// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/hydrogen-range-analysis.h" namespace v8 { namespace internal { class Pending { public: Pending(HBasicBlock* block, int last_changed_range) : block_(block), last_changed_range_(last_changed_range) {} HBasicBlock* block() const { return block_; } int last_changed_range() const { return last_changed_range_; } private: HBasicBlock* block_; int last_changed_range_; }; void HRangeAnalysisPhase::TraceRange(const char* msg, ...) { if (FLAG_trace_range) { va_list arguments; va_start(arguments, msg); base::OS::VPrint(msg, arguments); va_end(arguments); } } void HRangeAnalysisPhase::Run() { HBasicBlock* block(graph()->entry_block()); ZoneList stack(graph()->blocks()->length(), zone()); while (block != NULL) { TraceRange("Analyzing block B%d\n", block->block_id()); // Infer range based on control flow. if (block->predecessors()->length() == 1) { HBasicBlock* pred = block->predecessors()->first(); if (pred->end()->IsCompareNumericAndBranch()) { InferControlFlowRange(HCompareNumericAndBranch::cast(pred->end()), block); } } // Process phi instructions. for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); InferRange(phi); } // Go through all instructions of the current block. for (HInstructionIterator it(block); !it.Done(); it.Advance()) { HValue* value = it.Current(); InferRange(value); // Compute the bailout-on-minus-zero flag. if (value->IsChange()) { HChange* instr = HChange::cast(value); // Propagate flags for negative zero checks upwards from conversions // int32-to-tagged and int32-to-double. Representation from = instr->value()->representation(); DCHECK(from.Equals(instr->from())); if (from.IsSmiOrInteger32()) { DCHECK(instr->to().IsTagged() || instr->to().IsDouble() || instr->to().IsSmiOrInteger32()); PropagateMinusZeroChecks(instr->value()); } } else if (value->IsCompareMinusZeroAndBranch()) { HCompareMinusZeroAndBranch* instr = HCompareMinusZeroAndBranch::cast(value); if (instr->value()->representation().IsSmiOrInteger32()) { PropagateMinusZeroChecks(instr->value()); } } } // Continue analysis in all dominated blocks. const ZoneList* dominated_blocks(block->dominated_blocks()); if (!dominated_blocks->is_empty()) { // Continue with first dominated block, and push the // remaining blocks on the stack (in reverse order). int last_changed_range = changed_ranges_.length(); for (int i = dominated_blocks->length() - 1; i > 0; --i) { stack.Add(Pending(dominated_blocks->at(i), last_changed_range), zone()); } block = dominated_blocks->at(0); } else if (!stack.is_empty()) { // Pop next pending block from stack. Pending pending = stack.RemoveLast(); RollBackTo(pending.last_changed_range()); block = pending.block(); } else { // All blocks done. block = NULL; } } // The ranges are not valid anymore due to SSI vs. SSA! PoisonRanges(); } void HRangeAnalysisPhase::PoisonRanges() { #ifdef DEBUG for (int i = 0; i < graph()->blocks()->length(); ++i) { HBasicBlock* block = graph()->blocks()->at(i); for (HInstructionIterator it(block); !it.Done(); it.Advance()) { HInstruction* instr = it.Current(); if (instr->HasRange()) instr->PoisonRange(); } } #endif } void HRangeAnalysisPhase::InferControlFlowRange(HCompareNumericAndBranch* test, HBasicBlock* dest) { DCHECK((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest)); if (test->representation().IsSmiOrInteger32()) { Token::Value op = test->token(); if (test->SecondSuccessor() == dest) { op = Token::NegateCompareOp(op); } Token::Value inverted_op = Token::ReverseCompareOp(op); UpdateControlFlowRange(op, test->left(), test->right()); UpdateControlFlowRange(inverted_op, test->right(), test->left()); } } // We know that value [op] other. Use this information to update the range on // value. void HRangeAnalysisPhase::UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other) { Range temp_range; Range* range = other->range() != NULL ? other->range() : &temp_range; Range* new_range = NULL; TraceRange("Control flow range infer %d %s %d\n", value->id(), Token::Name(op), other->id()); if (op == Token::EQ || op == Token::EQ_STRICT) { // The same range has to apply for value. new_range = range->Copy(graph()->zone()); } else if (op == Token::LT || op == Token::LTE) { new_range = range->CopyClearLower(graph()->zone()); if (op == Token::LT) { new_range->AddConstant(-1); } } else if (op == Token::GT || op == Token::GTE) { new_range = range->CopyClearUpper(graph()->zone()); if (op == Token::GT) { new_range->AddConstant(1); } } if (new_range != NULL && !new_range->IsMostGeneric()) { AddRange(value, new_range); } } void HRangeAnalysisPhase::InferRange(HValue* value) { DCHECK(!value->HasRange()); if (!value->representation().IsNone()) { value->ComputeInitialRange(graph()->zone()); Range* range = value->range(); TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n", value->id(), value->Mnemonic(), range->lower(), range->upper()); } } void HRangeAnalysisPhase::RollBackTo(int index) { DCHECK(index <= changed_ranges_.length()); for (int i = index; i < changed_ranges_.length(); ++i) { changed_ranges_[i]->RemoveLastAddedRange(); } changed_ranges_.Rewind(index); } void HRangeAnalysisPhase::AddRange(HValue* value, Range* range) { Range* original_range = value->range(); value->AddNewRange(range, graph()->zone()); changed_ranges_.Add(value, zone()); Range* new_range = value->range(); TraceRange("Updated range of %d set to [%d,%d]\n", value->id(), new_range->lower(), new_range->upper()); if (original_range != NULL) { TraceRange("Original range was [%d,%d]\n", original_range->lower(), original_range->upper()); } TraceRange("New information was [%d,%d]\n", range->lower(), range->upper()); } void HRangeAnalysisPhase::PropagateMinusZeroChecks(HValue* value) { DCHECK(worklist_.is_empty()); DCHECK(in_worklist_.IsEmpty()); AddToWorklist(value); while (!worklist_.is_empty()) { value = worklist_.RemoveLast(); if (value->IsPhi()) { // For phis, we must propagate the check to all of its inputs. HPhi* phi = HPhi::cast(value); for (int i = 0; i < phi->OperandCount(); ++i) { AddToWorklist(phi->OperandAt(i)); } } else if (value->IsUnaryMathOperation()) { HUnaryMathOperation* instr = HUnaryMathOperation::cast(value); if (instr->representation().IsSmiOrInteger32() && !instr->value()->representation().Equals(instr->representation())) { if (instr->value()->range() == NULL || instr->value()->range()->CanBeMinusZero()) { instr->SetFlag(HValue::kBailoutOnMinusZero); } } if (instr->RequiredInputRepresentation(0).IsSmiOrInteger32() && instr->representation().Equals( instr->RequiredInputRepresentation(0))) { AddToWorklist(instr->value()); } } else if (value->IsChange()) { HChange* instr = HChange::cast(value); if (!instr->from().IsSmiOrInteger32() && !instr->CanTruncateToInt32() && (instr->value()->range() == NULL || instr->value()->range()->CanBeMinusZero())) { instr->SetFlag(HValue::kBailoutOnMinusZero); } } else if (value->IsForceRepresentation()) { HForceRepresentation* instr = HForceRepresentation::cast(value); AddToWorklist(instr->value()); } else if (value->IsMod()) { HMod* instr = HMod::cast(value); if (instr->range() == NULL || instr->range()->CanBeMinusZero()) { instr->SetFlag(HValue::kBailoutOnMinusZero); AddToWorklist(instr->left()); } } else if (value->IsDiv() || value->IsMul()) { HBinaryOperation* instr = HBinaryOperation::cast(value); if (instr->range() == NULL || instr->range()->CanBeMinusZero()) { instr->SetFlag(HValue::kBailoutOnMinusZero); } AddToWorklist(instr->right()); AddToWorklist(instr->left()); } else if (value->IsMathFloorOfDiv()) { HMathFloorOfDiv* instr = HMathFloorOfDiv::cast(value); instr->SetFlag(HValue::kBailoutOnMinusZero); } else if (value->IsAdd() || value->IsSub()) { HBinaryOperation* instr = HBinaryOperation::cast(value); if (instr->range() == NULL || instr->range()->CanBeMinusZero()) { // Propagate to the left argument. If the left argument cannot be -0, // then the result of the add/sub operation cannot be either. AddToWorklist(instr->left()); } } else if (value->IsMathMinMax()) { HMathMinMax* instr = HMathMinMax::cast(value); AddToWorklist(instr->right()); AddToWorklist(instr->left()); } } in_worklist_.Clear(); DCHECK(in_worklist_.IsEmpty()); DCHECK(worklist_.is_empty()); } } } // namespace v8::internal