// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_IA32_CODEGEN_IA32_H_ #define V8_IA32_CODEGEN_IA32_H_ namespace v8 { namespace internal { // Forward declarations class DeferredCode; class RegisterAllocator; class RegisterFile; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // ------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that keeps an ECMA // reference on the execution stack while in scope. For variables // the reference is empty, indicating that it isn't necessary to // store state on the stack for keeping track of references to those. // For properties, we keep either one (named) or two (indexed) values // on the execution stack to represent the reference. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT(type_ == ILLEGAL); type_ = value; } // The size the reference takes up on the stack. int size() const { return (type_ == ILLEGAL) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } // Return the name. Only valid for named property references. Handle GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is left in place with its value above it. void GetValue(TypeofState typeof_state); // Like GetValue except that the slot is expected to be written to before // being read from again. Thae value of the reference may be invalidated, // causing subsequent attempts to read it to fail. void TakeValue(TypeofState typeof_state); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The stored value is left in place (with the // reference intact below it) to support chained assignments. void SetValue(InitState init_state); private: CodeGenerator* cgen_; Expression* expression_; Type type_; }; // ------------------------------------------------------------------------- // Control destinations. // A control destination encapsulates a pair of jump targets and a // flag indicating which one is the preferred fall-through. The // preferred fall-through must be unbound, the other may be already // bound (ie, a backward target). // // The true and false targets may be jumped to unconditionally or // control may split conditionally. Unconditional jumping and // splitting should be emitted in tail position (as the last thing // when compiling an expression) because they can cause either label // to be bound or the non-fall through to be jumped to leaving an // invalid virtual frame. // // The labels in the control destination can be extracted and // manipulated normally without affecting the state of the // destination. class ControlDestination BASE_EMBEDDED { public: ControlDestination(JumpTarget* true_target, JumpTarget* false_target, bool true_is_fall_through) : true_target_(true_target), false_target_(false_target), true_is_fall_through_(true_is_fall_through), is_used_(false) { ASSERT(true_is_fall_through ? !true_target->is_bound() : !false_target->is_bound()); } // Accessors for the jump targets. Directly jumping or branching to // or binding the targets will not update the destination's state. JumpTarget* true_target() const { return true_target_; } JumpTarget* false_target() const { return false_target_; } // True if the the destination has been jumped to unconditionally or // control has been split to both targets. This predicate does not // test whether the targets have been extracted and manipulated as // raw jump targets. bool is_used() const { return is_used_; } // True if the destination is used and the true target (respectively // false target) was the fall through. If the target is backward, // "fall through" included jumping unconditionally to it. bool true_was_fall_through() const { return is_used_ && true_is_fall_through_; } bool false_was_fall_through() const { return is_used_ && !true_is_fall_through_; } // Emit a branch to one of the true or false targets, and bind the // other target. Because this binds the fall-through target, it // should be emitted in tail position (as the last thing when // compiling an expression). void Split(Condition cc) { ASSERT(!is_used_); if (true_is_fall_through_) { false_target_->Branch(NegateCondition(cc)); true_target_->Bind(); } else { true_target_->Branch(cc); false_target_->Bind(); } is_used_ = true; } // Emit an unconditional jump in tail position, to the true target // (if the argument is true) or the false target. The "jump" will // actually bind the jump target if it is forward, jump to it if it // is backward. void Goto(bool where) { ASSERT(!is_used_); JumpTarget* target = where ? true_target_ : false_target_; if (target->is_bound()) { target->Jump(); } else { target->Bind(); } is_used_ = true; true_is_fall_through_ = where; } // Mark this jump target as used as if Goto had been called, but // without generating a jump or binding a label (the control effect // should have already happened). This is used when the left // subexpression of the short-circuit boolean operators are // compiled. void Use(bool where) { ASSERT(!is_used_); ASSERT((where ? true_target_ : false_target_)->is_bound()); is_used_ = true; true_is_fall_through_ = where; } // Swap the true and false targets but keep the same actual label as // the fall through. This is used when compiling negated // expressions, where we want to swap the targets but preserve the // state. void Invert() { JumpTarget* temp_target = true_target_; true_target_ = false_target_; false_target_ = temp_target; true_is_fall_through_ = !true_is_fall_through_; } private: // True and false jump targets. JumpTarget* true_target_; JumpTarget* false_target_; // Before using the destination: true if the true target is the // preferred fall through, false if the false target is. After // using the destination: true if the true target was actually used // as the fall through, false if the false target was. bool true_is_fall_through_; // True if the Split or Goto functions have been called. bool is_used_; }; // ------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the jump target pair). It is threaded through // the call stack. Constructing a state implicitly pushes it on the owning // code generator's stack of states, and destroying one implicitly pops it. // // The code generator state is only used for expressions, so statements have // the initial state. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Create a code generator state based on a code generator's current // state. The new state may or may not be inside a typeof, and has its // own control destination. CodeGenState(CodeGenerator* owner, TypeofState typeof_state, ControlDestination* destination); // Destroy a code generator state and restore the owning code generator's // previous state. ~CodeGenState(); // Accessors for the state. TypeofState typeof_state() const { return typeof_state_; } ControlDestination* destination() const { return destination_; } private: // The owning code generator. CodeGenerator* owner_; // A flag indicating whether we are compiling the immediate subexpression // of a typeof expression. TypeofState typeof_state_; // A control destination in case the expression has a control-flow // effect. ControlDestination* destination_; // The previous state of the owning code generator, restored when // this state is destroyed. CodeGenState* previous_; }; // ------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Takes a function literal, generates code for it. This function should only // be called by compiler.cc. static Handle MakeCode(FunctionLiteral* fun, Handle