// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "assembler-x64.h" #include "macro-assembler-x64.h" #include "serialize.h" #include "debug.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), unresolved_(0), generating_stub_(false), allow_stub_calls_(true), code_object_(Heap::undefined_value()) { } static void RecordWriteHelper(MacroAssembler* masm, Register object, Register addr, Register scratch) { Label fast; // Compute the page start address from the heap object pointer, and reuse // the 'object' register for it. ASSERT(is_int32(~Page::kPageAlignmentMask)); masm->and_(object, Immediate(static_cast(~Page::kPageAlignmentMask))); Register page_start = object; // Compute the bit addr in the remembered set/index of the pointer in the // page. Reuse 'addr' as pointer_offset. masm->subq(addr, page_start); masm->shr(addr, Immediate(kPointerSizeLog2)); Register pointer_offset = addr; // If the bit offset lies beyond the normal remembered set range, it is in // the extra remembered set area of a large object. masm->cmpq(pointer_offset, Immediate(Page::kPageSize / kPointerSize)); masm->j(less, &fast); // Adjust 'page_start' so that addressing using 'pointer_offset' hits the // extra remembered set after the large object. // Load the array length into 'scratch'. masm->movl(scratch, Operand(page_start, Page::kObjectStartOffset + FixedArray::kLengthOffset)); Register array_length = scratch; // Extra remembered set starts right after the large object (a FixedArray), at // page_start + kObjectStartOffset + objectSize // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length. // Add the delta between the end of the normal RSet and the start of the // extra RSet to 'page_start', so that addressing the bit using // 'pointer_offset' hits the extra RSet words. masm->lea(page_start, Operand(page_start, array_length, times_pointer_size, Page::kObjectStartOffset + FixedArray::kHeaderSize - Page::kRSetEndOffset)); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions masm->bind(&fast); masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset); } class RecordWriteStub : public CodeStub { public: RecordWriteStub(Register object, Register addr, Register scratch) : object_(object), addr_(addr), scratch_(scratch) { } void Generate(MacroAssembler* masm); private: Register object_; Register addr_; Register scratch_; #ifdef DEBUG void Print() { PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n", object_.code(), addr_.code(), scratch_.code()); } #endif // Minor key encoding in 12 bits of three registers (object, address and // scratch) OOOOAAAASSSS. class ScratchBits: public BitField {}; class AddressBits: public BitField {}; class ObjectBits: public BitField {}; Major MajorKey() { return RecordWrite; } int MinorKey() { // Encode the registers. return ObjectBits::encode(object_.code()) | AddressBits::encode(addr_.code()) | ScratchBits::encode(scratch_.code()); } }; void RecordWriteStub::Generate(MacroAssembler* masm) { RecordWriteHelper(masm, object_, addr_, scratch_); masm->ret(0); } // Set the remembered set bit for [object+offset]. // object is the object being stored into, value is the object being stored. // If offset is zero, then the scratch register contains the array index into // the elements array represented as a Smi. // All registers are clobbered by the operation. void MacroAssembler::RecordWrite(Register object, int offset, Register value, Register scratch) { // First, check if a remembered set write is even needed. The tests below // catch stores of Smis and stores into young gen (which does not have space // for the remembered set bits. Label done; // Test that the object address is not in the new space. We cannot // set remembered set bits in the new space. movq(value, object); ASSERT(is_int32(static_cast(Heap::NewSpaceMask()))); and_(value, Immediate(static_cast(Heap::NewSpaceMask()))); movq(kScratchRegister, ExternalReference::new_space_start()); cmpq(value, kScratchRegister); j(equal, &done); if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) { // Compute the bit offset in the remembered set, leave it in 'value'. lea(value, Operand(object, offset)); ASSERT(is_int32(Page::kPageAlignmentMask)); and_(value, Immediate(static_cast(Page::kPageAlignmentMask))); shr(value, Immediate(kObjectAlignmentBits)); // Compute the page address from the heap object pointer, leave it in // 'object' (immediate value is sign extended). and_(object, Immediate(~Page::kPageAlignmentMask)); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions bts(Operand(object, Page::kRSetOffset), value); } else { Register dst = scratch; if (offset != 0) { lea(dst, Operand(object, offset)); } else { // array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric. Multiply a smi by 4 to get an offset // into an array of pointers. lea(dst, Operand(object, dst, times_half_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); } // If we are already generating a shared stub, not inlining the // record write code isn't going to save us any memory. if (generating_stub()) { RecordWriteHelper(this, object, dst, value); } else { RecordWriteStub stub(object, dst, value); CallStub(&stub); } } bind(&done); } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; testl(result, result); j(not_zero, &ok); testl(op, op); j(sign, then_label); bind(&ok); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag. ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif push(rax); movq(kScratchRegister, p0, RelocInfo::NONE); push(kScratchRegister); movq(kScratchRegister, reinterpret_cast(Smi::FromInt(p1 - p0)), RelocInfo::NONE); push(kScratchRegister); CallRuntime(Runtime::kAbort, 2); // will not return here } void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs movq(kScratchRegister, stub->GetCode(), RelocInfo::CODE_TARGET); call(kScratchRegister); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addq(rsp, Immediate(num_arguments * kPointerSize)); } movq(rax, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } Runtime::FunctionId function_id = static_cast(f->stub_id); RuntimeStub stub(function_id, num_arguments); CallStub(&stub); } void MacroAssembler::TailCallRuntime(ExternalReference const& ext, int num_arguments) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : argument num_arguments - 1 // ... // -- rsp[8 * num_arguments] : argument 0 (receiver) // ----------------------------------- // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. movq(rax, Immediate(num_arguments)); JumpToBuiltin(ext); } void MacroAssembler::JumpToBuiltin(const ExternalReference& ext) { // Set the entry point and jump to the C entry runtime stub. movq(rbx, ext); CEntryStub ces; movq(kScratchRegister, ces.GetCode(), RelocInfo::CODE_TARGET); jmp(kScratchRegister); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { bool resolved; Handle code = ResolveBuiltin(id, &resolved); const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); movq(target, code, RelocInfo::EMBEDDED_OBJECT); if (!resolved) { uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(false) | Bootstrapper::FixupFlagsUseCodeObject::encode(true); Unresolved entry = { pc_offset() - sizeof(intptr_t), flags, name }; unresolved_.Add(entry); } addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); } Handle MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, bool* resolved) { // Move the builtin function into the temporary function slot by // reading it from the builtins object. NOTE: We should be able to // reduce this to two instructions by putting the function table in // the global object instead of the "builtins" object and by using a // real register for the function. movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(rdx, FieldOperand(rdx, GlobalObject::kBuiltinsOffset)); int builtins_offset = JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); movq(rdi, FieldOperand(rdx, builtins_offset)); return Builtins::GetCode(id, resolved); } void MacroAssembler::Set(Register dst, int64_t x) { if (x == 0) { xor_(dst, dst); } else if (is_int32(x)) { movq(dst, Immediate(x)); } else if (is_uint32(x)) { movl(dst, Immediate(x)); } else { movq(dst, x, RelocInfo::NONE); } } void MacroAssembler::Set(const Operand& dst, int64_t x) { if (x == 0) { xor_(kScratchRegister, kScratchRegister); movq(dst, kScratchRegister); } else if (is_int32(x)) { movq(dst, Immediate(x)); } else if (is_uint32(x)) { movl(dst, Immediate(x)); } else { movq(kScratchRegister, x, RelocInfo::NONE); movq(dst, kScratchRegister); } } bool MacroAssembler::IsUnsafeSmi(Smi* value) { return false; } void MacroAssembler::LoadUnsafeSmi(Register dst, Smi* source) { UNIMPLEMENTED(); } void MacroAssembler::Move(Register dst, Handle source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { if (IsUnsafeSmi(source)) { LoadUnsafeSmi(dst, source); } else { int32_t smi = static_cast(reinterpret_cast(*source)); movq(dst, Immediate(smi)); } } else { movq(dst, source, RelocInfo::EMBEDDED_OBJECT); } } void MacroAssembler::Move(const Operand& dst, Handle source) { if (source->IsSmi()) { int32_t smi = static_cast(reinterpret_cast(*source)); movq(dst, Immediate(smi)); } else { movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); movq(dst, kScratchRegister); } } void MacroAssembler::Cmp(Register dst, Handle source) { Move(kScratchRegister, source); cmpq(dst, kScratchRegister); } void MacroAssembler::Cmp(const Operand& dst, Handle source) { if (source->IsSmi()) { if (IsUnsafeSmi(source)) { LoadUnsafeSmi(kScratchRegister, source); cmpl(dst, kScratchRegister); } else { // For smi-comparison, it suffices to compare the low 32 bits. int32_t smi = static_cast(reinterpret_cast(*source)); cmpl(dst, Immediate(smi)); } } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); cmpq(dst, kScratchRegister); } } void MacroAssembler::Push(Handle source) { if (source->IsSmi()) { if (IsUnsafeSmi(source)) { LoadUnsafeSmi(kScratchRegister, source); push(kScratchRegister); } else { int32_t smi = static_cast(reinterpret_cast(*source)); push(Immediate(smi)); } } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); } } void MacroAssembler::Push(Smi* source) { if (IsUnsafeSmi(source)) { LoadUnsafeSmi(kScratchRegister, source); push(kScratchRegister); } else { int32_t smi = static_cast(reinterpret_cast(source)); push(Immediate(smi)); } } void MacroAssembler::Jump(ExternalReference ext) { movq(kScratchRegister, ext); jmp(kScratchRegister); } void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); jmp(kScratchRegister); } void MacroAssembler::Jump(Handle code_object, RelocInfo::Mode rmode) { WriteRecordedPositions(); ASSERT(RelocInfo::IsCodeTarget(rmode)); movq(kScratchRegister, code_object, rmode); #ifdef DEBUG Label target; bind(&target); #endif jmp(kScratchRegister); #ifdef DEBUG ASSERT_EQ(kTargetAddrToReturnAddrDist, SizeOfCodeGeneratedSince(&target) + kPointerSize); #endif } void MacroAssembler::Call(ExternalReference ext) { movq(kScratchRegister, ext); call(kScratchRegister); } void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); call(kScratchRegister); } void MacroAssembler::Call(Handle code_object, RelocInfo::Mode rmode) { WriteRecordedPositions(); ASSERT(RelocInfo::IsCodeTarget(rmode)); movq(kScratchRegister, code_object, rmode); #ifdef DEBUG // Patch target is kPointer size bytes *before* target label. Label target; bind(&target); #endif call(kScratchRegister); #ifdef DEBUG ASSERT_EQ(kTargetAddrToReturnAddrDist, SizeOfCodeGeneratedSince(&target) + kPointerSize); #endif } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is already on TOS. This code pushes state, // frame pointer and current handler. Check that they are expected // next on the stack, in that order. ASSERT_EQ(StackHandlerConstants::kStateOffset, StackHandlerConstants::kPCOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kFPOffset, StackHandlerConstants::kStateOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kNextOffset, StackHandlerConstants::kFPOffset - kPointerSize); if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(rbp); } else { ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for rbp. We expect the code throwing an exception to check rbp // before dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(0)); // NULL frame pointer. } // Save the current handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); push(Operand(kScratchRegister, 0)); // Link this handler. movq(Operand(kScratchRegister, 0), rsp); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::FCmp() { fcompp(); push(rax); fnstsw_ax(); // TODO(X64): Check that sahf is safe to use, using CPUProbe. sahf(); pop(rax); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(static_cast(type))); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Label* miss) { // Check that the receiver isn't a smi. testl(function, Immediate(kSmiTagMask)); j(zero, miss); // Check that the function really is a function. CmpObjectType(function, JS_FUNCTION_TYPE, result); j(not_equal, miss); // Make sure that the function has an instance prototype. Label non_instance; testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); j(not_zero, &non_instance); // Get the prototype or initial map from the function. movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. Cmp(result, Factory::the_hole_value()); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, kScratchRegister); j(not_equal, &done); // Get the prototype from the initial map. movq(result, FieldOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); movl(Operand(kScratchRegister, 0), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { incl(operand); } else { addl(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { decl(operand); } else { subl(operand, Immediate(value)); } } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::PushRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Push the content of the memory location to the stack. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); push(Operand(kScratchRegister, 0)); } } } void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), reg); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(reg, Operand(kScratchRegister, 0)); } } } void MacroAssembler::PopRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Pop the content from the stack to the memory location. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); pop(Operand(kScratchRegister, 0)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT(!scratch.is(kScratchRegister)); ASSERT(!base.is(kScratchRegister)); ASSERT(!base.is(scratch)); ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { movq(scratch, Operand(base, 0)); ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), scratch); lea(base, Operand(base, kPointerSize)); } } } #endif // ENABLE_DEBUGGER_SUPPORT void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { bool resolved; Handle code = ResolveBuiltin(id, &resolved); // Calls are not allowed in some stubs. ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); InvokeCode(Handle(code), expected, expected, RelocInfo::CODE_TARGET, flag); const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); // The target address for the jump is stored as an immediate at offset // kInvokeCodeAddressOffset. if (!resolved) { uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(false) | Bootstrapper::FixupFlagsUseCodeObject::encode(false); Unresolved entry = { pc_offset() - kTargetAddrToReturnAddrDist, flags, name }; unresolved_.Add(entry); } } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { movq(rax, Immediate(actual.immediate())); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { movq(rbx, Immediate(expected.immediate())); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke); ASSERT(expected.reg().is(rbx)); movq(rax, Immediate(actual.immediate())); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } movq(kScratchRegister, adaptor, RelocInfo::CODE_TARGET); if (flag == CALL_FUNCTION) { call(kScratchRegister); jmp(done); } else { jmp(kScratchRegister); } bind(&invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag); if (flag == CALL_FUNCTION) { call(code); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; Register dummy = rax; InvokePrologue(expected, actual, code, dummy, &done, flag); if (flag == CALL_FUNCTION) { Call(code, rmode); } else { ASSERT(flag == JUMP_FUNCTION); Jump(code, rmode); } bind(&done); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function.is(rdi)); movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); // Advances rdx to the end of the Code object header, to the start of // the executable code. lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); ParameterCount expected(rbx); InvokeCode(rdx, expected, actual, flag); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(rbp); movq(rbp, rsp); push(rsi); // Context. push(Immediate(Smi::FromInt(type))); movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); if (FLAG_debug_code) { movq(kScratchRegister, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); cmpq(Operand(rsp, 0), kScratchRegister); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (FLAG_debug_code) { movq(kScratchRegister, Immediate(Smi::FromInt(type))); cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); Check(equal, "stack frame types must match"); } movq(rsp, rbp); pop(rbp); } void MacroAssembler::EnterExitFrame(StackFrame::Type type) { ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG); // Setup the frame structure on the stack. // All constants are relative to the frame pointer of the exit frame. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(rbp); movq(rbp, rsp); // Reserve room for entry stack pointer and push the debug marker. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // saved entry sp, patched before call push(Immediate(type == StackFrame::EXIT_DEBUG ? 1 : 0)); // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); ExternalReference context_address(Top::k_context_address); movq(r14, rax); // Backup rax before we use it. movq(rax, rbp); store_rax(c_entry_fp_address); movq(rax, rsi); store_rax(context_address); // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r15, Operand(rbp, r14, times_pointer_size, offset)); #ifdef ENABLE_DEBUGGER_SUPPORT // Save the state of all registers to the stack from the memory // location. This is needed to allow nested break points. if (type == StackFrame::EXIT_DEBUG) { // TODO(1243899): This should be symmetric to // CopyRegistersFromStackToMemory() but it isn't! esp is assumed // correct here, but computed for the other call. Very error // prone! FIX THIS. Actually there are deeper problems with // register saving than this asymmetry (see the bug report // associated with this issue). PushRegistersFromMemory(kJSCallerSaved); } #endif // Reserve space for two arguments: argc and argv subq(rsp, Immediate(2 * kPointerSize)); // Get the required frame alignment for the OS. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); movq(kScratchRegister, Immediate(-kFrameAlignment)); and_(rsp, kScratchRegister); } // Patch the saved entry sp. movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); } void MacroAssembler::LeaveExitFrame(StackFrame::Type type) { // Registers: // r15 : argv #ifdef ENABLE_DEBUGGER_SUPPORT // Restore the memory copy of the registers by digging them out from // the stack. This is needed to allow nested break points. if (type == StackFrame::EXIT_DEBUG) { // It's okay to clobber register ebx below because we don't need // the function pointer after this. const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize; lea(rbx, Operand(rbp, kOffset)); CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved); } #endif // Get the return address from the stack and restore the frame pointer. movq(rcx, Operand(rbp, 1 * kPointerSize)); movq(rbp, Operand(rbp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(rsp, Operand(r15, 1 * kPointerSize)); // Restore current context from top and clear it in debug mode. ExternalReference context_address(Top::k_context_address); movq(kScratchRegister, context_address); movq(rsi, Operand(kScratchRegister, 0)); #ifdef DEBUG movq(Operand(kScratchRegister, 0), Immediate(0)); #endif // Push the return address to get ready to return. push(rcx); // Clear the top frame. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); movq(kScratchRegister, c_entry_fp_address); movq(Operand(kScratchRegister, 0), Immediate(0)); } Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss) { // Make sure there's no overlap between scratch and the other // registers. ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); // Keep track of the current object in register reg. On the first // iteration, reg is an alias for object_reg, on later iterations, // it is an alias for holder_reg. Register reg = object_reg; int depth = 1; // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. while (object != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); JSObject* prototype = JSObject::cast(object->GetPrototype()); if (Heap::InNewSpace(prototype)) { // Get the map of the current object. movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); Cmp(scratch, Handle(object->map())); // Branch on the result of the map check. j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); // Restore scratch register to be the map of the object. // We load the prototype from the map in the scratch register. movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); } // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. reg = holder_reg; // from now the object is in holder_reg movq(reg, FieldOperand(scratch, Map::kPrototypeOffset)); } else { // Check the map of the current object. Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(object->map())); // Branch on the result of the map check. j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); } // The prototype is in old space; load it directly. reg = holder_reg; // from now the object is in holder_reg Move(reg, Handle(prototype)); } // Go to the next object in the prototype chain. object = prototype; } // Check the holder map. Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(holder->map())); j(not_equal, miss); // Log the check depth. LOG(IntEvent("check-maps-depth", depth)); // Perform security check for access to the global object and return // the holder register. ASSERT(object == holder); ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); } return reg; } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!scratch.is(kScratchRegister)); // Load current lexical context from the stack frame. movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); // When generating debug code, make sure the lexical context is set. if (FLAG_debug_code) { cmpq(scratch, Immediate(0)); Check(not_equal, "we should not have an empty lexical context"); } // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, offset)); movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (FLAG_debug_code) { Cmp(FieldOperand(scratch, HeapObject::kMapOffset), Factory::global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); } // Check if both contexts are the same. cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); j(equal, &same_contexts); // Compare security tokens. // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. // Check the context is a global context. if (FLAG_debug_code) { // Preserve original value of holder_reg. push(holder_reg); movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); Cmp(holder_reg, Factory::null_value()); Check(not_equal, "JSGlobalProxy::context() should not be null."); // Read the first word and compare to global_context_map(), movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); Cmp(holder_reg, Factory::global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); } movq(kScratchRegister, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, token_offset)); cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); j(not_equal, miss); bind(&same_contexts); } } } // namespace v8::internal