func_to_infer) { fni->AddFunction(func_to_infer); } static void CheckFunctionLiteralInsideTopLevelObjectLiteral( Scope* scope, ObjectLiteralProperty* property, bool* has_function) { Expression* value = property->value(); if (scope->DeclarationScope()->is_global_scope() && value->AsFunctionLiteral() != NULL) { *has_function = true; value->AsFunctionLiteral()->set_pretenure(); } } // If we assign a function literal to a property we pretenure the // literal so it can be added as a constant function property. static void CheckAssigningFunctionLiteralToProperty(Expression* left, Expression* right); // Keep track of eval() calls since they disable all local variable // optimizations. This checks if expression is an eval call, and if yes, // forwards the information to scope. void CheckPossibleEvalCall(Expression* expression, Scope* scope); // Determine if the expression is a variable proxy and mark it as being used // in an assignment or with a increment/decrement operator. static Expression* MarkExpressionAsAssigned(Expression* expression); // Returns true if we have a binary expression between two numeric // literals. In that case, *x will be changed to an expression which is the // computed value. bool ShortcutNumericLiteralBinaryExpression( Expression** x, Expression* y, Token::Value op, int pos, AstNodeFactory* factory); // Rewrites the following types of unary expressions: // not -> true / false // + -> // - -> // ! -> true / false // The following rewriting rules enable the collection of type feedback // without any special stub and the multiplication is removed later in // Crankshaft's canonicalization pass. // + foo -> foo * 1 // - foo -> foo * (-1) // ~ foo -> foo ^(~0) Expression* BuildUnaryExpression( Expression* expression, Token::Value op, int pos, AstNodeFactory* factory); // Generate AST node that throws a ReferenceError with the given type. Expression* NewThrowReferenceError(const char* type, int pos); // Generate AST node that throws a SyntaxError with the given // type. The first argument may be null (in the handle sense) in // which case no arguments are passed to the constructor. Expression* NewThrowSyntaxError( const char* type, const AstRawString* arg, int pos); // Generate AST node that throws a TypeError with the given // type. Both arguments must be non-null (in the handle sense). Expression* NewThrowTypeError(const char* type, const AstRawString* arg, int pos); // Generic AST generator for throwing errors from compiled code. Expression* NewThrowError( const AstRawString* constructor, const char* type, const AstRawString* arg, int pos); // Reporting errors. void ReportMessageAt(Scanner::Location source_location, const char* message, const char* arg = NULL, bool is_reference_error = false); void ReportMessage(const char* message, const char* arg = NULL, bool is_reference_error = false); void ReportMessage(const char* message, const AstRawString* arg, bool is_reference_error = false); void ReportMessageAt(Scanner::Location source_location, const char* message, const AstRawString* arg, bool is_reference_error = false); // "null" return type creators. static const AstRawString* EmptyIdentifier() { return NULL; } static Expression* EmptyExpression() { return NULL; } static Expression* EmptyArrowParamList() { return NULL; } static Literal* EmptyLiteral() { return NULL; } static ObjectLiteralProperty* EmptyObjectLiteralProperty() { return NULL; } // Used in error return values. static ZoneList* NullExpressionList() { return NULL; } // Non-NULL empty string. V8_INLINE const AstRawString* EmptyIdentifierString(); // Odd-ball literal creators. Literal* GetLiteralTheHole(int position, AstNodeFactory* factory); // Producing data during the recursive descent. const AstRawString* GetSymbol(Scanner* scanner); const AstRawString* GetNextSymbol(Scanner* scanner); Expression* ThisExpression(Scope* scope, AstNodeFactory* factory, int pos = RelocInfo::kNoPosition); Expression* SuperReference(Scope* scope, AstNodeFactory* factory, int pos = RelocInfo::kNoPosition); Literal* ExpressionFromLiteral( Token::Value token, int pos, Scanner* scanner, AstNodeFactory* factory); Expression* ExpressionFromIdentifier( const AstRawString* name, int pos, Scope* scope, AstNodeFactory* factory); Expression* ExpressionFromString( int pos, Scanner* scanner, AstNodeFactory* factory); Expression* GetIterator(Expression* iterable, AstNodeFactory* factory); ZoneList* NewExpressionList(int size, Zone* zone) { return new(zone) ZoneList(size, zone); } ZoneList* NewPropertyList(int size, Zone* zone) { return new(zone) ZoneList(size, zone); } ZoneList* NewStatementList(int size, Zone* zone) { return new(zone) ZoneList(size, zone); } V8_INLINE Scope* NewScope(Scope* parent_scope, ScopeType scope_type); // Utility functions int DeclareArrowParametersFromExpression(Expression* expression, Scope* scope, Scanner::Location* dupe_loc, bool* ok); V8_INLINE AstValueFactory* ast_value_factory(); // Temporary glue; these functions will move to ParserBase. Expression* ParseV8Intrinsic(bool* ok); FunctionLiteral* ParseFunctionLiteral( const AstRawString* name, Scanner::Location function_name_location, bool name_is_strict_reserved, bool is_generator, int function_token_position, FunctionLiteral::FunctionType type, FunctionLiteral::ArityRestriction arity_restriction, bool* ok); V8_INLINE void SkipLazyFunctionBody(const AstRawString* name, int* materialized_literal_count, int* expected_property_count, bool* ok); V8_INLINE ZoneList* ParseEagerFunctionBody( const AstRawString* name, int pos, Variable* fvar, Token::Value fvar_init_op, bool is_generator, bool* ok); V8_INLINE void CheckConflictingVarDeclarations(v8::internal::Scope* scope, bool* ok); private: Parser* parser_; }; class Parser : public ParserBase { public: explicit Parser(CompilationInfo* info); ~Parser() { delete reusable_preparser_; reusable_preparser_ = NULL; delete cached_parse_data_; cached_parse_data_ = NULL; } // Parses the source code represented by the compilation info and sets its // function literal. Returns false (and deallocates any allocated AST // nodes) if parsing failed. static bool Parse(CompilationInfo* info, bool allow_lazy = false) { Parser parser(info); parser.set_allow_lazy(allow_lazy); return parser.Parse(); } bool Parse(); private: friend class ParserTraits; // Limit the allowed number of local variables in a function. The hard limit // is that offsets computed by FullCodeGenerator::StackOperand and similar // functions are ints, and they should not overflow. In addition, accessing // local variables creates user-controlled constants in the generated code, // and we don't want too much user-controlled memory inside the code (this was // the reason why this limit was introduced in the first place; see // https://codereview.chromium.org/7003030/ ). static const int kMaxNumFunctionLocals = 4194303; // 2^22-1 enum VariableDeclarationContext { kModuleElement, kBlockElement, kStatement, kForStatement }; // If a list of variable declarations includes any initializers. enum VariableDeclarationProperties { kHasInitializers, kHasNoInitializers }; // Returns NULL if parsing failed. FunctionLiteral* ParseProgram(); FunctionLiteral* ParseLazy(); FunctionLiteral* ParseLazy(Utf16CharacterStream* source); Isolate* isolate() { return isolate_; } CompilationInfo* info() const { return info_; } // Called by ParseProgram after setting up the scanner. FunctionLiteral* DoParseProgram(CompilationInfo* info, Handle source); void SetCachedData(); bool inside_with() const { return scope_->inside_with(); } ScriptCompiler::CompileOptions compile_options() const { return info_->compile_options(); } Scope* DeclarationScope(VariableMode mode) { return IsLexicalVariableMode(mode) ? scope_ : scope_->DeclarationScope(); } // All ParseXXX functions take as the last argument an *ok parameter // which is set to false if parsing failed; it is unchanged otherwise. // By making the 'exception handling' explicit, we are forced to check // for failure at the call sites. void* ParseSourceElements(ZoneList* processor, int end_token, bool is_eval, bool is_global, bool* ok); Statement* ParseModuleElement(ZoneList* labels, bool* ok); Statement* ParseModuleDeclaration(ZoneList* names, bool* ok); Module* ParseModule(bool* ok); Module* ParseModuleLiteral(bool* ok); Module* ParseModulePath(bool* ok); Module* ParseModuleVariable(bool* ok); Module* ParseModuleUrl(bool* ok); Module* ParseModuleSpecifier(bool* ok); Block* ParseImportDeclaration(bool* ok); Statement* ParseExportDeclaration(bool* ok); Statement* ParseBlockElement(ZoneList* labels, bool* ok); Statement* ParseStatement(ZoneList* labels, bool* ok); Statement* ParseFunctionDeclaration(ZoneList* names, bool* ok); Statement* ParseNativeDeclaration(bool* ok); Block* ParseBlock(ZoneList* labels, bool* ok); Block* ParseVariableStatement(VariableDeclarationContext var_context, ZoneList* names, bool* ok); Block* ParseVariableDeclarations(VariableDeclarationContext var_context, VariableDeclarationProperties* decl_props, ZoneList* names, const AstRawString** out, bool* ok); Statement* ParseExpressionOrLabelledStatement( ZoneList* labels, bool* ok); IfStatement* ParseIfStatement(ZoneList* labels, bool* ok); Statement* ParseContinueStatement(bool* ok); Statement* ParseBreakStatement(ZoneList* labels, bool* ok); Statement* ParseReturnStatement(bool* ok); Statement* ParseWithStatement(ZoneList* labels, bool* ok); CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok); SwitchStatement* ParseSwitchStatement(ZoneList* labels, bool* ok); DoWhileStatement* ParseDoWhileStatement(ZoneList* labels, bool* ok); WhileStatement* ParseWhileStatement(ZoneList* labels, bool* ok); Statement* ParseForStatement(ZoneList* labels, bool* ok); Statement* ParseThrowStatement(bool* ok); Expression* MakeCatchContext(Handle id, VariableProxy* value); TryStatement* ParseTryStatement(bool* ok); DebuggerStatement* ParseDebuggerStatement(bool* ok); // Support for hamony block scoped bindings. Block* ParseScopedBlock(ZoneList* labels, bool* ok); // Initialize the components of a for-in / for-of statement. void InitializeForEachStatement(ForEachStatement* stmt, Expression* each, Expression* subject, Statement* body); Statement* DesugarLetBindingsInForStatement( Scope* inner_scope, ZoneList* names, ForStatement* loop, Statement* init, Expression* cond, Statement* next, Statement* body, bool* ok); FunctionLiteral* ParseFunctionLiteral( const AstRawString* name, Scanner::Location function_name_location, bool name_is_strict_reserved, bool is_generator, int function_token_position, FunctionLiteral::FunctionType type, FunctionLiteral::ArityRestriction arity_restriction, bool* ok); // Magical syntax support. Expression* ParseV8Intrinsic(bool* ok); bool CheckInOrOf(bool accept_OF, ForEachStatement::VisitMode* visit_mode); // Get odd-ball literals. Literal* GetLiteralUndefined(int position); // For harmony block scoping mode: Check if the scope has conflicting var/let // declarations from different scopes. It covers for example // // function f() { { { var x; } let x; } } // function g() { { var x; let x; } } // // The var declarations are hoisted to the function scope, but originate from // a scope where the name has also been let bound or the var declaration is // hoisted over such a scope. void CheckConflictingVarDeclarations(Scope* scope, bool* ok); // Parser support VariableProxy* NewUnresolved(const AstRawString* name, VariableMode mode, Interface* interface); void Declare(Declaration* declaration, bool resolve, bool* ok); bool TargetStackContainsLabel(const AstRawString* label); BreakableStatement* LookupBreakTarget(const AstRawString* label, bool* ok); IterationStatement* LookupContinueTarget(const AstRawString* label, bool* ok); void RegisterTargetUse(Label* target, Target* stop); // Factory methods. Scope* NewScope(Scope* parent, ScopeType type); // Skip over a lazy function, either using cached data if we have it, or // by parsing the function with PreParser. Consumes the ending }. void SkipLazyFunctionBody(const AstRawString* function_name, int* materialized_literal_count, int* expected_property_count, bool* ok); PreParser::PreParseResult ParseLazyFunctionBodyWithPreParser( SingletonLogger* logger); // Consumes the ending }. ZoneList* ParseEagerFunctionBody( const AstRawString* function_name, int pos, Variable* fvar, Token::Value fvar_init_op, bool is_generator, bool* ok); void HandleSourceURLComments(); void ThrowPendingError(); void InternalizeUseCounts(); Isolate* isolate_; Handle