// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_GLOBALS_H_ #define V8_GLOBALS_H_ #include #include #include #include #include "include/v8.h" #include "src/base/build_config.h" #include "src/base/flags.h" #include "src/base/logging.h" #include "src/base/macros.h" #ifdef V8_OS_WIN // Setup for Windows shared library export. #ifdef BUILDING_V8_SHARED #define V8_EXPORT_PRIVATE __declspec(dllexport) #elif USING_V8_SHARED #define V8_EXPORT_PRIVATE __declspec(dllimport) #else #define V8_EXPORT_PRIVATE #endif // BUILDING_V8_SHARED #else // V8_OS_WIN // Setup for Linux shared library export. #if V8_HAS_ATTRIBUTE_VISIBILITY #ifdef BUILDING_V8_SHARED #define V8_EXPORT_PRIVATE __attribute__((visibility("default"))) #else #define V8_EXPORT_PRIVATE #endif #else #define V8_EXPORT_PRIVATE #endif #endif // V8_OS_WIN #define V8_INFINITY std::numeric_limits::infinity() namespace v8 { namespace base { class Mutex; class RecursiveMutex; } namespace internal { // Determine whether we are running in a simulated environment. // Setting USE_SIMULATOR explicitly from the build script will force // the use of a simulated environment. #if !defined(USE_SIMULATOR) #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390) #define USE_SIMULATOR 1 #endif #endif // Determine whether the architecture uses an embedded constant pool // (contiguous constant pool embedded in code object). #if V8_TARGET_ARCH_PPC #define V8_EMBEDDED_CONSTANT_POOL 1 #else #define V8_EMBEDDED_CONSTANT_POOL 0 #endif #ifdef V8_TARGET_ARCH_ARM // Set stack limit lower for ARM than for other architectures because // stack allocating MacroAssembler takes 120K bytes. // See issue crbug.com/405338 #define V8_DEFAULT_STACK_SIZE_KB 864 #else // Slightly less than 1MB, since Windows' default stack size for // the main execution thread is 1MB for both 32 and 64-bit. #define V8_DEFAULT_STACK_SIZE_KB 984 #endif // Minimum stack size in KB required by compilers. constexpr int kStackSpaceRequiredForCompilation = 40; // Determine whether double field unboxing feature is enabled. #if V8_TARGET_ARCH_64_BIT #define V8_DOUBLE_FIELDS_UNBOXING 1 #else #define V8_DOUBLE_FIELDS_UNBOXING 0 #endif // Some types of tracing require the SFI to store a unique ID. #if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION) #define V8_SFI_HAS_UNIQUE_ID 1 #endif // Superclass for classes only using static method functions. // The subclass of AllStatic cannot be instantiated at all. class AllStatic { #ifdef DEBUG public: AllStatic() = delete; #endif }; // DEPRECATED // TODO(leszeks): Delete this during a quiet period #define BASE_EMBEDDED typedef uint8_t byte; typedef uintptr_t Address; static const Address kNullAddress = 0; // ----------------------------------------------------------------------------- // Constants constexpr int KB = 1024; constexpr int MB = KB * KB; constexpr int GB = KB * KB * KB; constexpr int kMaxInt = 0x7FFFFFFF; constexpr int kMinInt = -kMaxInt - 1; constexpr int kMaxInt8 = (1 << 7) - 1; constexpr int kMinInt8 = -(1 << 7); constexpr int kMaxUInt8 = (1 << 8) - 1; constexpr int kMinUInt8 = 0; constexpr int kMaxInt16 = (1 << 15) - 1; constexpr int kMinInt16 = -(1 << 15); constexpr int kMaxUInt16 = (1 << 16) - 1; constexpr int kMinUInt16 = 0; constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu; constexpr int kMinUInt32 = 0; constexpr int kUInt8Size = sizeof(uint8_t); constexpr int kCharSize = sizeof(char); constexpr int kShortSize = sizeof(short); // NOLINT constexpr int kUInt16Size = sizeof(uint16_t); constexpr int kIntSize = sizeof(int); constexpr int kInt32Size = sizeof(int32_t); constexpr int kInt64Size = sizeof(int64_t); constexpr int kUInt32Size = sizeof(uint32_t); constexpr int kSizetSize = sizeof(size_t); constexpr int kFloatSize = sizeof(float); constexpr int kDoubleSize = sizeof(double); constexpr int kIntptrSize = sizeof(intptr_t); constexpr int kUIntptrSize = sizeof(uintptr_t); constexpr int kPointerSize = sizeof(void*); constexpr int kPointerHexDigits = kPointerSize == 4 ? 8 : 12; #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT constexpr int kRegisterSize = kPointerSize + kPointerSize; #else constexpr int kRegisterSize = kPointerSize; #endif constexpr int kPCOnStackSize = kRegisterSize; constexpr int kFPOnStackSize = kRegisterSize; #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 constexpr int kElidedFrameSlots = kPCOnStackSize / kPointerSize; #else constexpr int kElidedFrameSlots = 0; #endif constexpr int kDoubleSizeLog2 = 3; #if V8_TARGET_ARCH_ARM64 // ARM64 only supports direct calls within a 128 MB range. constexpr size_t kMaxWasmCodeMemory = 128 * MB; #else constexpr size_t kMaxWasmCodeMemory = 256 * MB; #endif #if V8_HOST_ARCH_64_BIT constexpr int kPointerSizeLog2 = 3; constexpr intptr_t kIntptrSignBit = static_cast(uintptr_t{0x8000000000000000}); constexpr uintptr_t kUintptrAllBitsSet = uintptr_t{0xFFFFFFFFFFFFFFFF}; constexpr bool kRequiresCodeRange = true; #if V8_TARGET_ARCH_MIPS64 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit // encoded immediate, the addresses have to be in range of 256MB aligned // region. Used only for large object space. constexpr size_t kMaximalCodeRangeSize = 256 * MB; constexpr size_t kCodeRangeAreaAlignment = 256 * MB; #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX constexpr size_t kMaximalCodeRangeSize = 512 * MB; constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux #elif V8_TARGET_ARCH_ARM64 constexpr size_t kMaximalCodeRangeSize = 128 * MB; constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. #else constexpr size_t kMaximalCodeRangeSize = 128 * MB; constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. #endif #if V8_OS_WIN constexpr size_t kMinimumCodeRangeSize = 4 * MB; constexpr size_t kReservedCodeRangePages = 1; #else constexpr size_t kMinimumCodeRangeSize = 3 * MB; constexpr size_t kReservedCodeRangePages = 0; #endif #else constexpr int kPointerSizeLog2 = 2; constexpr intptr_t kIntptrSignBit = 0x80000000; constexpr uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu; #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT // x32 port also requires code range. constexpr bool kRequiresCodeRange = true; constexpr size_t kMaximalCodeRangeSize = 256 * MB; constexpr size_t kMinimumCodeRangeSize = 3 * MB; constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX constexpr bool kRequiresCodeRange = false; constexpr size_t kMaximalCodeRangeSize = 0 * MB; constexpr size_t kMinimumCodeRangeSize = 0 * MB; constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux #else constexpr bool kRequiresCodeRange = false; constexpr size_t kMaximalCodeRangeSize = 0 * MB; constexpr size_t kMinimumCodeRangeSize = 0 * MB; constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. #endif constexpr size_t kReservedCodeRangePages = 0; #endif // Trigger an incremental GCs once the external memory reaches this limit. constexpr int kExternalAllocationSoftLimit = 64 * MB; // Maximum object size that gets allocated into regular pages. Objects larger // than that size are allocated in large object space and are never moved in // memory. This also applies to new space allocation, since objects are never // migrated from new space to large object space. Takes double alignment into // account. // // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack). constexpr int kMaxRegularHeapObjectSize = 507136; STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2)); constexpr int kBitsPerByte = 8; constexpr int kBitsPerByteLog2 = 3; constexpr int kBitsPerPointer = kPointerSize * kBitsPerByte; constexpr int kBitsPerInt = kIntSize * kBitsPerByte; // IEEE 754 single precision floating point number bit layout. constexpr uint32_t kBinary32SignMask = 0x80000000u; constexpr uint32_t kBinary32ExponentMask = 0x7f800000u; constexpr uint32_t kBinary32MantissaMask = 0x007fffffu; constexpr int kBinary32ExponentBias = 127; constexpr int kBinary32MaxExponent = 0xFE; constexpr int kBinary32MinExponent = 0x01; constexpr int kBinary32MantissaBits = 23; constexpr int kBinary32ExponentShift = 23; // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no // other bits set. constexpr uint64_t kQuietNaNMask = static_cast(0xfff) << 51; // Latin1/UTF-16 constants // Code-point values in Unicode 4.0 are 21 bits wide. // Code units in UTF-16 are 16 bits wide. typedef uint16_t uc16; typedef int32_t uc32; constexpr int kOneByteSize = kCharSize; constexpr int kUC16Size = sizeof(uc16); // NOLINT // 128 bit SIMD value size. constexpr int kSimd128Size = 16; // FUNCTION_ADDR(f) gets the address of a C function f. #define FUNCTION_ADDR(f) (reinterpret_cast(f)) // FUNCTION_CAST(addr) casts an address into a function // of type F. Used to invoke generated code from within C. template F FUNCTION_CAST(byte* addr) { return reinterpret_cast(reinterpret_cast
(addr)); } template F FUNCTION_CAST(Address addr) { return reinterpret_cast(addr); } // Determine whether the architecture uses function descriptors // which provide a level of indirection between the function pointer // and the function entrypoint. #if V8_HOST_ARCH_PPC && \ (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN)) #define USES_FUNCTION_DESCRIPTORS 1 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \ (reinterpret_cast( \ &(reinterpret_cast(f)[0]))) #else #define USES_FUNCTION_DESCRIPTORS 0 #endif // ----------------------------------------------------------------------------- // Declarations for use in both the preparser and the rest of V8. // The Strict Mode (ECMA-262 5th edition, 4.2.2). enum class LanguageMode : bool { kSloppy, kStrict }; static const size_t LanguageModeSize = 2; inline size_t hash_value(LanguageMode mode) { return static_cast(mode); } inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) { switch (mode) { case LanguageMode::kSloppy: return os << "sloppy"; case LanguageMode::kStrict: return os << "strict"; } UNREACHABLE(); } inline bool is_sloppy(LanguageMode language_mode) { return language_mode == LanguageMode::kSloppy; } inline bool is_strict(LanguageMode language_mode) { return language_mode != LanguageMode::kSloppy; } inline bool is_valid_language_mode(int language_mode) { return language_mode == static_cast(LanguageMode::kSloppy) || language_mode == static_cast(LanguageMode::kStrict); } inline LanguageMode construct_language_mode(bool strict_bit) { return static_cast(strict_bit); } // Return kStrict if either of the language modes is kStrict, or kSloppy // otherwise. inline LanguageMode stricter_language_mode(LanguageMode mode1, LanguageMode mode2) { STATIC_ASSERT(LanguageModeSize == 2); return static_cast(static_cast(mode1) | static_cast(mode2)); } enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // Enums used by CEntry. enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs }; enum ArgvMode { kArgvOnStack, kArgvInRegister }; // This constant is used as an undefined value when passing source positions. constexpr int kNoSourcePosition = -1; // This constant is used to indicate missing deoptimization information. constexpr int kNoDeoptimizationId = -1; // Deoptimize bailout kind. enum class DeoptimizeKind : uint8_t { kEager, kSoft, kLazy }; inline size_t hash_value(DeoptimizeKind kind) { return static_cast(kind); } inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) { switch (kind) { case DeoptimizeKind::kEager: return os << "Eager"; case DeoptimizeKind::kSoft: return os << "Soft"; case DeoptimizeKind::kLazy: return os << "Lazy"; } UNREACHABLE(); } // Indicates whether the lookup is related to sloppy-mode block-scoped // function hoisting, and is a synthetic assignment for that. enum class LookupHoistingMode { kNormal, kLegacySloppy }; inline std::ostream& operator<<(std::ostream& os, const LookupHoistingMode& mode) { switch (mode) { case LookupHoistingMode::kNormal: return os << "normal hoisting"; case LookupHoistingMode::kLegacySloppy: return os << "legacy sloppy hoisting"; } UNREACHABLE(); } static_assert(kSmiValueSize <= 32, "Unsupported Smi tagging scheme"); // Smi sign bit position must be 32-bit aligned so we can use sign extension // instructions on 64-bit architectures without additional shifts. static_assert((kSmiValueSize + kSmiShiftSize + kSmiTagSize) % 32 == 0, "Unsupported Smi tagging scheme"); constexpr bool kIsSmiValueInUpper32Bits = (kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 64; constexpr bool kIsSmiValueInLower32Bits = (kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 32; static_assert(!SmiValuesAre32Bits() == SmiValuesAre31Bits(), "Unsupported Smi tagging scheme"); static_assert(SmiValuesAre32Bits() == kIsSmiValueInUpper32Bits, "Unsupported Smi tagging scheme"); static_assert(SmiValuesAre31Bits() == kIsSmiValueInLower32Bits, "Unsupported Smi tagging scheme"); // Mask for the sign bit in a smi. constexpr intptr_t kSmiSignMask = static_cast( uintptr_t{1} << (kSmiValueSize + kSmiShiftSize + kSmiTagSize - 1)); constexpr int kObjectAlignmentBits = kPointerSizeLog2; constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1; // Desired alignment for pointers. constexpr intptr_t kPointerAlignment = (1 << kPointerSizeLog2); constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1; // Desired alignment for double values. constexpr intptr_t kDoubleAlignment = 8; constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; // Desired alignment for generated code is 32 bytes (to improve cache line // utilization). constexpr int kCodeAlignmentBits = 5; constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits; constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1; const intptr_t kWeakHeapObjectMask = 1 << 1; const intptr_t kClearedWeakHeapObject = 3; // Zap-value: The value used for zapping dead objects. // Should be a recognizable hex value tagged as a failure. #ifdef V8_HOST_ARCH_64_BIT constexpr uint64_t kClearedFreeMemoryValue = 0; constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef}; constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf}; constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf}; constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf}; constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb}; constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef}; constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf; #else constexpr uint32_t kClearedFreeMemoryValue = 0; constexpr uint32_t kZapValue = 0xdeadbeef; constexpr uint32_t kHandleZapValue = 0xbaddeaf; constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf; constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf; constexpr uint32_t kSlotsZapValue = 0xbeefdeef; constexpr uint32_t kDebugZapValue = 0xbadbaddb; constexpr uint32_t kFreeListZapValue = 0xfeed1eaf; #endif constexpr int kCodeZapValue = 0xbadc0de; constexpr uint32_t kPhantomReferenceZap = 0xca11bac; // On Intel architecture, cache line size is 64 bytes. // On ARM it may be less (32 bytes), but as far this constant is // used for aligning data, it doesn't hurt to align on a greater value. #define PROCESSOR_CACHE_LINE_SIZE 64 // Constants relevant to double precision floating point numbers. // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes class AccessorInfo; class Arguments; class Assembler; class Code; class CodeSpace; class CodeStub; class Context; class Debug; class DebugInfo; class Descriptor; class DescriptorArray; class TransitionArray; class ExternalReference; class FixedArray; class FreeStoreAllocationPolicy; class FunctionTemplateInfo; class MemoryChunk; class NumberDictionary; class SimpleNumberDictionary; class NameDictionary; class GlobalDictionary; template class MaybeHandle; template class Handle; class Heap; class HeapObject; class HeapObjectReference; class IC; class InterceptorInfo; class Isolate; class JSReceiver; class JSArray; class JSFunction; class JSObject; class LargeObjectSpace; class MacroAssembler; class Map; class MapSpace; class MarkCompactCollector; class MaybeObject; class NewSpace; class Object; class OldSpace; class ParameterCount; class ReadOnlySpace; class Foreign; class Scope; class DeclarationScope; class ModuleScope; class ScopeInfo; class Script; class Smi; template class SplayTree; class String; class Symbol; class Name; class Struct; class FeedbackVector; class Variable; class RelocInfo; class MessageLocation; typedef bool (*WeakSlotCallback)(Object** pointer); typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer); // ----------------------------------------------------------------------------- // Miscellaneous // NOTE: SpaceIterator depends on AllocationSpace enumeration values being // consecutive. enum AllocationSpace { // TODO(v8:7464): Actually map this space's memory as read-only. RO_SPACE, // Immortal, immovable and immutable objects, NEW_SPACE, // Semispaces collected with copying collector. OLD_SPACE, // May contain pointers to new space. CODE_SPACE, // No pointers to new space, marked executable. MAP_SPACE, // Only and all map objects. LO_SPACE, // Promoted large objects. FIRST_SPACE = RO_SPACE, LAST_SPACE = LO_SPACE, FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE, LAST_GROWABLE_PAGED_SPACE = MAP_SPACE }; constexpr int kSpaceTagSize = 4; STATIC_ASSERT(FIRST_SPACE == 0); enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned }; enum class AccessMode { ATOMIC, NON_ATOMIC }; // Supported write barrier modes. enum WriteBarrierKind : uint8_t { kNoWriteBarrier, kMapWriteBarrier, kPointerWriteBarrier, kFullWriteBarrier }; inline size_t hash_value(WriteBarrierKind kind) { return static_cast(kind); } inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) { switch (kind) { case kNoWriteBarrier: return os << "NoWriteBarrier"; case kMapWriteBarrier: return os << "MapWriteBarrier"; case kPointerWriteBarrier: return os << "PointerWriteBarrier"; case kFullWriteBarrier: return os << "FullWriteBarrier"; } UNREACHABLE(); } // A flag that indicates whether objects should be pretenured when // allocated (allocated directly into either the old generation or read-only // space), or not (allocated in the young generation if the object size and type // allows). enum PretenureFlag { NOT_TENURED, TENURED, TENURED_READ_ONLY }; inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) { switch (flag) { case NOT_TENURED: return os << "NotTenured"; case TENURED: return os << "Tenured"; case TENURED_READ_ONLY: return os << "TenuredReadOnly"; } UNREACHABLE(); } enum MinimumCapacity { USE_DEFAULT_MINIMUM_CAPACITY, USE_CUSTOM_MINIMUM_CAPACITY }; enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR }; enum Executability { NOT_EXECUTABLE, EXECUTABLE }; enum Movability { kMovable, kImmovable }; enum VisitMode { VISIT_ALL, VISIT_ALL_IN_MINOR_MC_MARK, VISIT_ALL_IN_MINOR_MC_UPDATE, VISIT_ALL_IN_SCAVENGE, VISIT_ALL_IN_SWEEP_NEWSPACE, VISIT_ONLY_STRONG, VISIT_FOR_SERIALIZATION, }; // Flag indicating whether code is built into the VM (one of the natives files). enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE, INSPECTOR_CODE }; // ParseRestriction is used to restrict the set of valid statements in a // unit of compilation. Restriction violations cause a syntax error. enum ParseRestriction { NO_PARSE_RESTRICTION, // All expressions are allowed. ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression. }; // A CodeDesc describes a buffer holding instructions and relocation // information. The instructions start at the beginning of the buffer // and grow forward, the relocation information starts at the end of // the buffer and grows backward. A constant pool may exist at the // end of the instructions. // // |<--------------- buffer_size ----------------------------------->| // |<------------- instr_size ---------->| |<-- reloc_size -->| // | |<- const_pool_size ->| | // +=====================================+========+==================+ // | instructions | data | free | reloc info | // +=====================================+========+==================+ // ^ // | // buffer struct CodeDesc { byte* buffer; int buffer_size; int instr_size; int reloc_size; int constant_pool_size; byte* unwinding_info; int unwinding_info_size; Assembler* origin; }; // Callback function used for checking constraints when copying/relocating // objects. Returns true if an object can be copied/relocated from its // old_addr to a new_addr. typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr); // Callback function on inline caches, used for iterating over inline caches // in compiled code. typedef void (*InlineCacheCallback)(Code* code, Address ic); // State for inline cache call sites. Aliased as IC::State. enum InlineCacheState { // Has never been executed. UNINITIALIZED, // Has been executed but monomorhic state has been delayed. PREMONOMORPHIC, // Has been executed and only one receiver type has been seen. MONOMORPHIC, // Check failed due to prototype (or map deprecation). RECOMPUTE_HANDLER, // Multiple receiver types have been seen. POLYMORPHIC, // Many receiver types have been seen. MEGAMORPHIC, // A generic handler is installed and no extra typefeedback is recorded. GENERIC, }; enum WhereToStart { kStartAtReceiver, kStartAtPrototype }; enum ResultSentinel { kNotFound = -1, kUnsupported = -2 }; enum ShouldThrow { kThrowOnError, kDontThrow }; // The Store Buffer (GC). typedef enum { kStoreBufferFullEvent, kStoreBufferStartScanningPagesEvent, kStoreBufferScanningPageEvent } StoreBufferEvent; typedef void (*StoreBufferCallback)(Heap* heap, MemoryChunk* page, StoreBufferEvent event); // Union used for customized checking of the IEEE double types // inlined within v8 runtime, rather than going to the underlying // platform headers and libraries union IeeeDoubleLittleEndianArchType { double d; struct { unsigned int man_low :32; unsigned int man_high :20; unsigned int exp :11; unsigned int sign :1; } bits; }; union IeeeDoubleBigEndianArchType { double d; struct { unsigned int sign :1; unsigned int exp :11; unsigned int man_high :20; unsigned int man_low :32; } bits; }; #if V8_TARGET_LITTLE_ENDIAN typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType; constexpr int kIeeeDoubleMantissaWordOffset = 0; constexpr int kIeeeDoubleExponentWordOffset = 4; #else typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType; constexpr int kIeeeDoubleMantissaWordOffset = 4; constexpr int kIeeeDoubleExponentWordOffset = 0; #endif // ----------------------------------------------------------------------------- // Macros // Testers for test. #define HAS_SMI_TAG(value) \ ((reinterpret_cast(value) & ::i::kSmiTagMask) == ::i::kSmiTag) #define HAS_HEAP_OBJECT_TAG(value) \ (((reinterpret_cast(value) & ::i::kHeapObjectTagMask) == \ ::i::kHeapObjectTag)) // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer #define OBJECT_POINTER_ALIGN(value) \ (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask) // POINTER_SIZE_ALIGN returns the value aligned as a pointer. #define POINTER_SIZE_ALIGN(value) \ (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask) // CODE_POINTER_ALIGN returns the value aligned as a generated code segment. #define CODE_POINTER_ALIGN(value) \ (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask) // DOUBLE_POINTER_ALIGN returns the value algined for double pointers. #define DOUBLE_POINTER_ALIGN(value) \ (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask) // CPU feature flags. enum CpuFeature { // x86 SSE4_1, SSSE3, SSE3, SAHF, AVX, FMA3, BMI1, BMI2, LZCNT, POPCNT, ATOM, // ARM // - Standard configurations. The baseline is ARMv6+VFPv2. ARMv7, // ARMv7-A + VFPv3-D32 + NEON ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV ARMv8, // ARMv8-A (+ all of the above) // MIPS, MIPS64 FPU, FP64FPU, MIPSr1, MIPSr2, MIPSr6, MIPS_SIMD, // MSA instructions // PPC FPR_GPR_MOV, LWSYNC, ISELECT, VSX, MODULO, // S390 DISTINCT_OPS, GENERAL_INSTR_EXT, FLOATING_POINT_EXT, VECTOR_FACILITY, MISC_INSTR_EXT2, NUMBER_OF_CPU_FEATURES, // ARM feature aliases (based on the standard configurations above). VFPv3 = ARMv7, NEON = ARMv7, VFP32DREGS = ARMv7, SUDIV = ARMv7_SUDIV }; // Defines hints about receiver values based on structural knowledge. enum class ConvertReceiverMode : unsigned { kNullOrUndefined, // Guaranteed to be null or undefined. kNotNullOrUndefined, // Guaranteed to never be null or undefined. kAny // No specific knowledge about receiver. }; inline size_t hash_value(ConvertReceiverMode mode) { return bit_cast(mode); } inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) { switch (mode) { case ConvertReceiverMode::kNullOrUndefined: return os << "NULL_OR_UNDEFINED"; case ConvertReceiverMode::kNotNullOrUndefined: return os << "NOT_NULL_OR_UNDEFINED"; case ConvertReceiverMode::kAny: return os << "ANY"; } UNREACHABLE(); } // Valid hints for the abstract operation OrdinaryToPrimitive, // implemented according to ES6, section 7.1.1. enum class OrdinaryToPrimitiveHint { kNumber, kString }; // Valid hints for the abstract operation ToPrimitive, // implemented according to ES6, section 7.1.1. enum class ToPrimitiveHint { kDefault, kNumber, kString }; // Defines specifics about arguments object or rest parameter creation. enum class CreateArgumentsType : uint8_t { kMappedArguments, kUnmappedArguments, kRestParameter }; inline size_t hash_value(CreateArgumentsType type) { return bit_cast(type); } inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) { switch (type) { case CreateArgumentsType::kMappedArguments: return os << "MAPPED_ARGUMENTS"; case CreateArgumentsType::kUnmappedArguments: return os << "UNMAPPED_ARGUMENTS"; case CreateArgumentsType::kRestParameter: return os << "REST_PARAMETER"; } UNREACHABLE(); } enum ScopeType : uint8_t { EVAL_SCOPE, // The top-level scope for an eval source. FUNCTION_SCOPE, // The top-level scope for a function. MODULE_SCOPE, // The scope introduced by a module literal SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval. CATCH_SCOPE, // The scope introduced by catch. BLOCK_SCOPE, // The scope introduced by a new block. WITH_SCOPE // The scope introduced by with. }; inline std::ostream& operator<<(std::ostream& os, ScopeType type) { switch (type) { case ScopeType::EVAL_SCOPE: return os << "EVAL_SCOPE"; case ScopeType::FUNCTION_SCOPE: return os << "FUNCTION_SCOPE"; case ScopeType::MODULE_SCOPE: return os << "MODULE_SCOPE"; case ScopeType::SCRIPT_SCOPE: return os << "SCRIPT_SCOPE"; case ScopeType::CATCH_SCOPE: return os << "CATCH_SCOPE"; case ScopeType::BLOCK_SCOPE: return os << "BLOCK_SCOPE"; case ScopeType::WITH_SCOPE: return os << "WITH_SCOPE"; } UNREACHABLE(); } // AllocationSiteMode controls whether allocations are tracked by an allocation // site. enum AllocationSiteMode { DONT_TRACK_ALLOCATION_SITE, TRACK_ALLOCATION_SITE, LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE }; // The mips architecture prior to revision 5 has inverted encoding for sNaN. #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \ (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \ (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF; constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF; #else constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF; constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF; #endif constexpr uint64_t kHoleNanInt64 = (static_cast(kHoleNanUpper32) << 32) | kHoleNanLower32; // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER constexpr double kMaxSafeInteger = 9007199254740991.0; // 2^53-1 // The order of this enum has to be kept in sync with the predicates below. enum class VariableMode : uint8_t { // User declared variables: kLet, // declared via 'let' declarations (first lexical) kConst, // declared via 'const' declarations (last lexical) kVar, // declared via 'var', and 'function' declarations // Variables introduced by the compiler: kTemporary, // temporary variables (not user-visible), stack-allocated // unless the scope as a whole has forced context allocation kDynamic, // always require dynamic lookup (we don't know // the declaration) kDynamicGlobal, // requires dynamic lookup, but we know that the // variable is global unless it has been shadowed // by an eval-introduced variable kDynamicLocal // requires dynamic lookup, but we know that the // variable is local and where it is unless it // has been shadowed by an eval-introduced // variable }; // Printing support #ifdef DEBUG inline const char* VariableMode2String(VariableMode mode) { switch (mode) { case VariableMode::kVar: return "VAR"; case VariableMode::kLet: return "LET"; case VariableMode::kConst: return "CONST"; case VariableMode::kDynamic: return "DYNAMIC"; case VariableMode::kDynamicGlobal: return "DYNAMIC_GLOBAL"; case VariableMode::kDynamicLocal: return "DYNAMIC_LOCAL"; case VariableMode::kTemporary: return "TEMPORARY"; } UNREACHABLE(); } #endif enum VariableKind : uint8_t { NORMAL_VARIABLE, FUNCTION_VARIABLE, THIS_VARIABLE, SLOPPY_FUNCTION_NAME_VARIABLE }; inline bool IsDynamicVariableMode(VariableMode mode) { return mode >= VariableMode::kDynamic && mode <= VariableMode::kDynamicLocal; } inline bool IsDeclaredVariableMode(VariableMode mode) { STATIC_ASSERT(static_cast(VariableMode::kLet) == 0); // Implies that mode >= VariableMode::kLet. return mode <= VariableMode::kVar; } inline bool IsLexicalVariableMode(VariableMode mode) { STATIC_ASSERT(static_cast(VariableMode::kLet) == 0); // Implies that mode >= VariableMode::kLet. return mode <= VariableMode::kConst; } enum VariableLocation : uint8_t { // Before and during variable allocation, a variable whose location is // not yet determined. After allocation, a variable looked up as a // property on the global object (and possibly absent). name() is the // variable name, index() is invalid. UNALLOCATED, // A slot in the parameter section on the stack. index() is the // parameter index, counting left-to-right. The receiver is index -1; // the first parameter is index 0. PARAMETER, // A slot in the local section on the stack. index() is the variable // index in the stack frame, starting at 0. LOCAL, // An indexed slot in a heap context. index() is the variable index in // the context object on the heap, starting at 0. scope() is the // corresponding scope. CONTEXT, // A named slot in a heap context. name() is the variable name in the // context object on the heap, with lookup starting at the current // context. index() is invalid. LOOKUP, // A named slot in a module's export table. MODULE, kLastVariableLocation = MODULE }; // ES6 specifies declarative environment records with mutable and immutable // bindings that can be in two states: initialized and uninitialized. // When accessing a binding, it needs to be checked for initialization. // However in the following cases the binding is initialized immediately // after creation so the initialization check can always be skipped: // // 1. Var declared local variables. // var foo; // 2. A local variable introduced by a function declaration. // function foo() {} // 3. Parameters // function x(foo) {} // 4. Catch bound variables. // try {} catch (foo) {} // 6. Function name variables of named function expressions. // var x = function foo() {} // 7. Implicit binding of 'this'. // 8. Implicit binding of 'arguments' in functions. // // The following enum specifies a flag that indicates if the binding needs a // distinct initialization step (kNeedsInitialization) or if the binding is // immediately initialized upon creation (kCreatedInitialized). enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized }; enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned }; // Serialized in PreparseData, so numeric values should not be changed. enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 }; enum FunctionKind : uint8_t { kNormalFunction, kArrowFunction, kGeneratorFunction, kConciseMethod, kDerivedConstructor, kBaseConstructor, kGetterFunction, kSetterFunction, kAsyncFunction, kModule, kClassFieldsInitializerFunction, kDefaultBaseConstructor, kDefaultDerivedConstructor, kAsyncArrowFunction, kAsyncConciseMethod, kConciseGeneratorMethod, kAsyncConciseGeneratorMethod, kAsyncGeneratorFunction, kLastFunctionKind = kAsyncGeneratorFunction, }; inline bool IsArrowFunction(FunctionKind kind) { return kind == FunctionKind::kArrowFunction || kind == FunctionKind::kAsyncArrowFunction; } inline bool IsModule(FunctionKind kind) { return kind == FunctionKind::kModule; } inline bool IsAsyncGeneratorFunction(FunctionKind kind) { return kind == FunctionKind::kAsyncGeneratorFunction || kind == FunctionKind::kAsyncConciseGeneratorMethod; } inline bool IsGeneratorFunction(FunctionKind kind) { return kind == FunctionKind::kGeneratorFunction || kind == FunctionKind::kConciseGeneratorMethod || IsAsyncGeneratorFunction(kind); } inline bool IsAsyncFunction(FunctionKind kind) { return kind == FunctionKind::kAsyncFunction || kind == FunctionKind::kAsyncArrowFunction || kind == FunctionKind::kAsyncConciseMethod || IsAsyncGeneratorFunction(kind); } inline bool IsResumableFunction(FunctionKind kind) { return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind); } inline bool IsConciseMethod(FunctionKind kind) { return kind == FunctionKind::kConciseMethod || kind == FunctionKind::kConciseGeneratorMethod || kind == FunctionKind::kAsyncConciseMethod || kind == FunctionKind::kAsyncConciseGeneratorMethod || kind == FunctionKind::kClassFieldsInitializerFunction; } inline bool IsGetterFunction(FunctionKind kind) { return kind == FunctionKind::kGetterFunction; } inline bool IsSetterFunction(FunctionKind kind) { return kind == FunctionKind::kSetterFunction; } inline bool IsAccessorFunction(FunctionKind kind) { return kind == FunctionKind::kGetterFunction || kind == FunctionKind::kSetterFunction; } inline bool IsDefaultConstructor(FunctionKind kind) { return kind == FunctionKind::kDefaultBaseConstructor || kind == FunctionKind::kDefaultDerivedConstructor; } inline bool IsBaseConstructor(FunctionKind kind) { return kind == FunctionKind::kBaseConstructor || kind == FunctionKind::kDefaultBaseConstructor; } inline bool IsDerivedConstructor(FunctionKind kind) { return kind == FunctionKind::kDerivedConstructor || kind == FunctionKind::kDefaultDerivedConstructor; } inline bool IsClassConstructor(FunctionKind kind) { return IsBaseConstructor(kind) || IsDerivedConstructor(kind); } inline bool IsClassFieldsInitializerFunction(FunctionKind kind) { return kind == FunctionKind::kClassFieldsInitializerFunction; } inline bool IsConstructable(FunctionKind kind) { if (IsAccessorFunction(kind)) return false; if (IsConciseMethod(kind)) return false; if (IsArrowFunction(kind)) return false; if (IsGeneratorFunction(kind)) return false; if (IsAsyncFunction(kind)) return false; return true; } inline std::ostream& operator<<(std::ostream& os, FunctionKind kind) { switch (kind) { case FunctionKind::kNormalFunction: return os << "NormalFunction"; case FunctionKind::kArrowFunction: return os << "ArrowFunction"; case FunctionKind::kGeneratorFunction: return os << "GeneratorFunction"; case FunctionKind::kConciseMethod: return os << "ConciseMethod"; case FunctionKind::kDerivedConstructor: return os << "DerivedConstructor"; case FunctionKind::kBaseConstructor: return os << "BaseConstructor"; case FunctionKind::kGetterFunction: return os << "GetterFunction"; case FunctionKind::kSetterFunction: return os << "SetterFunction"; case FunctionKind::kAsyncFunction: return os << "AsyncFunction"; case FunctionKind::kModule: return os << "Module"; case FunctionKind::kClassFieldsInitializerFunction: return os << "ClassFieldsInitializerFunction"; case FunctionKind::kDefaultBaseConstructor: return os << "DefaultBaseConstructor"; case FunctionKind::kDefaultDerivedConstructor: return os << "DefaultDerivedConstructor"; case FunctionKind::kAsyncArrowFunction: return os << "AsyncArrowFunction"; case FunctionKind::kAsyncConciseMethod: return os << "AsyncConciseMethod"; case FunctionKind::kConciseGeneratorMethod: return os << "ConciseGeneratorMethod"; case FunctionKind::kAsyncConciseGeneratorMethod: return os << "AsyncConciseGeneratorMethod"; case FunctionKind::kAsyncGeneratorFunction: return os << "AsyncGeneratorFunction"; } UNREACHABLE(); } enum class InterpreterPushArgsMode : unsigned { kArrayFunction, kWithFinalSpread, kOther }; inline size_t hash_value(InterpreterPushArgsMode mode) { return bit_cast(mode); } inline std::ostream& operator<<(std::ostream& os, InterpreterPushArgsMode mode) { switch (mode) { case InterpreterPushArgsMode::kArrayFunction: return os << "ArrayFunction"; case InterpreterPushArgsMode::kWithFinalSpread: return os << "WithFinalSpread"; case InterpreterPushArgsMode::kOther: return os << "Other"; } UNREACHABLE(); } inline uint32_t ObjectHash(Address address) { // All objects are at least pointer aligned, so we can remove the trailing // zeros. return static_cast(address >> kPointerSizeLog2); } // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // // kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny // kString -> kAny // kBigInt -> kAny // // Technically we wouldn't need the separation between the kNumber and the // kNumberOrOddball values here, since for binary operations, we always // truncate oddballs to numbers. In practice though it causes TurboFan to // generate quite a lot of unused code though if we always handle numbers // and oddballs everywhere, although in 99% of the use sites they are only // used with numbers. class BinaryOperationFeedback { public: enum { kNone = 0x0, kSignedSmall = 0x1, kSignedSmallInputs = 0x3, kNumber = 0x7, kNumberOrOddball = 0xF, kString = 0x10, kBigInt = 0x20, kAny = 0x7F }; }; // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // // kSignedSmall -> kNumber -> kNumberOrOddball -> kAny // kInternalizedString -> kString -> kAny // kSymbol -> kAny // kBigInt -> kAny // kReceiver -> kAny // // This is distinct from BinaryOperationFeedback on purpose, because the // feedback that matters differs greatly as well as the way it is consumed. class CompareOperationFeedback { public: enum { kNone = 0x00, kSignedSmall = 0x01, kNumber = 0x3, kNumberOrOddball = 0x7, kInternalizedString = 0x8, kString = 0x18, kSymbol = 0x20, kBigInt = 0x30, kReceiver = 0x40, kAny = 0xff }; }; enum class Operation { // Binary operations. kAdd, kSubtract, kMultiply, kDivide, kModulus, kExponentiate, kBitwiseAnd, kBitwiseOr, kBitwiseXor, kShiftLeft, kShiftRight, kShiftRightLogical, // Unary operations. kBitwiseNot, kNegate, kIncrement, kDecrement, // Compare operations. kEqual, kStrictEqual, kLessThan, kLessThanOrEqual, kGreaterThan, kGreaterThanOrEqual, }; // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny class ForInFeedback { public: enum { kNone = 0x0, kEnumCacheKeysAndIndices = 0x1, kEnumCacheKeys = 0x3, kAny = 0x7 }; }; STATIC_ASSERT((ForInFeedback::kNone | ForInFeedback::kEnumCacheKeysAndIndices) == ForInFeedback::kEnumCacheKeysAndIndices); STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices | ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys); STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) == ForInFeedback::kAny); enum class UnicodeEncoding : uint8_t { // Different unicode encodings in a |word32|: UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate UTF32, // full UTF32 code unit / Unicode codepoint }; inline size_t hash_value(UnicodeEncoding encoding) { return static_cast(encoding); } inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) { switch (encoding) { case UnicodeEncoding::UTF16: return os << "UTF16"; case UnicodeEncoding::UTF32: return os << "UTF32"; } UNREACHABLE(); } enum class IterationKind { kKeys, kValues, kEntries }; inline std::ostream& operator<<(std::ostream& os, IterationKind kind) { switch (kind) { case IterationKind::kKeys: return os << "IterationKind::kKeys"; case IterationKind::kValues: return os << "IterationKind::kValues"; case IterationKind::kEntries: return os << "IterationKind::kEntries"; } UNREACHABLE(); } enum class CollectionKind { kMap, kSet }; inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) { switch (kind) { case CollectionKind::kMap: return os << "CollectionKind::kMap"; case CollectionKind::kSet: return os << "CollectionKind::kSet"; } UNREACHABLE(); } // Flags for the runtime function kDefineDataPropertyInLiteral. A property can // be enumerable or not, and, in case of functions, the function name // can be set or not. enum class DataPropertyInLiteralFlag { kNoFlags = 0, kDontEnum = 1 << 0, kSetFunctionName = 1 << 1 }; typedef base::Flags DataPropertyInLiteralFlags; DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags) enum ExternalArrayType { kExternalInt8Array = 1, kExternalUint8Array, kExternalInt16Array, kExternalUint16Array, kExternalInt32Array, kExternalUint32Array, kExternalFloat32Array, kExternalFloat64Array, kExternalUint8ClampedArray, kExternalBigInt64Array, kExternalBigUint64Array, }; struct AssemblerDebugInfo { AssemblerDebugInfo(const char* name, const char* file, int line) : name(name), file(file), line(line) {} const char* name; const char* file; int line; }; inline std::ostream& operator<<(std::ostream& os, const AssemblerDebugInfo& info) { os << "(" << info.name << ":" << info.file << ":" << info.line << ")"; return os; } enum class OptimizationMarker { kLogFirstExecution, kNone, kCompileOptimized, kCompileOptimizedConcurrent, kInOptimizationQueue }; inline std::ostream& operator<<(std::ostream& os, const OptimizationMarker& marker) { switch (marker) { case OptimizationMarker::kLogFirstExecution: return os << "OptimizationMarker::kLogFirstExecution"; case OptimizationMarker::kNone: return os << "OptimizationMarker::kNone"; case OptimizationMarker::kCompileOptimized: return os << "OptimizationMarker::kCompileOptimized"; case OptimizationMarker::kCompileOptimizedConcurrent: return os << "OptimizationMarker::kCompileOptimizedConcurrent"; case OptimizationMarker::kInOptimizationQueue: return os << "OptimizationMarker::kInOptimizationQueue"; } UNREACHABLE(); return os; } enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation }; inline std::ostream& operator<<(std::ostream& os, SpeculationMode speculation_mode) { switch (speculation_mode) { case SpeculationMode::kAllowSpeculation: return os << "SpeculationMode::kAllowSpeculation"; case SpeculationMode::kDisallowSpeculation: return os << "SpeculationMode::kDisallowSpeculation"; } UNREACHABLE(); return os; } enum class BlockingBehavior { kBlock, kDontBlock }; enum class ConcurrencyMode { kNotConcurrent, kConcurrent }; #define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \ C(Handler, handler) \ C(CEntryFP, c_entry_fp) \ C(CFunction, c_function) \ C(Context, context) \ C(PendingException, pending_exception) \ C(PendingHandlerContext, pending_handler_context) \ C(PendingHandlerEntrypoint, pending_handler_entrypoint) \ C(PendingHandlerConstantPool, pending_handler_constant_pool) \ C(PendingHandlerFP, pending_handler_fp) \ C(PendingHandlerSP, pending_handler_sp) \ C(ExternalCaughtException, external_caught_exception) \ C(JSEntrySP, js_entry_sp) enum IsolateAddressId { #define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address, FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM) #undef DECLARE_ENUM kIsolateAddressCount }; V8_INLINE static bool HasWeakHeapObjectTag(const internal::MaybeObject* value) { return ((reinterpret_cast(value) & kHeapObjectTagMask) == kWeakHeapObjectTag); } // Object* should never have the weak tag; this variant is for overzealous // checking. V8_INLINE static bool HasWeakHeapObjectTag(const Object* value) { return ((reinterpret_cast(value) & kHeapObjectTagMask) == kWeakHeapObjectTag); } V8_INLINE static bool IsClearedWeakHeapObject(MaybeObject* value) { return reinterpret_cast(value) == kClearedWeakHeapObject; } V8_INLINE static HeapObject* RemoveWeakHeapObjectMask( HeapObjectReference* value) { return reinterpret_cast(reinterpret_cast(value) & ~kWeakHeapObjectMask); } V8_INLINE static HeapObjectReference* AddWeakHeapObjectMask(Object* value) { return reinterpret_cast( reinterpret_cast(value) | kWeakHeapObjectMask); } V8_INLINE static MaybeObject* AddWeakHeapObjectMask(MaybeObject* value) { return reinterpret_cast(reinterpret_cast(value) | kWeakHeapObjectMask); } enum class HeapObjectReferenceType { WEAK, STRONG, }; enum class PoisoningMitigationLevel { kPoisonAll, kDontPoison, kPoisonCriticalOnly }; enum class LoadSensitivity { kCritical, // Critical loads are poisoned whenever we can run untrusted // code (i.e., when --untrusted-code-mitigations is on). kUnsafe, // Unsafe loads are poisoned when full poisoning is on // (--branch-load-poisoning). kSafe // Safe loads are never poisoned. }; // The reason for a WebAssembly trap. #define FOREACH_WASM_TRAPREASON(V) \ V(TrapUnreachable) \ V(TrapMemOutOfBounds) \ V(TrapDivByZero) \ V(TrapDivUnrepresentable) \ V(TrapRemByZero) \ V(TrapFloatUnrepresentable) \ V(TrapFuncInvalid) \ V(TrapFuncSigMismatch) } // namespace internal } // namespace v8 namespace i = v8::internal; #endif // V8_GLOBALS_H_