// Copyright 2021 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include // NOLINT(readability/streams) #include "src/base/utils/random-number-generator.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/simulator.h" #include "src/init/v8.h" #include "src/objects/heap-number.h" #include "src/objects/objects-inl.h" #include "src/utils/ostreams.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/test-helper-riscv64.h" #include "test/common/assembler-tester.h" namespace v8 { namespace internal { const float qnan_f = std::numeric_limits::quiet_NaN(); const float snan_f = std::numeric_limits::signaling_NaN(); const double qnan_d = std::numeric_limits::quiet_NaN(); const double snan_d = std::numeric_limits::signaling_NaN(); const float inf_f = std::numeric_limits::infinity(); const double inf_d = std::numeric_limits::infinity(); const float minf_f = -inf_f; const double minf_d = -inf_d; using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4); using F1 = void*(int x, int p1, int p2, int p3, int p4); using F3 = void*(void* p, int p1, int p2, int p3, int p4); using F4 = void*(void* p0, void* p1, int p2, int p3, int p4); #define __ masm. static uint64_t run_CalcScaledAddress(uint64_t rt, uint64_t rs, int8_t sa) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); auto fn = [sa](MacroAssembler& masm) { __ CalcScaledAddress(a0, a0, a1, sa); }; auto f = AssembleCode(fn); uint64_t res = reinterpret_cast(f.Call(rt, rs, 0, 0, 0)); return res; } template VTYPE run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, VTYPE value, Func GenerateUnalignedInstructionFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); auto fn = [in_offset, out_offset, GenerateUnalignedInstructionFunc](MacroAssembler& masm) { GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); }; auto f = AssembleCode(fn); MemCopy(memory_buffer + in_offset, &value, sizeof(VTYPE)); f.Call(memory_buffer); VTYPE res; MemCopy(&res, memory_buffer + out_offset, sizeof(VTYPE)); return res; } static const std::vector unsigned_test_offset() { static const int32_t kValues[] = {// value, offset -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset_increment() { static const int32_t kValues[] = {-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(LoadConstants) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); int64_t refConstants[64]; int64_t result[64]; int64_t mask = 1; for (int i = 0; i < 64; i++) { refConstants[i] = ~(mask << i); } auto fn = [&refConstants](MacroAssembler& masm) { __ mv(a4, a0); for (int i = 0; i < 64; i++) { // Load constant. __ li(a5, Operand(refConstants[i])); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); } }; auto f = AssembleCode(fn); (void)f.Call(reinterpret_cast(result), 0, 0, 0, 0); // Check results. for (int i = 0; i < 64; i++) { CHECK(refConstants[i] == result[i]); } } TEST(LoadAddress) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes); Label to_jump, skip; __ mv(a4, a0); __ Branch(&skip); __ bind(&to_jump); __ nop(); __ nop(); __ jr(ra); __ nop(); __ bind(&skip); __ li(a4, Operand(masm.jump_address(&to_jump), RelocInfo::INTERNAL_REFERENCE_ENCODED), ADDRESS_LOAD); int check_size = masm.InstructionsGeneratedSince(&skip); // NOTE (RISCV): current li generates 6 instructions, if the sequence is // changed, need to adjust the CHECK_EQ value too CHECK_EQ(6, check_size); __ jr(a4); __ nop(); __ stop(); __ stop(); __ stop(); __ stop(); __ stop(); CodeDesc desc; masm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); auto f = GeneratedCode::FromCode(*code); (void)f.Call(0, 0, 0, 0, 0); // Check results. } TEST(jump_tables4) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required before emission of the dd table (where trampolines are // blocked), and proper transition to long-branch mode. // Regression test for v8:4294. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 128; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label near_start, end, done; __ Push(ra); __ mv(a1, zero_reg); __ Branch(&end); __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < 32768 - 256; ++i) { __ addi(a1, a1, 1); } __ GenerateSwitchTable(a0, kNumCases, [&labels](size_t i) { return labels + i; }); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ RV_li(a0, values[i]); __ Branch(&done); } __ bind(&done); __ Pop(ra); __ jr(ra); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); // ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables6) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required after emission of the dd table (where trampolines are // blocked). This test checks if number of really generated instructions is // greater than number of counted instructions from code, as we are expecting // generation of trampoline in this case (when number of kFillInstr // instructions is close to 32K) CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes); const int kSwitchTableCases = 40; const int kMaxBranchOffset = Assembler::kMaxBranchOffset; const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize; const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize; const int kMaxOffsetForTrampolineStart = kMaxBranchOffset - 16 * kTrampolineSlotsSize; const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) - (kSwitchTablePrologueSize + 2 * kSwitchTableCases) - 20; int values[kSwitchTableCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kSwitchTableCases]; Label near_start, end, done; __ Push(ra); __ mv(a1, zero_reg); int offs1 = masm.pc_offset(); int gen_insn = 0; __ Branch(&end); gen_insn += 1; __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < kFillInstr; ++i) { __ addi(a1, a1, 1); } gen_insn += kFillInstr; __ GenerateSwitchTable(a0, kSwitchTableCases, [&labels](size_t i) { return labels + i; }); gen_insn += (kSwitchTablePrologueSize + 2 * kSwitchTableCases); for (int i = 0; i < kSwitchTableCases; ++i) { __ bind(&labels[i]); __ li(a0, Operand(values[i])); __ Branch(&done); } gen_insn += 3 * kSwitchTableCases; // If offset from here to first branch instr is greater than max allowed // offset for trampoline ... CHECK_LT(kMaxOffsetForTrampolineStart, masm.pc_offset() - offs1); // ... number of generated instructions must be greater then "gen_insn", // as we are expecting trampoline generation CHECK_LT(gen_insn, (masm.pc_offset() - offs1) / kInstrSize); __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #ifdef OBJECT_PRINT code->Print(std::cout); #endif auto f = GeneratedCode::FromCode(*code); for (int i = 0; i < kSwitchTableCases; ++i) { int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); // ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } TEST(CalcScaledAddress) { CcTest::InitializeVM(); struct TestCaseLsa { int64_t rt; int64_t rs; uint8_t sa; uint64_t expected_res; }; struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res {0x4, 0x1, 1, 0x6}, {0x4, 0x1, 2, 0x8}, {0x4, 0x1, 3, 0xC}, {0x4, 0x1, 4, 0x14}, {0x4, 0x1, 5, 0x24}, {0x0, 0x1, 1, 0x2}, {0x0, 0x1, 2, 0x4}, {0x0, 0x1, 3, 0x8}, {0x0, 0x1, 4, 0x10}, {0x0, 0x1, 5, 0x20}, {0x4, 0x0, 1, 0x4}, {0x4, 0x0, 2, 0x4}, {0x4, 0x0, 3, 0x4}, {0x4, 0x0, 4, 0x4}, {0x4, 0x0, 5, 0x4}, // Shift overflow. {0x4, INT64_MAX, 1, 0x2}, {0x4, INT64_MAX >> 1, 2, 0x0}, {0x4, INT64_MAX >> 2, 3, 0xFFFFFFFFFFFFFFFC}, {0x4, INT64_MAX >> 3, 4, 0xFFFFFFFFFFFFFFF4}, {0x4, INT64_MAX >> 4, 5, 0xFFFFFFFFFFFFFFE4}, // Signed addition overflow. {INT64_MAX - 1, 0x1, 1, 0x8000000000000000}, {INT64_MAX - 3, 0x1, 2, 0x8000000000000000}, {INT64_MAX - 7, 0x1, 3, 0x8000000000000000}, {INT64_MAX - 15, 0x1, 4, 0x8000000000000000}, {INT64_MAX - 31, 0x1, 5, 0x8000000000000000}, // Addition overflow. {-2, 0x1, 1, 0x0}, {-4, 0x1, 2, 0x0}, {-8, 0x1, 3, 0x0}, {-16, 0x1, 4, 0x0}, {-32, 0x1, 5, 0x0}}; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_CalcScaledAddress(tc[i].rt, tc[i].rs, tc[i].sa); CHECK_EQ(tc[i].expected_res, res); } } static const std::vector cvt_trunc_uint32_test_values() { static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00, 0x7FFFFFFF, 0x80000000, 0x80000001, 0x80FFFF00, 0x8FFFFFFF}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector cvt_trunc_int32_test_values() { static const int32_t kValues[] = { static_cast(0x00000000), static_cast(0x00000001), static_cast(0x00FFFF00), static_cast(0x7FFFFFFF), static_cast(0x80000000), static_cast(0x80000001), static_cast(0x80FFFF00), static_cast(0x8FFFFFFF), static_cast(0xFFFFFFFF)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector cvt_trunc_uint64_test_values() { static const uint64_t kValues[] = { 0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000, 0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001, 0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF /*, 0xFFFFFFFFFFFFFFFF*/}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector cvt_trunc_int64_test_values() { static const int64_t kValues[] = {static_cast(0x0000000000000000), static_cast(0x0000000000000001), static_cast(0x0000FFFFFFFF0000), // static_cast(0x7FFFFFFFFFFFFFFF), static_cast(0x8000000000000000), static_cast(0x8000000000000001), static_cast(0x8000FFFFFFFF0000), static_cast(0x8FFFFFFFFFFFFFFF), static_cast(0xFFFFFFFFFFFFFFFF)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } #define FOR_INPUTS3(ctype, var, test_vector) \ std::vector var##_vec = test_vector(); \ for (ctype var : var##_vec) #define FOR_INT32_INPUTS3(var, test_vector) \ FOR_INPUTS3(int32_t, var, test_vector) #define FOR_INT64_INPUTS3(var, test_vector) \ FOR_INPUTS3(int64_t, var, test_vector) #define FOR_UINT32_INPUTS3(var, test_vector) \ FOR_INPUTS3(uint32_t, var, test_vector) #define FOR_UINT64_INPUTS3(var, test_vector) \ FOR_INPUTS3(uint64_t, var, test_vector) #define FOR_TWO_INPUTS(ctype, var1, var2, test_vector) \ std::vector var##_vec = test_vector(); \ std::vector::iterator var1; \ std::vector::reverse_iterator var2; \ for (var1 = var##_vec.begin(), var2 = var##_vec.rbegin(); \ var1 != var##_vec.end(); ++var1, ++var2) #define FOR_INT32_TWO_INPUTS(var1, var2, test_vector) \ FOR_TWO_INPUTS(int32_t, var1, var2, test_vector) TEST(Cvt_s_uw_Trunc_uw_s) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Cvt_s_uw(fa0, a0); __ Trunc_uw_s(a0, fa0); }; FOR_UINT32_INPUTS3(i, cvt_trunc_uint32_test_values) { // some integers cannot be represented precisely in float, input may // not directly match the return value of GenAndRunTest CHECK_EQ(static_cast(static_cast(i)), GenAndRunTest(i, fn)); } } TEST(Cvt_s_ul_Trunc_ul_s) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Cvt_s_ul(fa0, a0); __ Trunc_ul_s(a0, fa0); }; FOR_UINT64_INPUTS3(i, cvt_trunc_uint64_test_values) { CHECK_EQ(static_cast(static_cast(i)), GenAndRunTest(i, fn)); } } TEST(Cvt_d_ul_Trunc_ul_d) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Cvt_d_ul(fa0, a0); __ Trunc_ul_d(a0, fa0); }; FOR_UINT64_INPUTS3(i, cvt_trunc_uint64_test_values) { CHECK_EQ(static_cast(static_cast(i)), GenAndRunTest(i, fn)); } } TEST(cvt_d_l_Trunc_l_d) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ fcvt_d_l(fa0, a0); __ Trunc_l_d(a0, fa0); }; FOR_INT64_INPUTS3(i, cvt_trunc_int64_test_values) { CHECK_EQ(static_cast(static_cast(i)), GenAndRunTest(i, fn)); } } TEST(cvt_d_w_Trunc_w_d) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ fcvt_d_w(fa0, a0); __ Trunc_w_d(a0, fa0); }; FOR_INT32_INPUTS3(i, cvt_trunc_int32_test_values) { CHECK_EQ(static_cast(static_cast(i)), GenAndRunTest(i, fn)); } } static const std::vector overflow_int64_test_values() { static const int64_t kValues[] = {static_cast(0xF000000000000000), static_cast(0x0000000000000001), static_cast(0xFF00000000000000), static_cast(0x0000F00111111110), static_cast(0x0F00001000000000), static_cast(0x991234AB12A96731), static_cast(0xB0FFFF0F0F0F0F01), static_cast(0x00006FFFFFFFFFFF), static_cast(0xFFFFFFFFFFFFFFFF)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(OverflowInstructions) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); struct T { int64_t lhs; int64_t rhs; int64_t output_add; int64_t output_add2; int64_t output_sub; int64_t output_sub2; int64_t output_mul; int64_t output_mul2; int64_t overflow_add; int64_t overflow_add2; int64_t overflow_sub; int64_t overflow_sub2; int64_t overflow_mul; int64_t overflow_mul2; } t; FOR_INT64_INPUTS3(i, overflow_int64_test_values) { FOR_INT64_INPUTS3(j, overflow_int64_test_values) { auto ii = i; auto jj = j; int64_t expected_add, expected_sub; int32_t ii32 = static_cast(ii); int32_t jj32 = static_cast(jj); int32_t expected_mul; int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf; auto fn = [](MacroAssembler& masm) { __ Ld(t0, MemOperand(a0, offsetof(T, lhs))); __ Ld(t1, MemOperand(a0, offsetof(T, rhs))); __ AddOverflow64(t2, t0, Operand(t1), a1); __ Sd(t2, MemOperand(a0, offsetof(T, output_add))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_add))); __ mv(a1, zero_reg); __ AddOverflow64(t0, t0, Operand(t1), a1); __ Sd(t0, MemOperand(a0, offsetof(T, output_add2))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_add2))); __ Ld(t0, MemOperand(a0, offsetof(T, lhs))); __ Ld(t1, MemOperand(a0, offsetof(T, rhs))); __ SubOverflow64(t2, t0, Operand(t1), a1); __ Sd(t2, MemOperand(a0, offsetof(T, output_sub))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_sub))); __ mv(a1, zero_reg); __ SubOverflow64(t0, t0, Operand(t1), a1); __ Sd(t0, MemOperand(a0, offsetof(T, output_sub2))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_sub2))); __ Ld(t0, MemOperand(a0, offsetof(T, lhs))); __ Ld(t1, MemOperand(a0, offsetof(T, rhs))); __ SignExtendWord(t0, t0); __ SignExtendWord(t1, t1); __ MulOverflow32(t2, t0, Operand(t1), a1); __ Sd(t2, MemOperand(a0, offsetof(T, output_mul))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_mul))); __ mv(a1, zero_reg); __ MulOverflow32(t0, t0, Operand(t1), a1); __ Sd(t0, MemOperand(a0, offsetof(T, output_mul2))); __ Sd(a1, MemOperand(a0, offsetof(T, overflow_mul2))); }; auto f = AssembleCode(fn); t.lhs = ii; t.rhs = jj; f.Call(&t, 0, 0, 0, 0); expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add); expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub); expected_mul_ovf = base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul); CHECK_EQ(expected_add_ovf, t.overflow_add < 0); CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0); CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0); CHECK_EQ(t.overflow_add, t.overflow_add2); CHECK_EQ(t.overflow_sub, t.overflow_sub2); CHECK_EQ(t.overflow_mul, t.overflow_mul2); CHECK_EQ(expected_add, t.output_add); CHECK_EQ(expected_add, t.output_add2); CHECK_EQ(expected_sub, t.output_sub); CHECK_EQ(expected_sub, t.output_sub2); if (!expected_mul_ovf) { CHECK_EQ(expected_mul, t.output_mul); CHECK_EQ(expected_mul, t.output_mul2); } } } } TEST(min_max_nan) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; } test; const int kTableLength = 13; double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, inf_d, minf_d, inf_d, qnan_d, 3.0, inf_d, qnan_d, qnan_d}; double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, inf_d, 42.0, inf_d, minf_d, 3.0, qnan_d, qnan_d, inf_d, qnan_d}; double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, minf_d, minf_d, qnan_d, qnan_d, qnan_d, qnan_d, qnan_d}; double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, inf_d, inf_d, inf_d, inf_d, qnan_d, qnan_d, qnan_d, qnan_d, qnan_d}; float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, inf_f, minf_f, inf_f, qnan_f, 3.0, inf_f, qnan_f, qnan_f}; float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, inf_f, 42.0, inf_f, minf_f, 3.0, qnan_f, qnan_f, inf_f, qnan_f}; float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, minf_f, minf_f, qnan_f, qnan_f, qnan_f, qnan_f, qnan_f}; float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, inf_f, inf_f, inf_f, inf_f, qnan_f, qnan_f, qnan_f, qnan_f, qnan_f}; auto fn = [](MacroAssembler& masm) { __ push(s6); __ InitializeRootRegister(); __ LoadDouble(fa3, MemOperand(a0, offsetof(TestFloat, a))); __ LoadDouble(fa4, MemOperand(a0, offsetof(TestFloat, b))); __ LoadFloat(fa1, MemOperand(a0, offsetof(TestFloat, e))); __ LoadFloat(fa2, MemOperand(a0, offsetof(TestFloat, f))); __ Float64Min(fa5, fa3, fa4); __ Float64Max(fa6, fa3, fa4); __ Float32Min(fa7, fa1, fa2); __ Float32Max(fa0, fa1, fa2); __ StoreDouble(fa5, MemOperand(a0, offsetof(TestFloat, c))); __ StoreDouble(fa6, MemOperand(a0, offsetof(TestFloat, d))); __ StoreFloat(fa7, MemOperand(a0, offsetof(TestFloat, g))); __ StoreFloat(fa0, MemOperand(a0, offsetof(TestFloat, h))); __ pop(s6); }; auto f = AssembleCode(fn); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; f.Call(&test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } TEST(Ulh) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ Ulh(t0, MemOperand(a0, in_offset)); __ Ush(t0, MemOperand(a0, out_offset)); }; auto fn2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ mv(t0, a0); __ Ulh(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset)); }; auto fn3 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ mv(t0, a0); __ Ulhu(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset)); }; auto fn4 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ Ulhu(t0, MemOperand(a0, in_offset)); __ Ush(t0, MemOperand(a0, out_offset)); }; FOR_UINT16_INPUTS(i) { FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn1)); // test when loaded value overwrites base-register of load address CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn2)); // test when loaded value overwrites base-register of load address CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn3)); CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn4)); } } } } TEST(Ulh_bitextension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ulh(t0, MemOperand(a0, in_offset)); __ Ulhu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ sraiw(t0, t0, 15); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ sraiw(t1, t1, 15); __ Branch(&fail, ne, t1, Operand(1)); __ sraiw(t0, t0, 15); __ addiw(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ulh(t0, MemOperand(a0, in_offset)); __ Ush(t0, MemOperand(a0, out_offset)); __ Branch(&end); __ bind(&fail); __ Ush(zero_reg, MemOperand(a0, out_offset)); __ bind(&end); }; FOR_UINT16_INPUTS(i) { FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Ulw) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn_1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ Ulw(t0, MemOperand(a0, in_offset)); __ Usw(t0, MemOperand(a0, out_offset)); }; auto fn_2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ mv(t0, a0); __ Ulw(a0, MemOperand(a0, in_offset)); __ Usw(a0, MemOperand(t0, out_offset)); }; auto fn_3 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ Ulwu(t0, MemOperand(a0, in_offset)); __ Usw(t0, MemOperand(a0, out_offset)); }; auto fn_4 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ mv(t0, a0); __ Ulwu(a0, MemOperand(a0, in_offset)); __ Usw(a0, MemOperand(t0, out_offset)); }; FOR_UINT32_INPUTS(i) { FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); // test when loaded value overwrites base-register of load address CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_2)); CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_3)); // test when loaded value overwrites base-register of load address CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_4)); } } } } TEST(Ulw_extension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ulw(t0, MemOperand(a0, in_offset)); __ Ulwu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ srai(t0, t0, 31); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ srai(t1, t1, 31); __ Branch(&fail, ne, t1, Operand(1)); __ srai(t0, t0, 31); __ addi(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ulw(t0, MemOperand(a0, in_offset)); __ Usw(t0, MemOperand(a0, out_offset)); __ Branch(&end); __ bind(&fail); __ Usw(zero_reg, MemOperand(a0, out_offset)); __ bind(&end); }; FOR_UINT32_INPUTS(i) { FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Uld) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn_1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ Uld(t0, MemOperand(a0, in_offset)); __ Usd(t0, MemOperand(a0, out_offset)); }; auto fn_2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ mv(t0, a0); __ Uld(a0, MemOperand(a0, in_offset)); __ Usd(a0, MemOperand(t0, out_offset)); }; FOR_UINT64_INPUTS(i) { FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); // test when loaded value overwrites base-register of load address CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_2)); } } } } auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ ULoadFloat(fa0, MemOperand(a0, in_offset)); __ UStoreFloat(fa0, MemOperand(a0, out_offset)); }; TEST(ULoadFloat) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_FLOAT32_INPUTS(i) { // skip nan because CHECK_EQ cannot handle NaN if (std::isnan(i)) continue; FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(ULoadDouble) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) { __ ULoadDouble(fa0, MemOperand(a0, in_offset)); __ UStoreDouble(fa0, MemOperand(a0, out_offset)); }; FOR_FLOAT64_INPUTS(i) { // skip nan because CHECK_EQ cannot handle NaN if (std::isnan(i)) continue; FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) { FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) { auto value = i; int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Sltu) { CcTest::InitializeVM(); FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { // compare against immediate value auto fn_1 = [j](MacroAssembler& masm) { __ Sltu(a0, a0, Operand(j)); }; CHECK_EQ(i < j, GenAndRunTest(i, fn_1)); // compare against registers auto fn_2 = [](MacroAssembler& masm) { __ Sltu(a0, a0, a1); }; CHECK_EQ(i < j, GenAndRunTest(i, j, fn_2)); } } } template static void GenerateMacroFloat32MinMax(MacroAssembler& masm) { T a = T::from_code(4); // f4 T b = T::from_code(6); // f6 T c = T::from_code(8); // f8 #define FLOAT_MIN_MAX(fminmax, res, x, y, res_field) \ __ LoadFloat(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ LoadFloat(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y); \ __ StoreFloat(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float32Min, a, b, c, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float32Min, a, a, b, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float32Min, a, b, a, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float32Max, a, b, c, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float32Max, a, a, b, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float32Max, a, b, a, max_aba_); #undef FLOAT_MIN_MAX } TEST(macro_float_minmax_f32) { // Test the Float32Min and Float32Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct Inputs { float src1_; float src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro masm. float min_abc_; float min_aab_; float min_aba_; float max_abc_; float max_aab_; float max_aba_; }; auto f = AssembleCode( GenerateMacroFloat32MinMax); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ f.Call(&inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ( \ bit_cast(max), \ bit_cast(results.max_aba_)); /* Use a bit_cast to correctly \ identify -0.0 and NaNs. */ \ } while (0) float nan_a = std::numeric_limits::quiet_NaN(); float nan_b = std::numeric_limits::quiet_NaN(); CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } template static void GenerateMacroFloat64MinMax(MacroAssembler& masm) { T a = T::from_code(4); // f4 T b = T::from_code(6); // f6 T c = T::from_code(8); // f8 #define FLOAT_MIN_MAX(fminmax, res, x, y, res_field) \ __ LoadDouble(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ LoadDouble(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y); \ __ StoreDouble(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float64Min, a, b, c, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float64Min, a, a, b, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float64Min, a, b, a, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float64Max, a, b, c, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float64Max, a, a, b, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float64Max, a, b, a, max_aba_); #undef FLOAT_MIN_MAX } TEST(macro_float_minmax_f64) { // Test the Float64Min and Float64Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct Inputs { double src1_; double src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro masm. double min_abc_; double min_aab_; double min_aba_; double max_abc_; double max_aab_; double max_aba_; }; auto f = AssembleCode( GenerateMacroFloat64MinMax); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ f.Call(&inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ } while (0) double nan_a = qnan_d; double nan_b = qnan_d; CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } template static bool CompareF(T input1, T input2, FPUCondition cond) { switch (cond) { case EQ: return (input1 == input2); case LT: return (input1 < input2); case LE: return (input1 <= input2); case NE: return (input1 != input2); case GT: return (input1 > input2); case GE: return (input1 >= input2); default: UNREACHABLE(); } } static bool CompareU(uint64_t input1, uint64_t input2, Condition cond) { switch (cond) { case eq: return (input1 == input2); case ne: return (input1 != input2); case Uless: return (input1 < input2); case Uless_equal: return (input1 <= input2); case Ugreater: return (input1 > input2); case Ugreater_equal: return (input1 >= input2); case less: return (static_cast(input1) < static_cast(input2)); case less_equal: return (static_cast(input1) <= static_cast(input2)); case greater: return (static_cast(input1) > static_cast(input2)); case greater_equal: return (static_cast(input1) >= static_cast(input2)); default: UNREACHABLE(); } } static void FCompare32Helper(FPUCondition cond) { auto fn = [cond](MacroAssembler& masm) { __ CompareF32(a0, cond, fa0, fa1); }; FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { bool comp_res = CompareF(i, j, cond); CHECK_EQ(comp_res, GenAndRunTest(i, j, fn)); } } } static void FCompare64Helper(FPUCondition cond) { auto fn = [cond](MacroAssembler& masm) { __ CompareF64(a0, cond, fa0, fa1); }; FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { bool comp_res = CompareF(i, j, cond); CHECK_EQ(comp_res, GenAndRunTest(i, j, fn)); } } } TEST(FCompare32_Branch) { CcTest::InitializeVM(); FCompare32Helper(EQ); FCompare32Helper(LT); FCompare32Helper(LE); FCompare32Helper(NE); FCompare32Helper(GT); FCompare32Helper(GE); // test CompareIsNanF32: return true if any operand isnan auto fn = [](MacroAssembler& masm) { __ CompareIsNanF32(a0, fa0, fa1); }; CHECK_EQ(false, GenAndRunTest(1023.01f, -100.23f, fn)); CHECK_EQ(true, GenAndRunTest(1023.01f, snan_f, fn)); CHECK_EQ(true, GenAndRunTest(snan_f, -100.23f, fn)); CHECK_EQ(true, GenAndRunTest(snan_f, qnan_f, fn)); } TEST(FCompare64_Branch) { CcTest::InitializeVM(); FCompare64Helper(EQ); FCompare64Helper(LT); FCompare64Helper(LE); FCompare64Helper(NE); FCompare64Helper(GT); FCompare64Helper(GE); // test CompareIsNanF64: return true if any operand isnan auto fn = [](MacroAssembler& masm) { __ CompareIsNanF64(a0, fa0, fa1); }; CHECK_EQ(false, GenAndRunTest(1023.01, -100.23, fn)); CHECK_EQ(true, GenAndRunTest(1023.01, snan_d, fn)); CHECK_EQ(true, GenAndRunTest(snan_d, -100.23, fn)); CHECK_EQ(true, GenAndRunTest(snan_d, qnan_d, fn)); } static void CompareIHelper(Condition cond) { FOR_UINT64_INPUTS(i) { FOR_UINT64_INPUTS(j) { auto input1 = i; auto input2 = j; bool comp_res = CompareU(input1, input2, cond); // test compare against immediate value auto fn1 = [cond, input2](MacroAssembler& masm) { __ CompareI(a0, a0, Operand(input2), cond); }; CHECK_EQ(comp_res, GenAndRunTest(input1, fn1)); // test compare registers auto fn2 = [cond](MacroAssembler& masm) { __ CompareI(a0, a0, Operand(a1), cond); }; CHECK_EQ(comp_res, GenAndRunTest(input1, input2, fn2)); } } } TEST(CompareI) { CcTest::InitializeVM(); CompareIHelper(eq); CompareIHelper(ne); CompareIHelper(greater); CompareIHelper(greater_equal); CompareIHelper(less); CompareIHelper(less_equal); CompareIHelper(Ugreater); CompareIHelper(Ugreater_equal); CompareIHelper(Uless); CompareIHelper(Uless_equal); } TEST(Clz32) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Clz32(a0, a0); }; FOR_UINT32_INPUTS(i) { // __builtin_clzll(0) is undefined if (i == 0) continue; CHECK_EQ(__builtin_clz(i), GenAndRunTest(i, fn)); } } TEST(Ctz32) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Ctz32(a0, a0); }; FOR_UINT32_INPUTS(i) { // __builtin_clzll(0) is undefined if (i == 0) continue; CHECK_EQ(__builtin_ctz(i), GenAndRunTest(i, fn)); } } TEST(Clz64) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Clz64(a0, a0); }; FOR_UINT64_INPUTS(i) { // __builtin_clzll(0) is undefined if (i == 0) continue; CHECK_EQ(__builtin_clzll(i), GenAndRunTest(i, fn)); } } TEST(Ctz64) { CcTest::InitializeVM(); auto fn = [](MacroAssembler& masm) { __ Ctz64(a0, a0); }; FOR_UINT64_INPUTS(i) { // __builtin_clzll(0) is undefined if (i == 0) continue; CHECK_EQ(__builtin_ctzll(i), GenAndRunTest(i, fn)); } } TEST(ByteSwap) { CcTest::InitializeVM(); auto fn0 = [](MacroAssembler& masm) { __ ByteSwap(a0, a0, 4); }; CHECK_EQ((int32_t)0x89ab'cdef, GenAndRunTest(0xefcd'ab89, fn0)); auto fn1 = [](MacroAssembler& masm) { __ ByteSwap(a0, a0, 8); }; CHECK_EQ((int64_t)0x0123'4567'89ab'cdef, GenAndRunTest(0xefcd'ab89'6745'2301, fn1)); } TEST(Dpopcnt) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); uint64_t in[9]; uint64_t out[9]; uint64_t result[9]; uint64_t val = 0xffffffffffffffffl; uint64_t cnt = 64; for (int i = 0; i < 7; i++) { in[i] = val; out[i] = cnt; cnt >>= 1; val >>= cnt; } in[7] = 0xaf1000000000000bl; out[7] = 10; in[8] = 0xe030000f00003000l; out[8] = 11; auto fn = [&in](MacroAssembler& masm) { __ mv(a4, a0); for (int i = 0; i < 7; i++) { // Load constant. __ li(a3, Operand(in[i])); __ Popcnt64(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); } __ li(a3, Operand(in[7])); __ Popcnt64(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); __ li(a3, Operand(in[8])); __ Popcnt64(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); }; auto f = AssembleCode(fn); (void)f.Call(reinterpret_cast(result), 0, 0, 0, 0); // Check results. for (int i = 0; i < 9; i++) { CHECK(out[i] == result[i]); } } TEST(Popcnt) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); uint64_t in[8]; uint64_t out[8]; uint64_t result[8]; uint64_t val = 0xffffffff; uint64_t cnt = 32; for (int i = 0; i < 6; i++) { in[i] = val; out[i] = cnt; cnt >>= 1; val >>= cnt; } in[6] = 0xaf10000b; out[6] = 10; in[7] = 0xe03f3000; out[7] = 11; auto fn = [&in](MacroAssembler& masm) { __ mv(a4, a0); for (int i = 0; i < 6; i++) { // Load constant. __ li(a3, Operand(in[i])); __ Popcnt32(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); } __ li(a3, Operand(in[6])); __ Popcnt64(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); __ li(a3, Operand(in[7])); __ Popcnt64(a5, a3); __ Sd(a5, MemOperand(a4)); __ Add64(a4, a4, Operand(kPointerSize)); }; auto f = AssembleCode(fn); (void)f.Call(reinterpret_cast(result), 0, 0, 0, 0); // Check results. for (int i = 0; i < 8; i++) { CHECK(out[i] == result[i]); } } TEST(Move) { CcTest::InitializeVM(); union { double dval; int32_t ival[2]; } t; { auto fn = [](MacroAssembler& masm) { __ ExtractHighWordFromF64(a0, fa0); }; t.ival[0] = 256; t.ival[1] = -123; CHECK_EQ(static_cast(t.ival[1]), GenAndRunTest(t.dval, fn)); t.ival[0] = 645; t.ival[1] = 127; CHECK_EQ(static_cast(t.ival[1]), GenAndRunTest(t.dval, fn)); } { auto fn = [](MacroAssembler& masm) { __ ExtractLowWordFromF64(a0, fa0); }; t.ival[0] = 256; t.ival[1] = -123; CHECK_EQ(static_cast(t.ival[0]), GenAndRunTest(t.dval, fn)); t.ival[0] = -645; t.ival[1] = 127; CHECK_EQ(static_cast(t.ival[0]), GenAndRunTest(t.dval, fn)); } } TEST(DeoptExitSizeIsFixed) { CHECK(Deoptimizer::kSupportsFixedDeoptExitSizes); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); auto buffer = AllocateAssemblerBuffer(); MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, buffer->CreateView()); STATIC_ASSERT(static_cast(kFirstDeoptimizeKind) == 0); for (int i = 0; i < kDeoptimizeKindCount; i++) { DeoptimizeKind kind = static_cast(i); Label before_exit; masm.bind(&before_exit); if (kind == DeoptimizeKind::kEagerWithResume) { Builtins::Name target = Deoptimizer::GetDeoptWithResumeBuiltin( DeoptimizeReason::kDynamicCheckMaps); masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit, nullptr); CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit), Deoptimizer::kEagerWithResumeBeforeArgsSize); } else { Builtins::Name target = Deoptimizer::GetDeoptimizationEntry(kind); masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit, nullptr); CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit), kind == DeoptimizeKind::kLazy ? Deoptimizer::kLazyDeoptExitSize : Deoptimizer::kNonLazyDeoptExitSize); } } } #undef __ } // namespace internal } // namespace v8