// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "lithium.h" #include "scopes.h" #if V8_TARGET_ARCH_IA32 #include "ia32/lithium-ia32.h" #include "ia32/lithium-codegen-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/lithium-x64.h" #include "x64/lithium-codegen-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/lithium-arm.h" #include "arm/lithium-codegen-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/lithium-mips.h" #include "mips/lithium-codegen-mips.h" #else #error "Unknown architecture." #endif namespace v8 { namespace internal { void LOperand::PrintTo(StringStream* stream) { LUnallocated* unalloc = NULL; switch (kind()) { case INVALID: stream->Add("(0)"); break; case UNALLOCATED: unalloc = LUnallocated::cast(this); stream->Add("v%d", unalloc->virtual_register()); switch (unalloc->policy()) { case LUnallocated::NONE: break; case LUnallocated::FIXED_REGISTER: { const char* register_name = Register::AllocationIndexToString(unalloc->fixed_index()); stream->Add("(=%s)", register_name); break; } case LUnallocated::FIXED_DOUBLE_REGISTER: { const char* double_register_name = DoubleRegister::AllocationIndexToString(unalloc->fixed_index()); stream->Add("(=%s)", double_register_name); break; } case LUnallocated::FIXED_SLOT: stream->Add("(=%dS)", unalloc->fixed_index()); break; case LUnallocated::MUST_HAVE_REGISTER: stream->Add("(R)"); break; case LUnallocated::WRITABLE_REGISTER: stream->Add("(WR)"); break; case LUnallocated::SAME_AS_FIRST_INPUT: stream->Add("(1)"); break; case LUnallocated::ANY: stream->Add("(-)"); break; } break; case CONSTANT_OPERAND: stream->Add("[constant:%d]", index()); break; case STACK_SLOT: stream->Add("[stack:%d]", index()); break; case DOUBLE_STACK_SLOT: stream->Add("[double_stack:%d]", index()); break; case REGISTER: stream->Add("[%s|R]", Register::AllocationIndexToString(index())); break; case DOUBLE_REGISTER: stream->Add("[%s|R]", DoubleRegister::AllocationIndexToString(index())); break; case ARGUMENT: stream->Add("[arg:%d]", index()); break; } } #define DEFINE_OPERAND_CACHE(name, type) \ L##name* L##name::cache = NULL; \ \ void L##name::SetUpCache() { \ if (cache) return; \ cache = new L##name[kNumCachedOperands]; \ for (int i = 0; i < kNumCachedOperands; i++) { \ cache[i].ConvertTo(type, i); \ } \ } \ \ void L##name::TearDownCache() { \ delete[] cache; \ } LITHIUM_OPERAND_LIST(DEFINE_OPERAND_CACHE) #undef DEFINE_OPERAND_CACHE void LOperand::SetUpCaches() { #define LITHIUM_OPERAND_SETUP(name, type) L##name::SetUpCache(); LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_SETUP) #undef LITHIUM_OPERAND_SETUP } void LOperand::TearDownCaches() { #define LITHIUM_OPERAND_TEARDOWN(name, type) L##name::TearDownCache(); LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_TEARDOWN) #undef LITHIUM_OPERAND_TEARDOWN } bool LParallelMove::IsRedundant() const { for (int i = 0; i < move_operands_.length(); ++i) { if (!move_operands_[i].IsRedundant()) return false; } return true; } void LParallelMove::PrintDataTo(StringStream* stream) const { bool first = true; for (int i = 0; i < move_operands_.length(); ++i) { if (!move_operands_[i].IsEliminated()) { LOperand* source = move_operands_[i].source(); LOperand* destination = move_operands_[i].destination(); if (!first) stream->Add(" "); first = false; if (source->Equals(destination)) { destination->PrintTo(stream); } else { destination->PrintTo(stream); stream->Add(" = "); source->PrintTo(stream); } stream->Add(";"); } } } void LEnvironment::PrintTo(StringStream* stream) { stream->Add("[id=%d|", ast_id().ToInt()); stream->Add("[parameters=%d|", parameter_count()); stream->Add("[arguments_stack_height=%d|", arguments_stack_height()); for (int i = 0; i < values_.length(); ++i) { if (i != 0) stream->Add(";"); if (values_[i] == NULL) { stream->Add("[hole]"); } else { values_[i]->PrintTo(stream); } } stream->Add("]"); } void LPointerMap::RecordPointer(LOperand* op, Zone* zone) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); pointer_operands_.Add(op, zone); } void LPointerMap::RemovePointer(LOperand* op) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); for (int i = 0; i < pointer_operands_.length(); ++i) { if (pointer_operands_[i]->Equals(op)) { pointer_operands_.Remove(i); --i; } } } void LPointerMap::RecordUntagged(LOperand* op, Zone* zone) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); untagged_operands_.Add(op, zone); } void LPointerMap::PrintTo(StringStream* stream) { stream->Add("{"); for (int i = 0; i < pointer_operands_.length(); ++i) { if (i != 0) stream->Add(";"); pointer_operands_[i]->PrintTo(stream); } stream->Add("} @%d", position()); } int ElementsKindToShiftSize(ElementsKind elements_kind) { switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: return 0; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: return 1; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: return 2; case EXTERNAL_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: return 3; case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: return kPointerSizeLog2; } UNREACHABLE(); return 0; } LLabel* LChunk::GetLabel(int block_id) const { HBasicBlock* block = graph_->blocks()->at(block_id); int first_instruction = block->first_instruction_index(); return LLabel::cast(instructions_[first_instruction]); } int LChunk::LookupDestination(int block_id) const { LLabel* cur = GetLabel(block_id); while (cur->replacement() != NULL) { cur = cur->replacement(); } return cur->block_id(); } Label* LChunk::GetAssemblyLabel(int block_id) const { LLabel* label = GetLabel(block_id); ASSERT(!label->HasReplacement()); return label->label(); } void LChunk::MarkEmptyBlocks() { HPhase phase("L_Mark empty blocks", this); for (int i = 0; i < graph()->blocks()->length(); ++i) { HBasicBlock* block = graph()->blocks()->at(i); int first = block->first_instruction_index(); int last = block->last_instruction_index(); LInstruction* first_instr = instructions()->at(first); LInstruction* last_instr = instructions()->at(last); LLabel* label = LLabel::cast(first_instr); if (last_instr->IsGoto()) { LGoto* goto_instr = LGoto::cast(last_instr); if (label->IsRedundant() && !label->is_loop_header()) { bool can_eliminate = true; for (int i = first + 1; i < last && can_eliminate; ++i) { LInstruction* cur = instructions()->at(i); if (cur->IsGap()) { LGap* gap = LGap::cast(cur); if (!gap->IsRedundant()) { can_eliminate = false; } } else { can_eliminate = false; } } if (can_eliminate) { label->set_replacement(GetLabel(goto_instr->block_id())); } } } } } void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) { LInstructionGap* gap = new(graph_->zone()) LInstructionGap(block); int index = -1; if (instr->IsControl()) { instructions_.Add(gap, zone()); index = instructions_.length(); instructions_.Add(instr, zone()); } else { index = instructions_.length(); instructions_.Add(instr, zone()); instructions_.Add(gap, zone()); } if (instr->HasPointerMap()) { pointer_maps_.Add(instr->pointer_map(), zone()); instr->pointer_map()->set_lithium_position(index); } } LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) { return LConstantOperand::Create(constant->id(), zone()); } int LChunk::GetParameterStackSlot(int index) const { // The receiver is at index 0, the first parameter at index 1, so we // shift all parameter indexes down by the number of parameters, and // make sure they end up negative so they are distinguishable from // spill slots. int result = index - info()->scope()->num_parameters() - 1; ASSERT(result < 0); return result; } // A parameter relative to ebp in the arguments stub. int LChunk::ParameterAt(int index) { ASSERT(-1 <= index); // -1 is the receiver. return (1 + info()->scope()->num_parameters() - index) * kPointerSize; } LGap* LChunk::GetGapAt(int index) const { return LGap::cast(instructions_[index]); } bool LChunk::IsGapAt(int index) const { return instructions_[index]->IsGap(); } int LChunk::NearestGapPos(int index) const { while (!IsGapAt(index)) index--; return index; } void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) { GetGapAt(index)->GetOrCreateParallelMove( LGap::START, zone())->AddMove(from, to, zone()); } HConstant* LChunk::LookupConstant(LConstantOperand* operand) const { return HConstant::cast(graph_->LookupValue(operand->index())); } Representation LChunk::LookupLiteralRepresentation( LConstantOperand* operand) const { return graph_->LookupValue(operand->index())->representation(); } LChunk* LChunk::NewChunk(HGraph* graph) { NoHandleAllocation no_handles; AssertNoAllocation no_gc; int values = graph->GetMaximumValueID(); CompilationInfo* info = graph->info(); if (values > LUnallocated::kMaxVirtualRegisters) { info->set_bailout_reason("not enough virtual registers for values"); return NULL; } LAllocator allocator(values, graph); LChunkBuilder builder(info, graph, &allocator); LChunk* chunk = builder.Build(); if (chunk == NULL) return NULL; if (!allocator.Allocate(chunk)) { info->set_bailout_reason("not enough virtual registers (regalloc)"); return NULL; } return chunk; } Handle LChunk::Codegen() { MacroAssembler assembler(info()->isolate(), NULL, 0); LCodeGen generator(this, &assembler, info()); MarkEmptyBlocks(); if (generator.GenerateCode()) { if (FLAG_trace_codegen) { PrintF("Crankshaft Compiler - "); } CodeGenerator::MakeCodePrologue(info()); Code::Flags flags = Code::ComputeFlags(Code::OPTIMIZED_FUNCTION); Handle code = CodeGenerator::MakeCodeEpilogue(&assembler, flags, info()); generator.FinishCode(code); CodeGenerator::PrintCode(code, info()); return code; } return Handle::null(); } } } // namespace v8::internal