// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_UTILS_H_ #define V8_UTILS_H_ #include #include #include #include #include #include "include/v8.h" #include "src/allocation.h" #include "src/base/bits.h" #include "src/base/compiler-specific.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/platform/platform.h" #include "src/base/v8-fallthrough.h" #include "src/globals.h" #include "src/vector.h" #include "src/zone/zone.h" #if defined(V8_OS_AIX) #include // NOLINT(build/c++11) #endif namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // General helper functions // Returns the value (0 .. 15) of a hexadecimal character c. // If c is not a legal hexadecimal character, returns a value < 0. inline int HexValue(uc32 c) { c -= '0'; if (static_cast(c) <= 9) return c; c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. if (static_cast(c) <= 5) return c + 10; return -1; } inline char HexCharOfValue(int value) { DCHECK(0 <= value && value <= 16); if (value < 10) return value + '0'; return value - 10 + 'A'; } inline int BoolToInt(bool b) { return b ? 1 : 0; } // Same as strcmp, but can handle NULL arguments. inline bool CStringEquals(const char* s1, const char* s2) { return (s1 == s2) || (s1 != nullptr && s2 != nullptr && strcmp(s1, s2) == 0); } // X must be a power of 2. Returns the number of trailing zeros. template ::value>::type> inline int WhichPowerOf2(T x) { DCHECK(base::bits::IsPowerOfTwo(x)); int bits = 0; #ifdef DEBUG const T original_x = x; #endif constexpr int max_bits = sizeof(T) * 8; static_assert(max_bits <= 64, "integral types are not bigger than 64 bits"); // Avoid shifting by more than the bit width of x to avoid compiler warnings. #define CHECK_BIGGER(s) \ if (max_bits > s && x >= T{1} << (max_bits > s ? s : 0)) { \ bits += s; \ x >>= max_bits > s ? s : 0; \ } CHECK_BIGGER(32) CHECK_BIGGER(16) CHECK_BIGGER(8) CHECK_BIGGER(4) #undef CHECK_BIGGER switch (x) { default: UNREACHABLE(); case 8: bits++; V8_FALLTHROUGH; case 4: bits++; V8_FALLTHROUGH; case 2: bits++; V8_FALLTHROUGH; case 1: break; } DCHECK_EQ(T{1} << bits, original_x); return bits; } inline int MostSignificantBit(uint32_t x) { static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; int nibble = 0; if (x & 0xffff0000) { nibble += 16; x >>= 16; } if (x & 0xff00) { nibble += 8; x >>= 8; } if (x & 0xf0) { nibble += 4; x >>= 4; } return nibble + msb4[x]; } template static T ArithmeticShiftRight(T x, int shift) { DCHECK_LE(0, shift); if (x < 0) { // Right shift of signed values is implementation defined. Simulate a // true arithmetic right shift by adding leading sign bits. using UnsignedT = typename std::make_unsigned::type; UnsignedT mask = ~(static_cast(~0) >> shift); return (static_cast(x) >> shift) | mask; } else { return x >> shift; } } template int Compare(const T& a, const T& b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } // Compare function to compare the object pointer value of two // handlified objects. The handles are passed as pointers to the // handles. template class Handle; // Forward declaration. template int HandleObjectPointerCompare(const Handle* a, const Handle* b) { return Compare(*(*a), *(*b)); } template inline bool IsAligned(T value, U alignment) { return (value & (alignment - 1)) == 0; } // Returns true if (addr + offset) is aligned. inline bool IsAddressAligned(Address addr, intptr_t alignment, int offset = 0) { intptr_t offs = OffsetFrom(addr + offset); return IsAligned(offs, alignment); } // Returns the maximum of the two parameters. template constexpr T Max(T a, T b) { return a < b ? b : a; } // Returns the minimum of the two parameters. template constexpr T Min(T a, T b) { return a < b ? a : b; } // Returns the maximum of the two parameters according to JavaScript semantics. template T JSMax(T x, T y) { if (std::isnan(x)) return x; if (std::isnan(y)) return y; if (std::signbit(x) < std::signbit(y)) return x; return x > y ? x : y; } // Returns the maximum of the two parameters according to JavaScript semantics. template T JSMin(T x, T y) { if (std::isnan(x)) return x; if (std::isnan(y)) return y; if (std::signbit(x) < std::signbit(y)) return y; return x > y ? y : x; } // Returns the absolute value of its argument. template ::value>::type> typename std::make_unsigned::type Abs(T a) { // This is a branch-free implementation of the absolute value function and is // described in Warren's "Hacker's Delight", chapter 2. It avoids undefined // behavior with the arithmetic negation operation on signed values as well. typedef typename std::make_unsigned::type unsignedT; unsignedT x = static_cast(a); unsignedT y = static_cast(a >> (sizeof(T) * 8 - 1)); return (x ^ y) - y; } // Returns the negative absolute value of its argument. template ::value>::type> T Nabs(T a) { return a < 0 ? a : -a; } // Floor(-0.0) == 0.0 inline double Floor(double x) { #if V8_CC_MSVC if (x == 0) return x; // Fix for issue 3477. #endif return std::floor(x); } inline double Modulo(double x, double y) { #if defined(V8_OS_WIN) // Workaround MS fmod bugs. ECMA-262 says: // dividend is finite and divisor is an infinity => result equals dividend // dividend is a zero and divisor is nonzero finite => result equals dividend if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) && !(x == 0 && (y != 0 && std::isfinite(y)))) { x = fmod(x, y); } return x; #elif defined(V8_OS_AIX) // AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE) feclearexcept(FE_ALL_EXCEPT); double result = std::fmod(x, y); int exception = fetestexcept(FE_UNDERFLOW); return (exception ? x : result); #else return std::fmod(x, y); #endif } inline double Pow(double x, double y) { if (y == 0.0) return 1.0; if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { return std::numeric_limits::quiet_NaN(); } #if (defined(__MINGW64_VERSION_MAJOR) && \ (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \ defined(V8_OS_AIX) // MinGW64 and AIX have a custom implementation for pow. This handles certain // special cases that are different. if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) { double f; double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0; /* retain sign if odd integer exponent */ return ((std::modf(y, &f) == 0.0) && (static_cast(y) & 1)) ? copysign(result, x) : result; } if (x == 2.0) { int y_int = static_cast(y); if (y == y_int) { return std::ldexp(1.0, y_int); } } #endif return std::pow(x, y); } template T SaturateAdd(T a, T b) { if (std::is_signed::value) { if (a > 0 && b > 0) { if (a > std::numeric_limits::max() - b) { return std::numeric_limits::max(); } } else if (a < 0 && b < 0) { if (a < std::numeric_limits::min() - b) { return std::numeric_limits::min(); } } } else { CHECK(std::is_unsigned::value); if (a > std::numeric_limits::max() - b) { return std::numeric_limits::max(); } } return a + b; } template T SaturateSub(T a, T b) { if (std::is_signed::value) { if (a >= 0 && b < 0) { if (a > std::numeric_limits::max() + b) { return std::numeric_limits::max(); } } else if (a < 0 && b > 0) { if (a < std::numeric_limits::min() + b) { return std::numeric_limits::min(); } } } else { CHECK(std::is_unsigned::value); if (a < b) { return static_cast(0); } } return a - b; } // ---------------------------------------------------------------------------- // BitField is a help template for encoding and decode bitfield with // unsigned content. template class BitFieldBase { public: typedef T FieldType; // A type U mask of bit field. To use all bits of a type U of x bits // in a bitfield without compiler warnings we have to compute 2^x // without using a shift count of x in the computation. static const U kOne = static_cast(1U); static const U kMask = ((kOne << shift) << size) - (kOne << shift); static const U kShift = shift; static const U kSize = size; static const U kNext = kShift + kSize; static const U kNumValues = kOne << size; // Value for the field with all bits set. static const T kMax = static_cast(kNumValues - 1); // Tells whether the provided value fits into the bit field. static constexpr bool is_valid(T value) { return (static_cast(value) & ~static_cast(kMax)) == 0; } // Returns a type U with the bit field value encoded. static U encode(T value) { DCHECK(is_valid(value)); return static_cast(value) << shift; } // Returns a type U with the bit field value updated. static U update(U previous, T value) { return (previous & ~kMask) | encode(value); } // Extracts the bit field from the value. static T decode(U value) { return static_cast((value & kMask) >> shift); } STATIC_ASSERT((kNext - 1) / 8 < sizeof(U)); }; template class BitField8 : public BitFieldBase {}; template class BitField16 : public BitFieldBase {}; template class BitField : public BitFieldBase { }; template class BitField64 : public BitFieldBase { }; // Helper macros for defining a contiguous sequence of bit fields. Example: // (backslashes at the ends of respective lines of this multi-line macro // definition are omitted here to please the compiler) // // #define MAP_BIT_FIELD1(V, _) // V(IsAbcBit, bool, 1, _) // V(IsBcdBit, bool, 1, _) // V(CdeBits, int, 5, _) // V(DefBits, MutableMode, 1, _) // // DEFINE_BIT_FIELDS(MAP_BIT_FIELD1) // or // DEFINE_BIT_FIELDS_64(MAP_BIT_FIELD1) // #define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \ k##Name##Start, k##Name##End = k##Name##Start + Size - 1, #define DEFINE_BIT_RANGES(LIST_MACRO) \ struct LIST_MACRO##_Ranges { \ enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \ }; #define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \ typedef BitField Name; #define DEFINE_BIT_FIELD_64_TYPE(Name, Type, Size, RangesName) \ typedef BitField64 Name; #define DEFINE_BIT_FIELDS(LIST_MACRO) \ DEFINE_BIT_RANGES(LIST_MACRO) \ LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges) #define DEFINE_BIT_FIELDS_64(LIST_MACRO) \ DEFINE_BIT_RANGES(LIST_MACRO) \ LIST_MACRO(DEFINE_BIT_FIELD_64_TYPE, LIST_MACRO##_Ranges) // ---------------------------------------------------------------------------- // BitSetComputer is a help template for encoding and decoding information for // a variable number of items in an array. // // To encode boolean data in a smi array you would use: // typedef BitSetComputer BoolComputer; // template class BitSetComputer { public: static const int kItemsPerWord = kBitsPerWord / kBitsPerItem; static const int kMask = (1 << kBitsPerItem) - 1; // The number of array elements required to embed T information for each item. static int word_count(int items) { if (items == 0) return 0; return (items - 1) / kItemsPerWord + 1; } // The array index to look at for item. static int index(int base_index, int item) { return base_index + item / kItemsPerWord; } // Extract T data for a given item from data. static T decode(U data, int item) { return static_cast((data >> shift(item)) & kMask); } // Return the encoding for a store of value for item in previous. static U encode(U previous, int item, T value) { int shift_value = shift(item); int set_bits = (static_cast(value) << shift_value); return (previous & ~(kMask << shift_value)) | set_bits; } static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; } }; // Helper macros for defining a contiguous sequence of field offset constants. // Example: (backslashes at the ends of respective lines of this multi-line // macro definition are omitted here to please the compiler) // // #define MAP_FIELDS(V) // V(kField1Offset, kPointerSize) // V(kField2Offset, kIntSize) // V(kField3Offset, kIntSize) // V(kField4Offset, kPointerSize) // V(kSize, 0) // // DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS) // #define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1, #define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \ enum { \ LIST_MACRO##_StartOffset = StartOffset - 1, \ LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \ }; // ---------------------------------------------------------------------------- // Hash function. static const uint32_t kZeroHashSeed = 0; // Thomas Wang, Integer Hash Functions. // http://www.concentric.net/~Ttwang/tech/inthash.htm inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) { uint32_t hash = key; hash = hash ^ seed; hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; hash = hash ^ (hash >> 12); hash = hash + (hash << 2); hash = hash ^ (hash >> 4); hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); hash = hash ^ (hash >> 16); return hash & 0x3fffffff; } inline uint32_t ComputeIntegerHash(uint32_t key) { return ComputeIntegerHash(key, kZeroHashSeed); } inline uint32_t ComputeLongHash(uint64_t key) { uint64_t hash = key; hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; hash = hash ^ (hash >> 31); hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); hash = hash ^ (hash >> 11); hash = hash + (hash << 6); hash = hash ^ (hash >> 22); return static_cast(hash); } inline uint32_t ComputePointerHash(void* ptr) { return ComputeIntegerHash( static_cast(reinterpret_cast(ptr))); } // ---------------------------------------------------------------------------- // Generated memcpy/memmove // Initializes the codegen support that depends on CPU features. void init_memcopy_functions(Isolate* isolate); #if defined(V8_TARGET_ARCH_IA32) // Limit below which the extra overhead of the MemCopy function is likely // to outweigh the benefits of faster copying. const int kMinComplexMemCopy = 64; // Copy memory area. No restrictions. V8_EXPORT_PRIVATE void MemMove(void* dest, const void* src, size_t size); typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size); // Keep the distinction of "move" vs. "copy" for the benefit of other // architectures. V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { MemMove(dest, src, size); } #elif defined(V8_HOST_ARCH_ARM) typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src, size_t size); V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, size_t chars) { memcpy(dest, src, chars); } // For values < 16, the assembler function is slower than the inlined C code. const int kMinComplexMemCopy = 16; V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { (*memcopy_uint8_function)(reinterpret_cast(dest), reinterpret_cast(src), size); } V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, size_t size) { memmove(dest, src, size); } typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest, const uint8_t* src, size_t size); extern MemCopyUint16Uint8Function memcopy_uint16_uint8_function; void MemCopyUint16Uint8Wrapper(uint16_t* dest, const uint8_t* src, size_t chars); // For values < 12, the assembler function is slower than the inlined C code. const int kMinComplexConvertMemCopy = 12; V8_INLINE void MemCopyUint16Uint8(uint16_t* dest, const uint8_t* src, size_t size) { (*memcopy_uint16_uint8_function)(dest, src, size); } #elif defined(V8_HOST_ARCH_MIPS) typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src, size_t size); V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function; V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src, size_t chars) { memcpy(dest, src, chars); } // For values < 16, the assembler function is slower than the inlined C code. const int kMinComplexMemCopy = 16; V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { (*memcopy_uint8_function)(reinterpret_cast(dest), reinterpret_cast(src), size); } V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, size_t size) { memmove(dest, src, size); } #else // Copy memory area to disjoint memory area. V8_INLINE void MemCopy(void* dest, const void* src, size_t size) { memcpy(dest, src, size); } V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src, size_t size) { memmove(dest, src, size); } const int kMinComplexMemCopy = 8; #endif // V8_TARGET_ARCH_IA32 // ---------------------------------------------------------------------------- // Miscellaneous // Memory offset for lower and higher bits in a 64 bit integer. #if defined(V8_TARGET_LITTLE_ENDIAN) static const int kInt64LowerHalfMemoryOffset = 0; static const int kInt64UpperHalfMemoryOffset = 4; #elif defined(V8_TARGET_BIG_ENDIAN) static const int kInt64LowerHalfMemoryOffset = 4; static const int kInt64UpperHalfMemoryOffset = 0; #endif // V8_TARGET_LITTLE_ENDIAN // A static resource holds a static instance that can be reserved in // a local scope using an instance of Access. Attempts to re-reserve // the instance will cause an error. template class StaticResource { public: StaticResource() : is_reserved_(false) {} private: template friend class Access; T instance_; bool is_reserved_; }; // Locally scoped access to a static resource. template class Access { public: explicit Access(StaticResource* resource) : resource_(resource) , instance_(&resource->instance_) { DCHECK(!resource->is_reserved_); resource->is_reserved_ = true; } ~Access() { resource_->is_reserved_ = false; resource_ = nullptr; instance_ = nullptr; } T* value() { return instance_; } T* operator -> () { return instance_; } private: StaticResource* resource_; T* instance_; }; // A pointer that can only be set once and doesn't allow NULL values. template class SetOncePointer { public: SetOncePointer() = default; bool is_set() const { return pointer_ != nullptr; } T* get() const { DCHECK_NOT_NULL(pointer_); return pointer_; } void set(T* value) { DCHECK(pointer_ == nullptr && value != nullptr); pointer_ = value; } T* operator=(T* value) { set(value); return value; } bool operator==(std::nullptr_t) const { return pointer_ == nullptr; } bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; } private: T* pointer_ = nullptr; }; template class EmbeddedVector : public Vector { public: EmbeddedVector() : Vector(buffer_, kSize) { } explicit EmbeddedVector(T initial_value) : Vector(buffer_, kSize) { for (int i = 0; i < kSize; ++i) { buffer_[i] = initial_value; } } // When copying, make underlying Vector to reference our buffer. EmbeddedVector(const EmbeddedVector& rhs) : Vector(rhs) { MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); this->set_start(buffer_); } EmbeddedVector& operator=(const EmbeddedVector& rhs) { if (this == &rhs) return *this; Vector::operator=(rhs); MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); this->set_start(buffer_); return *this; } private: T buffer_[kSize]; }; // Compare 8bit/16bit chars to 8bit/16bit chars. template inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs, size_t chars) { const lchar* limit = lhs + chars; if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) { // memcmp compares byte-by-byte, yielding wrong results for two-byte // strings on little-endian systems. return memcmp(lhs, rhs, chars); } while (lhs < limit) { int r = static_cast(*lhs) - static_cast(*rhs); if (r != 0) return r; ++lhs; ++rhs; } return 0; } template inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) { DCHECK_LE(sizeof(lchar), 2); DCHECK_LE(sizeof(rchar), 2); if (sizeof(lchar) == 1) { if (sizeof(rchar) == 1) { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } else { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } } else { if (sizeof(rchar) == 1) { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } else { return CompareCharsUnsigned(reinterpret_cast(lhs), reinterpret_cast(rhs), chars); } } } // Calculate 10^exponent. inline int TenToThe(int exponent) { DCHECK_LE(exponent, 9); DCHECK_GE(exponent, 1); int answer = 10; for (int i = 1; i < exponent; i++) answer *= 10; return answer; } template class EmbeddedContainer { public: EmbeddedContainer() : elems_() { } int length() const { return NumElements; } const ElementType& operator[](int i) const { DCHECK(i < length()); return elems_[i]; } ElementType& operator[](int i) { DCHECK(i < length()); return elems_[i]; } private: ElementType elems_[NumElements]; }; template class EmbeddedContainer { public: int length() const { return 0; } const ElementType& operator[](int i) const { UNREACHABLE(); static ElementType t = 0; return t; } ElementType& operator[](int i) { UNREACHABLE(); static ElementType t = 0; return t; } }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. // This simple base class does not allow formatted output. class SimpleStringBuilder { public: // Create a string builder with a buffer of the given size. The // buffer is allocated through NewArray and must be // deallocated by the caller of Finalize(). explicit SimpleStringBuilder(int size); SimpleStringBuilder(char* buffer, int size) : buffer_(buffer, size), position_(0) { } ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); } int size() const { return buffer_.length(); } // Get the current position in the builder. int position() const { DCHECK(!is_finalized()); return position_; } // Reset the position. void Reset() { position_ = 0; } // Add a single character to the builder. It is not allowed to add // 0-characters; use the Finalize() method to terminate the string // instead. void AddCharacter(char c) { DCHECK_NE(c, '\0'); DCHECK(!is_finalized() && position_ < buffer_.length()); buffer_[position_++] = c; } // Add an entire string to the builder. Uses strlen() internally to // compute the length of the input string. void AddString(const char* s); // Add the first 'n' characters of the given 0-terminated string 's' to the // builder. The input string must have enough characters. void AddSubstring(const char* s, int n); // Add character padding to the builder. If count is non-positive, // nothing is added to the builder. void AddPadding(char c, int count); // Add the decimal representation of the value. void AddDecimalInteger(int value); // Finalize the string by 0-terminating it and returning the buffer. char* Finalize(); protected: Vector buffer_; int position_; bool is_finalized() const { return position_ < 0; } private: DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder); }; // A poor man's version of STL's bitset: A bit set of enums E (without explicit // values), fitting into an integral type T. template class EnumSet { public: explicit EnumSet(T bits = 0) : bits_(bits) {} bool IsEmpty() const { return bits_ == 0; } bool Contains(E element) const { return (bits_ & Mask(element)) != 0; } bool ContainsAnyOf(const EnumSet& set) const { return (bits_ & set.bits_) != 0; } void Add(E element) { bits_ |= Mask(element); } void Add(const EnumSet& set) { bits_ |= set.bits_; } void Remove(E element) { bits_ &= ~Mask(element); } void Remove(const EnumSet& set) { bits_ &= ~set.bits_; } void RemoveAll() { bits_ = 0; } void Intersect(const EnumSet& set) { bits_ &= set.bits_; } T ToIntegral() const { return bits_; } bool operator==(const EnumSet& set) { return bits_ == set.bits_; } bool operator!=(const EnumSet& set) { return bits_ != set.bits_; } EnumSet operator|(const EnumSet& set) const { return EnumSet(bits_ | set.bits_); } private: static_assert(std::is_enum::value, "EnumSet can only be used with enums"); T Mask(E element) const { DCHECK_GT(sizeof(T) * CHAR_BIT, static_cast(element)); return T{1} << static_cast::type>(element); } T bits_; }; // Bit field extraction. inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); } inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { return (x >> lsb) & ((static_cast(1) << (1 + msb - lsb)) - 1); } inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { return (x << (31 - msb)) >> (lsb + 31 - msb); } inline int signed_bitextract_64(int msb, int lsb, int x) { // TODO(jbramley): This is broken for big bitfields. return (x << (63 - msb)) >> (lsb + 63 - msb); } // Check number width. inline bool is_intn(int64_t x, unsigned n) { DCHECK((0 < n) && (n < 64)); int64_t limit = static_cast(1) << (n - 1); return (-limit <= x) && (x < limit); } inline bool is_uintn(int64_t x, unsigned n) { DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); return !(x >> n); } template inline T truncate_to_intn(T x, unsigned n) { DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte))); return (x & ((static_cast(1) << n) - 1)); } #define INT_1_TO_63_LIST(V) \ V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ V(57) V(58) V(59) V(60) V(61) V(62) V(63) #define DECLARE_IS_INT_N(N) \ inline bool is_int##N(int64_t x) { return is_intn(x, N); } #define DECLARE_IS_UINT_N(N) \ template \ inline bool is_uint##N(T x) { return is_uintn(x, N); } #define DECLARE_TRUNCATE_TO_INT_N(N) \ template \ inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); } INT_1_TO_63_LIST(DECLARE_IS_INT_N) INT_1_TO_63_LIST(DECLARE_IS_UINT_N) INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) #undef DECLARE_IS_INT_N #undef DECLARE_IS_UINT_N #undef DECLARE_TRUNCATE_TO_INT_N class FeedbackSlot { public: FeedbackSlot() : id_(kInvalidSlot) {} explicit FeedbackSlot(int id) : id_(id) {} int ToInt() const { return id_; } static FeedbackSlot Invalid() { return FeedbackSlot(); } bool IsInvalid() const { return id_ == kInvalidSlot; } bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; } bool operator!=(FeedbackSlot that) const { return !(*this == that); } friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); } friend std::ostream& operator<<(std::ostream& os, FeedbackSlot); private: static const int kInvalidSlot = -1; int id_; }; class BailoutId { public: explicit BailoutId(int id) : id_(id) { } int ToInt() const { return id_; } static BailoutId None() { return BailoutId(kNoneId); } static BailoutId ScriptContext() { return BailoutId(kScriptContextId); } static BailoutId FunctionContext() { return BailoutId(kFunctionContextId); } static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); } static BailoutId Declarations() { return BailoutId(kDeclarationsId); } static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); } static BailoutId StubEntry() { return BailoutId(kStubEntryId); } // Special bailout id support for deopting into the {JSConstructStub} stub. // The following hard-coded deoptimization points are supported by the stub: // - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}. // - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}. static BailoutId ConstructStubCreate() { return BailoutId(1); } static BailoutId ConstructStubInvoke() { return BailoutId(2); } bool IsValidForConstructStub() const { return id_ == ConstructStubCreate().ToInt() || id_ == ConstructStubInvoke().ToInt(); } bool IsNone() const { return id_ == kNoneId; } bool operator==(const BailoutId& other) const { return id_ == other.id_; } bool operator!=(const BailoutId& other) const { return id_ != other.id_; } friend size_t hash_value(BailoutId); V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId); private: friend class Builtins; static const int kNoneId = -1; // Using 0 could disguise errors. static const int kScriptContextId = 1; static const int kFunctionContextId = 2; static const int kFunctionEntryId = 3; // This AST id identifies the point after the declarations have been visited. // We need it to capture the environment effects of declarations that emit // code (function declarations). static const int kDeclarationsId = 4; // Every FunctionState starts with this id. static const int kFirstUsableId = 5; // Every compiled stub starts with this id. static const int kStubEntryId = 6; // Builtin continuations bailout ids start here. If you need to add a // non-builtin BailoutId, add it before this id so that this Id has the // highest number. static const int kFirstBuiltinContinuationId = 7; int id_; }; // ---------------------------------------------------------------------------- // I/O support. // Our version of printf(). V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...); void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...); // Prepends the current process ID to the output. void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...); // Prepends the current process ID and given isolate pointer to the output. void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...); // Safe formatting print. Ensures that str is always null-terminated. // Returns the number of chars written, or -1 if output was truncated. int PRINTF_FORMAT(2, 3) SNPrintF(Vector str, const char* format, ...); V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0) VSNPrintF(Vector str, const char* format, va_list args); void StrNCpy(Vector dest, const char* src, size_t n); // Our version of fflush. void Flush(FILE* out); inline void Flush() { Flush(stdout); } // Read a line of characters after printing the prompt to stdout. The resulting // char* needs to be disposed off with DeleteArray by the caller. char* ReadLine(const char* prompt); // Read and return the raw bytes in a file. the size of the buffer is returned // in size. // The returned buffer must be freed by the caller. byte* ReadBytes(const char* filename, int* size, bool verbose = true); // Append size chars from str to the file given by filename. // The file is overwritten. Returns the number of chars written. int AppendChars(const char* filename, const char* str, int size, bool verbose = true); // Write size chars from str to the file given by filename. // The file is overwritten. Returns the number of chars written. int WriteChars(const char* filename, const char* str, int size, bool verbose = true); // Write size bytes to the file given by filename. // The file is overwritten. Returns the number of bytes written. int WriteBytes(const char* filename, const byte* bytes, int size, bool verbose = true); // Write the C code // const char* = ""; // const int _len = ; // to the file given by filename. Only the first len chars are written. int WriteAsCFile(const char* filename, const char* varname, const char* str, int size, bool verbose = true); // ---------------------------------------------------------------------------- // Memory // Copies words from |src| to |dst|. The data spans must not overlap. template inline void CopyWords(T* dst, const T* src, size_t num_words) { STATIC_ASSERT(sizeof(T) == kPointerSize); DCHECK(Min(dst, const_cast(src)) + num_words <= Max(dst, const_cast(src))); DCHECK_GT(num_words, 0); // Use block copying MemCopy if the segment we're copying is // enough to justify the extra call/setup overhead. static const size_t kBlockCopyLimit = 16; if (num_words < kBlockCopyLimit) { do { num_words--; *dst++ = *src++; } while (num_words > 0); } else { MemCopy(dst, src, num_words * kPointerSize); } } // Copies words from |src| to |dst|. No restrictions. template inline void MoveWords(T* dst, const T* src, size_t num_words) { STATIC_ASSERT(sizeof(T) == kPointerSize); DCHECK_GT(num_words, 0); // Use block copying MemCopy if the segment we're copying is // enough to justify the extra call/setup overhead. static const size_t kBlockCopyLimit = 16; if (num_words < kBlockCopyLimit && ((dst < src) || (dst >= (src + num_words * kPointerSize)))) { T* end = dst + num_words; do { num_words--; *dst++ = *src++; } while (num_words > 0); } else { MemMove(dst, src, num_words * kPointerSize); } } // Copies data from |src| to |dst|. The data spans must not overlap. template inline void CopyBytes(T* dst, const T* src, size_t num_bytes) { STATIC_ASSERT(sizeof(T) == 1); DCHECK(Min(dst, const_cast(src)) + num_bytes <= Max(dst, const_cast(src))); if (num_bytes == 0) return; // Use block copying MemCopy if the segment we're copying is // enough to justify the extra call/setup overhead. static const int kBlockCopyLimit = kMinComplexMemCopy; if (num_bytes < static_cast(kBlockCopyLimit)) { do { num_bytes--; *dst++ = *src++; } while (num_bytes > 0); } else { MemCopy(dst, src, num_bytes); } } template inline void MemsetPointer(T** dest, U* value, int counter) { #ifdef DEBUG T* a = nullptr; U* b = nullptr; a = b; // Fake assignment to check assignability. USE(a); #endif // DEBUG #if V8_HOST_ARCH_IA32 #define STOS "stosl" #elif V8_HOST_ARCH_X64 #if V8_HOST_ARCH_32_BIT #define STOS "addr32 stosl" #else #define STOS "stosq" #endif #endif #if defined(MEMORY_SANITIZER) // MemorySanitizer does not understand inline assembly. #undef STOS #endif #if defined(__GNUC__) && defined(STOS) asm volatile( "cld;" "rep ; " STOS : "+&c" (counter), "+&D" (dest) : "a" (value) : "memory", "cc"); #else for (int i = 0; i < counter; i++) { dest[i] = value; } #endif #undef STOS } // Simple support to read a file into a 0-terminated C-string. // The returned buffer must be freed by the caller. // On return, *exits tells whether the file existed. V8_EXPORT_PRIVATE Vector ReadFile(const char* filename, bool* exists, bool verbose = true); Vector ReadFile(FILE* file, bool* exists, bool verbose = true); template INLINE(static void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, size_t chars)); #if defined(V8_HOST_ARCH_ARM) INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, size_t chars)); INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars)); #elif defined(V8_HOST_ARCH_MIPS) INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars)); #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390) INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars)); INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars)); #endif // Copy from 8bit/16bit chars to 8bit/16bit chars. template INLINE(void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars)); template void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars) { DCHECK_LE(sizeof(sourcechar), 2); DCHECK_LE(sizeof(sinkchar), 2); if (sizeof(sinkchar) == 1) { if (sizeof(sourcechar) == 1) { CopyCharsUnsigned(reinterpret_cast(dest), reinterpret_cast(src), chars); } else { CopyCharsUnsigned(reinterpret_cast(dest), reinterpret_cast(src), chars); } } else { if (sizeof(sourcechar) == 1) { CopyCharsUnsigned(reinterpret_cast(dest), reinterpret_cast(src), chars); } else { CopyCharsUnsigned(reinterpret_cast(dest), reinterpret_cast(src), chars); } } } template void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, size_t chars) { sinkchar* limit = dest + chars; if ((sizeof(*dest) == sizeof(*src)) && (chars >= static_cast(kMinComplexMemCopy / sizeof(*dest)))) { MemCopy(dest, src, chars * sizeof(*dest)); } else { while (dest < limit) *dest++ = static_cast(*src++); } } #if defined(V8_HOST_ARCH_ARM) void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { switch (static_cast(chars)) { case 0: break; case 1: *dest = *src; break; case 2: memcpy(dest, src, 2); break; case 3: memcpy(dest, src, 3); break; case 4: memcpy(dest, src, 4); break; case 5: memcpy(dest, src, 5); break; case 6: memcpy(dest, src, 6); break; case 7: memcpy(dest, src, 7); break; case 8: memcpy(dest, src, 8); break; case 9: memcpy(dest, src, 9); break; case 10: memcpy(dest, src, 10); break; case 11: memcpy(dest, src, 11); break; case 12: memcpy(dest, src, 12); break; case 13: memcpy(dest, src, 13); break; case 14: memcpy(dest, src, 14); break; case 15: memcpy(dest, src, 15); break; default: MemCopy(dest, src, chars); break; } } void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, size_t chars) { if (chars >= static_cast(kMinComplexConvertMemCopy)) { MemCopyUint16Uint8(dest, src, chars); } else { MemCopyUint16Uint8Wrapper(dest, src, chars); } } void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { switch (static_cast(chars)) { case 0: break; case 1: *dest = *src; break; case 2: memcpy(dest, src, 4); break; case 3: memcpy(dest, src, 6); break; case 4: memcpy(dest, src, 8); break; case 5: memcpy(dest, src, 10); break; case 6: memcpy(dest, src, 12); break; case 7: memcpy(dest, src, 14); break; default: MemCopy(dest, src, chars * sizeof(*dest)); break; } } #elif defined(V8_HOST_ARCH_MIPS) void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { if (chars < kMinComplexMemCopy) { memcpy(dest, src, chars); } else { MemCopy(dest, src, chars); } } void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { if (chars < kMinComplexMemCopy) { memcpy(dest, src, chars * sizeof(*dest)); } else { MemCopy(dest, src, chars * sizeof(*dest)); } } #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390) #define CASE(n) \ case n: \ memcpy(dest, src, n); \ break void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) { switch (static_cast(chars)) { case 0: break; case 1: *dest = *src; break; CASE(2); CASE(3); CASE(4); CASE(5); CASE(6); CASE(7); CASE(8); CASE(9); CASE(10); CASE(11); CASE(12); CASE(13); CASE(14); CASE(15); CASE(16); CASE(17); CASE(18); CASE(19); CASE(20); CASE(21); CASE(22); CASE(23); CASE(24); CASE(25); CASE(26); CASE(27); CASE(28); CASE(29); CASE(30); CASE(31); CASE(32); CASE(33); CASE(34); CASE(35); CASE(36); CASE(37); CASE(38); CASE(39); CASE(40); CASE(41); CASE(42); CASE(43); CASE(44); CASE(45); CASE(46); CASE(47); CASE(48); CASE(49); CASE(50); CASE(51); CASE(52); CASE(53); CASE(54); CASE(55); CASE(56); CASE(57); CASE(58); CASE(59); CASE(60); CASE(61); CASE(62); CASE(63); CASE(64); default: memcpy(dest, src, chars); break; } } #undef CASE #define CASE(n) \ case n: \ memcpy(dest, src, n * 2); \ break void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) { switch (static_cast(chars)) { case 0: break; case 1: *dest = *src; break; CASE(2); CASE(3); CASE(4); CASE(5); CASE(6); CASE(7); CASE(8); CASE(9); CASE(10); CASE(11); CASE(12); CASE(13); CASE(14); CASE(15); CASE(16); CASE(17); CASE(18); CASE(19); CASE(20); CASE(21); CASE(22); CASE(23); CASE(24); CASE(25); CASE(26); CASE(27); CASE(28); CASE(29); CASE(30); CASE(31); CASE(32); default: memcpy(dest, src, chars * 2); break; } } #undef CASE #endif class StringBuilder : public SimpleStringBuilder { public: explicit StringBuilder(int size) : SimpleStringBuilder(size) { } StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) { } // Add formatted contents to the builder just like printf(). void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...); // Add formatted contents like printf based on a va_list. void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list); private: DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); }; bool DoubleToBoolean(double d); template bool StringToArrayIndex(Stream* stream, uint32_t* index); // Returns current value of top of the stack. Works correctly with ASAN. DISABLE_ASAN inline uintptr_t GetCurrentStackPosition() { // Takes the address of the limit variable in order to find out where // the top of stack is right now. uintptr_t limit = reinterpret_cast(&limit); return limit; } template static inline V ReadUnalignedValue(const void* p) { ASSERT_TRIVIALLY_COPYABLE(V); #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) return *reinterpret_cast(p); #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM V r; memmove(&r, p, sizeof(V)); return r; #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM } template static inline void WriteUnalignedValue(void* p, V value) { ASSERT_TRIVIALLY_COPYABLE(V); #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) *(reinterpret_cast(p)) = value; #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM memmove(p, &value, sizeof(V)); #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM } static inline double ReadFloatValue(const void* p) { return ReadUnalignedValue(p); } static inline double ReadDoubleValue(const void* p) { return ReadUnalignedValue(p); } static inline void WriteDoubleValue(void* p, double value) { WriteUnalignedValue(p, value); } static inline uint16_t ReadUnalignedUInt16(const void* p) { return ReadUnalignedValue(p); } static inline void WriteUnalignedUInt16(void* p, uint16_t value) { WriteUnalignedValue(p, value); } static inline uint32_t ReadUnalignedUInt32(const void* p) { return ReadUnalignedValue(p); } static inline void WriteUnalignedUInt32(void* p, uint32_t value) { WriteUnalignedValue(p, value); } template static inline V ReadLittleEndianValue(const void* p) { #if defined(V8_TARGET_LITTLE_ENDIAN) return ReadUnalignedValue(p); #elif defined(V8_TARGET_BIG_ENDIAN) V ret = 0; const byte* src = reinterpret_cast(p); byte* dst = reinterpret_cast(&ret); for (size_t i = 0; i < sizeof(V); i++) { dst[i] = src[sizeof(V) - i - 1]; } return ret; #endif // V8_TARGET_LITTLE_ENDIAN } template static inline void WriteLittleEndianValue(void* p, V value) { #if defined(V8_TARGET_LITTLE_ENDIAN) WriteUnalignedValue(p, value); #elif defined(V8_TARGET_BIG_ENDIAN) byte* src = reinterpret_cast(&value); byte* dst = reinterpret_cast(p); for (size_t i = 0; i < sizeof(V); i++) { dst[i] = src[sizeof(V) - i - 1]; } #endif // V8_TARGET_LITTLE_ENDIAN } // Represents a linked list that threads through the nodes in the linked list. // Entries in the list are pointers to nodes. The nodes need to have a T** // next() method that returns the location where the next value is stored. template class ThreadedList final { public: ThreadedList() : head_(nullptr), tail_(&head_) {} void Add(T* v) { DCHECK_NULL(*tail_); DCHECK_NULL(*v->next()); *tail_ = v; tail_ = v->next(); } void Clear() { head_ = nullptr; tail_ = &head_; } class Iterator final { public: Iterator& operator++() { entry_ = (*entry_)->next(); return *this; } bool operator!=(const Iterator& other) { return entry_ != other.entry_; } T* operator*() { return *entry_; } T* operator->() { return *entry_; } Iterator& operator=(T* entry) { T* next = *(*entry_)->next(); *entry->next() = next; *entry_ = entry; return *this; } private: explicit Iterator(T** entry) : entry_(entry) {} T** entry_; friend class ThreadedList; }; class ConstIterator final { public: ConstIterator& operator++() { entry_ = (*entry_)->next(); return *this; } bool operator!=(const ConstIterator& other) { return entry_ != other.entry_; } const T* operator*() const { return *entry_; } private: explicit ConstIterator(T* const* entry) : entry_(entry) {} T* const* entry_; friend class ThreadedList; }; Iterator begin() { return Iterator(&head_); } Iterator end() { return Iterator(tail_); } ConstIterator begin() const { return ConstIterator(&head_); } ConstIterator end() const { return ConstIterator(tail_); } void Rewind(Iterator reset_point) { tail_ = reset_point.entry_; *tail_ = nullptr; } void MoveTail(ThreadedList* parent, Iterator location) { if (parent->end() != location) { DCHECK_NULL(*tail_); *tail_ = *location; tail_ = parent->tail_; parent->Rewind(location); } } bool is_empty() const { return head_ == nullptr; } // Slow. For testing purposes. int LengthForTest() { int result = 0; for (Iterator t = begin(); t != end(); ++t) ++result; return result; } T* AtForTest(int i) { Iterator t = begin(); while (i-- > 0) ++t; return *t; } private: T* head_; T** tail_; DISALLOW_COPY_AND_ASSIGN(ThreadedList); }; // Can be used to create a threaded list of |T|. template class ThreadedListZoneEntry final : public ZoneObject { public: explicit ThreadedListZoneEntry(T value) : value_(value), next_(nullptr) {} T value() { return value_; } ThreadedListZoneEntry** next() { return &next_; } private: T value_; ThreadedListZoneEntry* next_; DISALLOW_COPY_AND_ASSIGN(ThreadedListZoneEntry); }; } // namespace internal } // namespace v8 #endif // V8_UTILS_H_