// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This module contains the platform-specific code. This make the rest of the // code less dependent on operating system, compilers and runtime libraries. // This module does specifically not deal with differences between different // processor architecture. // The platform classes have the same definition for all platforms. The // implementation for a particular platform is put in platform_.cc. // The build system then uses the implementation for the target platform. // // This design has been chosen because it is simple and fast. Alternatively, // the platform dependent classes could have been implemented using abstract // superclasses with virtual methods and having specializations for each // platform. This design was rejected because it was more complicated and // slower. It would require factory methods for selecting the right // implementation and the overhead of virtual methods for performance // sensitive like mutex locking/unlocking. #ifndef V8_PLATFORM_H_ #define V8_PLATFORM_H_ #include #include "platform/mutex.h" #include "platform/semaphore.h" #include "globals.h" #include "vector.h" #ifdef __sun # ifndef signbit namespace std { int signbit(double x); } # endif #endif #if V8_OS_QNX #include "qnx-math.h" #endif // Microsoft Visual C++ specific stuff. #if V8_LIBC_MSVCRT #include "win32-headers.h" #include "win32-math.h" int strncasecmp(const char* s1, const char* s2, int n); // Visual C++ 2013 and higher implement this function. #if (_MSC_VER < 1800) inline int lrint(double flt) { int intgr; #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 __asm { fld flt fistp intgr }; #else intgr = static_cast(flt + 0.5); if ((intgr & 1) != 0 && intgr - flt == 0.5) { // If the number is halfway between two integers, round to the even one. intgr--; } #endif return intgr; } #endif // _MSC_VER < 1800 #endif // V8_LIBC_MSVCRT namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Fast TLS support #ifndef V8_NO_FAST_TLS #if defined(_MSC_VER) && (V8_HOST_ARCH_IA32) #define V8_FAST_TLS_SUPPORTED 1 INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index)); inline intptr_t InternalGetExistingThreadLocal(intptr_t index) { const intptr_t kTibInlineTlsOffset = 0xE10; const intptr_t kTibExtraTlsOffset = 0xF94; const intptr_t kMaxInlineSlots = 64; const intptr_t kMaxSlots = kMaxInlineSlots + 1024; ASSERT(0 <= index && index < kMaxSlots); if (index < kMaxInlineSlots) { return static_cast(__readfsdword(kTibInlineTlsOffset + kPointerSize * index)); } intptr_t extra = static_cast(__readfsdword(kTibExtraTlsOffset)); ASSERT(extra != 0); return *reinterpret_cast(extra + kPointerSize * (index - kMaxInlineSlots)); } #elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64) #define V8_FAST_TLS_SUPPORTED 1 extern intptr_t kMacTlsBaseOffset; INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index)); inline intptr_t InternalGetExistingThreadLocal(intptr_t index) { intptr_t result; #if V8_HOST_ARCH_IA32 asm("movl %%gs:(%1,%2,4), %0;" :"=r"(result) // Output must be a writable register. :"r"(kMacTlsBaseOffset), "r"(index)); #else asm("movq %%gs:(%1,%2,8), %0;" :"=r"(result) :"r"(kMacTlsBaseOffset), "r"(index)); #endif return result; } #endif #endif // V8_NO_FAST_TLS class TimezoneCache; // ---------------------------------------------------------------------------- // OS // // This class has static methods for the different platform specific // functions. Add methods here to cope with differences between the // supported platforms. class OS { public: // Returns the accumulated user time for thread. This routine // can be used for profiling. The implementation should // strive for high-precision timer resolution, preferable // micro-second resolution. static int GetUserTime(uint32_t* secs, uint32_t* usecs); // Returns current time as the number of milliseconds since // 00:00:00 UTC, January 1, 1970. static double TimeCurrentMillis(); static TimezoneCache* CreateTimezoneCache(); static void DisposeTimezoneCache(TimezoneCache* cache); static void ClearTimezoneCache(TimezoneCache* cache); // Returns a string identifying the current time zone. The // timestamp is used for determining if DST is in effect. static const char* LocalTimezone(double time, TimezoneCache* cache); // Returns the local time offset in milliseconds east of UTC without // taking daylight savings time into account. static double LocalTimeOffset(TimezoneCache* cache); // Returns the daylight savings offset for the given time. static double DaylightSavingsOffset(double time, TimezoneCache* cache); // Returns last OS error. static int GetLastError(); static FILE* FOpen(const char* path, const char* mode); static bool Remove(const char* path); // Opens a temporary file, the file is auto removed on close. static FILE* OpenTemporaryFile(); // Log file open mode is platform-dependent due to line ends issues. static const char* const LogFileOpenMode; // Print output to console. This is mostly used for debugging output. // On platforms that has standard terminal output, the output // should go to stdout. static void Print(const char* format, ...); static void VPrint(const char* format, va_list args); // Print output to a file. This is mostly used for debugging output. static void FPrint(FILE* out, const char* format, ...); static void VFPrint(FILE* out, const char* format, va_list args); // Print error output to console. This is mostly used for error message // output. On platforms that has standard terminal output, the output // should go to stderr. static void PrintError(const char* format, ...); static void VPrintError(const char* format, va_list args); // Allocate/Free memory used by JS heap. Pages are readable/writable, but // they are not guaranteed to be executable unless 'executable' is true. // Returns the address of allocated memory, or NULL if failed. static void* Allocate(const size_t requested, size_t* allocated, bool is_executable); static void Free(void* address, const size_t size); // This is the granularity at which the ProtectCode(...) call can set page // permissions. static intptr_t CommitPageSize(); // Mark code segments non-writable. static void ProtectCode(void* address, const size_t size); // Assign memory as a guard page so that access will cause an exception. static void Guard(void* address, const size_t size); // Generate a random address to be used for hinting mmap(). static void* GetRandomMmapAddr(); // Get the Alignment guaranteed by Allocate(). static size_t AllocateAlignment(); // Sleep for a number of milliseconds. static void Sleep(const int milliseconds); // Abort the current process. static void Abort(); // Debug break. static void DebugBreak(); // Walk the stack. static const int kStackWalkError = -1; static const int kStackWalkMaxNameLen = 256; static const int kStackWalkMaxTextLen = 256; struct StackFrame { void* address; char text[kStackWalkMaxTextLen]; }; class MemoryMappedFile { public: static MemoryMappedFile* open(const char* name); static MemoryMappedFile* create(const char* name, int size, void* initial); virtual ~MemoryMappedFile() { } virtual void* memory() = 0; virtual int size() = 0; }; // Safe formatting print. Ensures that str is always null-terminated. // Returns the number of chars written, or -1 if output was truncated. static int SNPrintF(Vector str, const char* format, ...); static int VSNPrintF(Vector str, const char* format, va_list args); static char* StrChr(char* str, int c); static void StrNCpy(Vector dest, const char* src, size_t n); // Support for the profiler. Can do nothing, in which case ticks // occuring in shared libraries will not be properly accounted for. static void LogSharedLibraryAddresses(Isolate* isolate); // Support for the profiler. Notifies the external profiling // process that a code moving garbage collection starts. Can do // nothing, in which case the code objects must not move (e.g., by // using --never-compact) if accurate profiling is desired. static void SignalCodeMovingGC(); // The return value indicates the CPU features we are sure of because of the // OS. // This is a little messy because the interpretation is subject to the cross // of the CPU and the OS. The bits in the answer correspond to the bit // positions indicated by the members of the CpuFeature enum from globals.h static unsigned CpuFeaturesImpliedByPlatform(); // Returns the number of processors online. static int NumberOfProcessorsOnline(); // The total amount of physical memory available on the current system. static uint64_t TotalPhysicalMemory(); // Maximum size of the virtual memory. 0 means there is no artificial // limit. static intptr_t MaxVirtualMemory(); // Returns the double constant NAN static double nan_value(); // Support runtime detection of whether the hard float option of the // EABI is used. static bool ArmUsingHardFloat(); // Returns the activation frame alignment constraint or zero if // the platform doesn't care. Guaranteed to be a power of two. static int ActivationFrameAlignment(); static int GetCurrentProcessId(); private: static const int msPerSecond = 1000; DISALLOW_IMPLICIT_CONSTRUCTORS(OS); }; // Represents and controls an area of reserved memory. // Control of the reserved memory can be assigned to another VirtualMemory // object by assignment or copy-contructing. This removes the reserved memory // from the original object. class VirtualMemory { public: // Empty VirtualMemory object, controlling no reserved memory. VirtualMemory(); // Reserves virtual memory with size. explicit VirtualMemory(size_t size); // Reserves virtual memory containing an area of the given size that // is aligned per alignment. This may not be at the position returned // by address(). VirtualMemory(size_t size, size_t alignment); // Releases the reserved memory, if any, controlled by this VirtualMemory // object. ~VirtualMemory(); // Returns whether the memory has been reserved. bool IsReserved(); // Initialize or resets an embedded VirtualMemory object. void Reset(); // Returns the start address of the reserved memory. // If the memory was reserved with an alignment, this address is not // necessarily aligned. The user might need to round it up to a multiple of // the alignment to get the start of the aligned block. void* address() { ASSERT(IsReserved()); return address_; } // Returns the size of the reserved memory. The returned value is only // meaningful when IsReserved() returns true. // If the memory was reserved with an alignment, this size may be larger // than the requested size. size_t size() { return size_; } // Commits real memory. Returns whether the operation succeeded. bool Commit(void* address, size_t size, bool is_executable); // Uncommit real memory. Returns whether the operation succeeded. bool Uncommit(void* address, size_t size); // Creates a single guard page at the given address. bool Guard(void* address); void Release() { ASSERT(IsReserved()); // Notice: Order is important here. The VirtualMemory object might live // inside the allocated region. void* address = address_; size_t size = size_; Reset(); bool result = ReleaseRegion(address, size); USE(result); ASSERT(result); } // Assign control of the reserved region to a different VirtualMemory object. // The old object is no longer functional (IsReserved() returns false). void TakeControl(VirtualMemory* from) { ASSERT(!IsReserved()); address_ = from->address_; size_ = from->size_; from->Reset(); } static void* ReserveRegion(size_t size); static bool CommitRegion(void* base, size_t size, bool is_executable); static bool UncommitRegion(void* base, size_t size); // Must be called with a base pointer that has been returned by ReserveRegion // and the same size it was reserved with. static bool ReleaseRegion(void* base, size_t size); // Returns true if OS performs lazy commits, i.e. the memory allocation call // defers actual physical memory allocation till the first memory access. // Otherwise returns false. static bool HasLazyCommits(); private: void* address_; // Start address of the virtual memory. size_t size_; // Size of the virtual memory. }; // ---------------------------------------------------------------------------- // Thread // // Thread objects are used for creating and running threads. When the start() // method is called the new thread starts running the run() method in the new // thread. The Thread object should not be deallocated before the thread has // terminated. class Thread { public: // Opaque data type for thread-local storage keys. // LOCAL_STORAGE_KEY_MIN_VALUE and LOCAL_STORAGE_KEY_MAX_VALUE are specified // to ensure that enumeration type has correct value range (see Issue 830 for // more details). enum LocalStorageKey { LOCAL_STORAGE_KEY_MIN_VALUE = kMinInt, LOCAL_STORAGE_KEY_MAX_VALUE = kMaxInt }; class Options { public: Options() : name_("v8:"), stack_size_(0) {} Options(const char* name, int stack_size = 0) : name_(name), stack_size_(stack_size) {} const char* name() const { return name_; } int stack_size() const { return stack_size_; } private: const char* name_; int stack_size_; }; // Create new thread. explicit Thread(const Options& options); virtual ~Thread(); // Start new thread by calling the Run() method on the new thread. void Start(); // Start new thread and wait until Run() method is called on the new thread. void StartSynchronously() { start_semaphore_ = new Semaphore(0); Start(); start_semaphore_->Wait(); delete start_semaphore_; start_semaphore_ = NULL; } // Wait until thread terminates. void Join(); inline const char* name() const { return name_; } // Abstract method for run handler. virtual void Run() = 0; // Thread-local storage. static LocalStorageKey CreateThreadLocalKey(); static void DeleteThreadLocalKey(LocalStorageKey key); static void* GetThreadLocal(LocalStorageKey key); static int GetThreadLocalInt(LocalStorageKey key) { return static_cast(reinterpret_cast(GetThreadLocal(key))); } static void SetThreadLocal(LocalStorageKey key, void* value); static void SetThreadLocalInt(LocalStorageKey key, int value) { SetThreadLocal(key, reinterpret_cast(static_cast(value))); } static bool HasThreadLocal(LocalStorageKey key) { return GetThreadLocal(key) != NULL; } #ifdef V8_FAST_TLS_SUPPORTED static inline void* GetExistingThreadLocal(LocalStorageKey key) { void* result = reinterpret_cast( InternalGetExistingThreadLocal(static_cast(key))); ASSERT(result == GetThreadLocal(key)); return result; } #else static inline void* GetExistingThreadLocal(LocalStorageKey key) { return GetThreadLocal(key); } #endif // A hint to the scheduler to let another thread run. static void YieldCPU(); // The thread name length is limited to 16 based on Linux's implementation of // prctl(). static const int kMaxThreadNameLength = 16; class PlatformData; PlatformData* data() { return data_; } void NotifyStartedAndRun() { if (start_semaphore_) start_semaphore_->Signal(); Run(); } private: void set_name(const char* name); PlatformData* data_; char name_[kMaxThreadNameLength]; int stack_size_; Semaphore* start_semaphore_; DISALLOW_COPY_AND_ASSIGN(Thread); }; } } // namespace v8::internal #endif // V8_PLATFORM_H_