// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/map-updater.h" #include "src/field-type.h" #include "src/handles.h" #include "src/isolate.h" #include "src/objects-inl.h" #include "src/objects.h" #include "src/transitions.h" namespace v8 { namespace internal { namespace { inline bool EqualImmutableValues(Object* obj1, Object* obj2) { if (obj1 == obj2) return true; // Valid for both kData and kAccessor kinds. // TODO(ishell): compare AccessorPairs. return false; } inline bool LocationFitsInto(PropertyLocation what, PropertyLocation where) { return where == kField || what == kDescriptor; } } // namespace Name* MapUpdater::GetKey(int descriptor) const { return old_descriptors_->GetKey(descriptor); } PropertyDetails MapUpdater::GetDetails(int descriptor) const { DCHECK_LE(0, descriptor); if (descriptor == modified_descriptor_) { return PropertyDetails(new_kind_, new_attributes_, new_location_, new_representation_); } return old_descriptors_->GetDetails(descriptor); } Object* MapUpdater::GetValue(int descriptor) const { DCHECK_LE(0, descriptor); if (descriptor == modified_descriptor_) { DCHECK_EQ(kDescriptor, new_location_); return *new_value_; } DCHECK_EQ(kDescriptor, GetDetails(descriptor).location()); return old_descriptors_->GetValue(descriptor); } FieldType* MapUpdater::GetFieldType(int descriptor) const { DCHECK_LE(0, descriptor); if (descriptor == modified_descriptor_) { DCHECK_EQ(kField, new_location_); return *new_field_type_; } DCHECK_EQ(kField, GetDetails(descriptor).location()); return old_descriptors_->GetFieldType(descriptor); } Handle MapUpdater::GetOrComputeFieldType( int descriptor, PropertyLocation location, Representation representation) const { DCHECK_LE(0, descriptor); // |location| is just a pre-fetched GetDetails(descriptor).location(). DCHECK_EQ(location, GetDetails(descriptor).location()); if (location == kField) { return handle(GetFieldType(descriptor), isolate_); } else { return GetValue(descriptor)->OptimalType(isolate_, representation); } } Handle MapUpdater::GetOrComputeFieldType( Handle descriptors, int descriptor, PropertyLocation location, Representation representation) { // |location| is just a pre-fetched GetDetails(descriptor).location(). DCHECK_EQ(descriptors->GetDetails(descriptor).location(), location); if (location == kField) { return handle(descriptors->GetFieldType(descriptor), isolate_); } else { return descriptors->GetValue(descriptor) ->OptimalType(isolate_, representation); } } Handle MapUpdater::ReconfigureToDataField(int descriptor, PropertyAttributes attributes, Representation representation, Handle field_type) { DCHECK_EQ(kInitialized, state_); DCHECK_LE(0, descriptor); DCHECK(!old_map_->is_dictionary_map()); modified_descriptor_ = descriptor; new_kind_ = kData; new_attributes_ = attributes; new_location_ = kField; new_representation_ = representation; new_field_type_ = field_type; PropertyDetails old_details = old_descriptors_->GetDetails(modified_descriptor_); // If property kind is not reconfigured merge the result with // representation/field type from the old descriptor. if (old_details.kind() == new_kind_) { Representation old_representation = old_details.representation(); new_representation_ = new_representation_.generalize(old_representation); Handle old_field_type = GetOrComputeFieldType(old_descriptors_, modified_descriptor_, old_details.location(), new_representation_); new_field_type_ = Map::GeneralizeFieldType( old_representation, old_field_type, new_representation_, new_field_type_, isolate_); } if (TryRecofigureToDataFieldInplace() == kEnd) return result_map_; if (FindRootMap() == kEnd) return result_map_; if (FindTargetMap() == kEnd) return result_map_; ConstructNewMap(); DCHECK_EQ(kEnd, state_); return result_map_; } Handle MapUpdater::ReconfigureElementsKind(ElementsKind elements_kind) { DCHECK_EQ(kInitialized, state_); new_elements_kind_ = elements_kind; if (FindRootMap() == kEnd) return result_map_; if (FindTargetMap() == kEnd) return result_map_; ConstructNewMap(); DCHECK_EQ(kEnd, state_); return result_map_; } Handle MapUpdater::Update() { DCHECK_EQ(kInitialized, state_); DCHECK(old_map_->is_deprecated()); if (FindRootMap() == kEnd) return result_map_; if (FindTargetMap() == kEnd) return result_map_; ConstructNewMap(); DCHECK_EQ(kEnd, state_); return result_map_; } MapUpdater::State MapUpdater::CopyGeneralizeAllRepresentations( const char* reason) { StoreMode store_mode = modified_descriptor_ >= 0 ? FORCE_FIELD : ALLOW_IN_DESCRIPTOR; result_map_ = Map::CopyGeneralizeAllRepresentations( old_map_, new_elements_kind_, modified_descriptor_, store_mode, new_kind_, new_attributes_, reason); state_ = kEnd; return state_; // Done. } MapUpdater::State MapUpdater::TryRecofigureToDataFieldInplace() { // If it's just a representation generalization case (i.e. property kind and // attributes stays unchanged) it's fine to transition from None to anything // but double without any modification to the object, because the default // uninitialized value for representation None can be overwritten by both // smi and tagged values. Doubles, however, would require a box allocation. if (new_representation_.IsNone() || new_representation_.IsDouble()) { return state_; // Not done yet. } PropertyDetails old_details = old_descriptors_->GetDetails(modified_descriptor_); Representation old_representation = old_details.representation(); if (!old_representation.IsNone()) { return state_; // Not done yet. } DCHECK_EQ(new_kind_, old_details.kind()); DCHECK_EQ(new_attributes_, old_details.attributes()); DCHECK_EQ(kField, old_details.location()); if (FLAG_trace_generalization) { old_map_->PrintGeneralization( stdout, "uninitialized field", modified_descriptor_, old_nof_, old_nof_, false, old_representation, new_representation_, handle(old_descriptors_->GetFieldType(modified_descriptor_), isolate_), MaybeHandle(), new_field_type_, MaybeHandle()); } Handle field_owner(old_map_->FindFieldOwner(modified_descriptor_), isolate_); Map::GeneralizeField(field_owner, modified_descriptor_, new_representation_, new_field_type_); // Check that the descriptor array was updated. DCHECK(old_descriptors_->GetDetails(modified_descriptor_) .representation() .Equals(new_representation_)); DCHECK(old_descriptors_->GetFieldType(modified_descriptor_) ->NowIs(new_field_type_)); result_map_ = old_map_; state_ = kEnd; return state_; // Done. } MapUpdater::State MapUpdater::FindRootMap() { DCHECK_EQ(kInitialized, state_); // Check the state of the root map. root_map_ = handle(old_map_->FindRootMap(), isolate_); int root_nof = root_map_->NumberOfOwnDescriptors(); if (!old_map_->EquivalentToForTransition(*root_map_)) { return CopyGeneralizeAllRepresentations("GenAll_NotEquivalent"); } ElementsKind from_kind = root_map_->elements_kind(); ElementsKind to_kind = new_elements_kind_; // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS. if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS && to_kind != SLOW_STRING_WRAPPER_ELEMENTS && to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS && !(IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind))) { return CopyGeneralizeAllRepresentations("GenAll_InvalidElementsTransition"); } if (modified_descriptor_ >= 0 && modified_descriptor_ < root_nof) { PropertyDetails old_details = old_descriptors_->GetDetails(modified_descriptor_); if (old_details.kind() != new_kind_ || old_details.attributes() != new_attributes_) { return CopyGeneralizeAllRepresentations("GenAll_RootModification1"); } if (!new_representation_.fits_into(old_details.representation())) { return CopyGeneralizeAllRepresentations("GenAll_RootModification2"); } if (old_details.location() != kField) { return CopyGeneralizeAllRepresentations("GenAll_RootModification3"); } DCHECK_EQ(kData, old_details.kind()); DCHECK_EQ(kData, new_kind_); DCHECK_EQ(kField, new_location_); FieldType* old_field_type = old_descriptors_->GetFieldType(modified_descriptor_); if (!new_field_type_->NowIs(old_field_type)) { return CopyGeneralizeAllRepresentations("GenAll_RootModification4"); } } // From here on, use the map with correct elements kind as root map. if (from_kind != to_kind) { root_map_ = Map::AsElementsKind(root_map_, to_kind); } state_ = kAtRootMap; return state_; // Not done yet. } MapUpdater::State MapUpdater::FindTargetMap() { DCHECK_EQ(kAtRootMap, state_); target_map_ = root_map_; int root_nof = root_map_->NumberOfOwnDescriptors(); for (int i = root_nof; i < old_nof_; ++i) { PropertyDetails old_details = GetDetails(i); Map* transition = TransitionArray::SearchTransition( *target_map_, old_details.kind(), GetKey(i), old_details.attributes()); if (transition == NULL) break; Handle tmp_map(transition, isolate_); Handle tmp_descriptors(tmp_map->instance_descriptors(), isolate_); // Check if target map is incompatible. PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(old_details.kind(), tmp_details.kind()); DCHECK_EQ(old_details.attributes(), tmp_details.attributes()); if (old_details.kind() == kAccessor && !EqualImmutableValues(GetValue(i), tmp_descriptors->GetValue(i))) { // TODO(ishell): mutable accessors are not implemented yet. return CopyGeneralizeAllRepresentations("GenAll_Incompatible"); } // Check if old location fits into tmp location. if (!LocationFitsInto(old_details.location(), tmp_details.location())) { break; } // Check if old representation fits into tmp representation. Representation tmp_representation = tmp_details.representation(); if (!old_details.representation().fits_into(tmp_representation)) { break; } if (tmp_details.location() == kField) { Handle old_field_type = GetOrComputeFieldType(i, old_details.location(), tmp_representation); Map::GeneralizeField(tmp_map, i, tmp_representation, old_field_type); } else { // kDescriptor: Check that the value matches. if (!EqualImmutableValues(GetValue(i), tmp_descriptors->GetValue(i))) { break; } } DCHECK(!tmp_map->is_deprecated()); target_map_ = tmp_map; } // Directly change the map if the target map is more general. int target_nof = target_map_->NumberOfOwnDescriptors(); if (target_nof == old_nof_) { #ifdef DEBUG if (modified_descriptor_ >= 0) { DescriptorArray* target_descriptors = target_map_->instance_descriptors(); PropertyDetails details = target_descriptors->GetDetails(modified_descriptor_); DCHECK_EQ(new_kind_, details.kind()); DCHECK_EQ(new_attributes_, details.attributes()); DCHECK_EQ(new_location_, details.location()); DCHECK(new_representation_.fits_into(details.representation())); if (new_location_ == kField) { DCHECK_EQ(kField, details.location()); DCHECK(new_field_type_->NowIs( target_descriptors->GetFieldType(modified_descriptor_))); } else { DCHECK(details.location() == kField || EqualImmutableValues(*new_value_, target_descriptors->GetValue( modified_descriptor_))); } } #endif if (*target_map_ != *old_map_) { old_map_->NotifyLeafMapLayoutChange(); } result_map_ = target_map_; state_ = kEnd; return state_; // Done. } // Find the last compatible target map in the transition tree. for (int i = target_nof; i < old_nof_; ++i) { PropertyDetails old_details = GetDetails(i); Map* transition = TransitionArray::SearchTransition( *target_map_, old_details.kind(), GetKey(i), old_details.attributes()); if (transition == NULL) break; Handle tmp_map(transition, isolate_); Handle tmp_descriptors(tmp_map->instance_descriptors(), isolate_); #ifdef DEBUG // Check that target map is compatible. PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(old_details.kind(), tmp_details.kind()); DCHECK_EQ(old_details.attributes(), tmp_details.attributes()); #endif if (old_details.kind() == kAccessor && !EqualImmutableValues(GetValue(i), tmp_descriptors->GetValue(i))) { return CopyGeneralizeAllRepresentations("GenAll_Incompatible"); } DCHECK(!tmp_map->is_deprecated()); target_map_ = tmp_map; } state_ = kAtTargetMap; return state_; // Not done yet. } Handle MapUpdater::BuildDescriptorArray() { int target_nof = target_map_->NumberOfOwnDescriptors(); Handle target_descriptors( target_map_->instance_descriptors(), isolate_); // Allocate a new descriptor array large enough to hold the required // descriptors, with minimally the exact same size as the old descriptor // array. int new_slack = Max(old_nof_, old_descriptors_->number_of_descriptors()) - old_nof_; Handle new_descriptors = DescriptorArray::Allocate(isolate_, old_nof_, new_slack); DCHECK(new_descriptors->length() > target_descriptors->length() || new_descriptors->NumberOfSlackDescriptors() > 0 || new_descriptors->number_of_descriptors() == old_descriptors_->number_of_descriptors()); DCHECK(new_descriptors->number_of_descriptors() == old_nof_); int root_nof = root_map_->NumberOfOwnDescriptors(); // Given that we passed root modification check in FindRootMap() so // the root descriptors are either not modified at all or already more // general than we requested. Take |root_nof| entries as is. // 0 -> |root_nof| int current_offset = 0; for (int i = 0; i < root_nof; ++i) { PropertyDetails old_details = old_descriptors_->GetDetails(i); if (old_details.location() == kField) { current_offset += old_details.field_width_in_words(); } Descriptor d(handle(GetKey(i), isolate_), handle(old_descriptors_->GetValue(i), isolate_), old_details); new_descriptors->Set(i, &d); } // Merge "updated" old_descriptor entries with target_descriptor entries. // |root_nof| -> |target_nof| for (int i = root_nof; i < target_nof; ++i) { Handle key(GetKey(i), isolate_); PropertyDetails old_details = GetDetails(i); PropertyDetails target_details = target_descriptors->GetDetails(i); PropertyKind next_kind = old_details.kind(); PropertyAttributes next_attributes = old_details.attributes(); PropertyLocation next_location = old_details.location() == kField || target_details.location() == kField || !EqualImmutableValues(target_descriptors->GetValue(i), GetValue(i)) ? kField : kDescriptor; Representation next_representation = old_details.representation().generalize( target_details.representation()); DCHECK_EQ(next_kind, target_details.kind()); DCHECK_EQ(next_attributes, target_details.attributes()); if (next_location == kField) { Handle old_field_type = GetOrComputeFieldType(i, old_details.location(), next_representation); Handle target_field_type = GetOrComputeFieldType(target_descriptors, i, target_details.location(), next_representation); Handle next_field_type = Map::GeneralizeFieldType( old_details.representation(), old_field_type, next_representation, target_field_type, isolate_); Handle wrapped_type(Map::WrapFieldType(next_field_type)); Descriptor d; if (next_kind == kData) { d = Descriptor::DataField(key, current_offset, wrapped_type, next_attributes, next_representation); } else { // TODO(ishell): mutable accessors are not implemented yet. UNIMPLEMENTED(); } current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { DCHECK_EQ(kDescriptor, next_location); Handle value(GetValue(i), isolate_); Descriptor d; if (next_kind == kData) { d = Descriptor::DataConstant(key, value, next_attributes); } else { DCHECK_EQ(kAccessor, next_kind); d = Descriptor::AccessorConstant(key, value, next_attributes); } new_descriptors->Set(i, &d); } } // Take "updated" old_descriptor entries. // |target_nof| -> |old_nof| for (int i = target_nof; i < old_nof_; ++i) { PropertyDetails old_details = GetDetails(i); Handle key(GetKey(i), isolate_); PropertyKind next_kind = old_details.kind(); PropertyAttributes next_attributes = old_details.attributes(); PropertyLocation next_location = old_details.location(); Representation next_representation = old_details.representation(); Descriptor d; if (next_location == kField) { Handle old_field_type = GetOrComputeFieldType(i, old_details.location(), next_representation); Handle wrapped_type(Map::WrapFieldType(old_field_type)); Descriptor d; if (next_kind == kData) { d = Descriptor::DataField(key, current_offset, wrapped_type, next_attributes, next_representation); } else { // TODO(ishell): mutable accessors are not implemented yet. UNIMPLEMENTED(); } current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { DCHECK_EQ(kDescriptor, next_location); Handle value(GetValue(i), isolate_); if (next_kind == kData) { d = Descriptor::DataConstant(key, value, next_attributes); } else { DCHECK_EQ(kAccessor, next_kind); d = Descriptor::AccessorConstant(key, value, next_attributes); } new_descriptors->Set(i, &d); } } new_descriptors->Sort(); return new_descriptors; } Handle MapUpdater::FindSplitMap(Handle descriptors) { DisallowHeapAllocation no_allocation; int root_nof = root_map_->NumberOfOwnDescriptors(); Map* current = *root_map_; for (int i = root_nof; i < old_nof_; i++) { Name* name = descriptors->GetKey(i); PropertyDetails details = descriptors->GetDetails(i); Map* next = TransitionArray::SearchTransition(current, details.kind(), name, details.attributes()); if (next == NULL) break; DescriptorArray* next_descriptors = next->instance_descriptors(); PropertyDetails next_details = next_descriptors->GetDetails(i); DCHECK_EQ(details.kind(), next_details.kind()); DCHECK_EQ(details.attributes(), next_details.attributes()); if (details.location() != next_details.location()) break; if (!details.representation().Equals(next_details.representation())) break; if (next_details.location() == kField) { FieldType* next_field_type = next_descriptors->GetFieldType(i); if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) { break; } } else { if (!EqualImmutableValues(descriptors->GetValue(i), next_descriptors->GetValue(i))) { break; } } current = next; } return handle(current, isolate_); } MapUpdater::State MapUpdater::ConstructNewMap() { Handle new_descriptors = BuildDescriptorArray(); Handle split_map = FindSplitMap(new_descriptors); int split_nof = split_map->NumberOfOwnDescriptors(); DCHECK_NE(old_nof_, split_nof); PropertyDetails split_details = GetDetails(split_nof); // Invalidate a transition target at |key|. Map* maybe_transition = TransitionArray::SearchTransition( *split_map, split_details.kind(), GetKey(split_nof), split_details.attributes()); if (maybe_transition != NULL) { maybe_transition->DeprecateTransitionTree(); } // If |maybe_transition| is not NULL then the transition array already // contains entry for given descriptor. This means that the transition // could be inserted regardless of whether transitions array is full or not. if (maybe_transition == NULL && !TransitionArray::CanHaveMoreTransitions(split_map)) { return CopyGeneralizeAllRepresentations("GenAll_CantHaveMoreTransitions"); } old_map_->NotifyLeafMapLayoutChange(); if (FLAG_trace_generalization && modified_descriptor_ >= 0) { PropertyDetails old_details = old_descriptors_->GetDetails(modified_descriptor_); PropertyDetails new_details = new_descriptors->GetDetails(modified_descriptor_); MaybeHandle old_field_type; MaybeHandle new_field_type; MaybeHandle old_value; MaybeHandle new_value; if (old_details.location() == kField) { old_field_type = handle( old_descriptors_->GetFieldType(modified_descriptor_), isolate_); } else { old_value = handle(old_descriptors_->GetValue(modified_descriptor_), isolate_); } if (new_details.location() == kField) { new_field_type = handle(new_descriptors->GetFieldType(modified_descriptor_), isolate_); } else { new_value = handle(new_descriptors->GetValue(modified_descriptor_), isolate_); } old_map_->PrintGeneralization( stdout, "", modified_descriptor_, split_nof, old_nof_, old_details.location() == kDescriptor && new_location_ == kField, old_details.representation(), new_details.representation(), old_field_type, old_value, new_field_type, new_value); } Handle new_layout_descriptor = LayoutDescriptor::New(split_map, new_descriptors, old_nof_); Handle new_map = Map::AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor); // Deprecated part of the transition tree is no longer reachable, so replace // current instance descriptors in the "survived" part of the tree with // the new descriptors to maintain descriptors sharing invariant. split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor); result_map_ = new_map; state_ = kEnd; return state_; // Done. } } // namespace internal } // namespace v8