// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/v8.h" #include "src/disassembler.h" #include "src/factory.h" #include "src/ppc/assembler-ppc-inl.h" #include "src/simulator.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { // TODO(ppc): Refine these signatures per test case, they can have arbitrary // return and argument types and arbitrary number of arguments. using F_iiiii = Object*(int x, int p1, int p2, int p3, int p4); using F_piiii = Object*(void* p0, int p1, int p2, int p3, int p4); using F_ppiii = Object*(void* p0, void* p1, int p2, int p3, int p4); using F_pppii = Object*(void* p0, void* p1, void* p2, int p3, int p4); using F_ippii = Object*(int p0, void* p1, void* p2, int p3, int p4); #define __ assm. // Simple add parameter 1 to parameter 2 and return TEST(0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); __ function_descriptor(); __ add(r3, r3, r4); __ blr(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG code->Print(); #endif auto f = GeneratedCode::FromCode(*code); intptr_t res = reinterpret_cast(f.Call(3, 4, 0, 0, 0)); ::printf("f() = %" V8PRIdPTR "\n", res); CHECK_EQ(7, static_cast(res)); } // Loop 100 times, adding loop counter to result TEST(1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label L, C; __ function_descriptor(); __ mr(r4, r3); __ li(r3, Operand::Zero()); __ b(&C); __ bind(&L); __ add(r3, r3, r4); __ subi(r4, r4, Operand(1)); __ bind(&C); __ cmpi(r4, Operand::Zero()); __ bne(&L); __ blr(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG code->Print(); #endif auto f = GeneratedCode::FromCode(*code); intptr_t res = reinterpret_cast(f.Call(100, 0, 0, 0, 0)); ::printf("f() = %" V8PRIdPTR "\n", res); CHECK_EQ(5050, static_cast(res)); } TEST(2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label L, C; __ function_descriptor(); __ mr(r4, r3); __ li(r3, Operand(1)); __ b(&C); __ bind(&L); #if defined(V8_TARGET_ARCH_PPC64) __ mulld(r3, r4, r3); #else __ mullw(r3, r4, r3); #endif __ subi(r4, r4, Operand(1)); __ bind(&C); __ cmpi(r4, Operand::Zero()); __ bne(&L); __ blr(); // some relocated stuff here, not executed __ RecordComment("dead code, just testing relocations"); __ mov(r0, Operand(isolate->factory()->true_value())); __ RecordComment("dead code, just testing immediate operands"); __ mov(r0, Operand(-1)); __ mov(r0, Operand(0xFF000000)); __ mov(r0, Operand(0xF0F0F0F0)); __ mov(r0, Operand(0xFFF0FFFF)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG code->Print(); #endif auto f = GeneratedCode::FromCode(*code); intptr_t res = reinterpret_cast(f.Call(10, 0, 0, 0, 0)); ::printf("f() = %" V8PRIdPTR "\n", res); CHECK_EQ(3628800, static_cast(res)); } TEST(3) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int i; char c; int16_t s; } T; T t; Assembler assm(CcTest::i_isolate(), nullptr, 0); Label L, C; __ function_descriptor(); // build a frame #if V8_TARGET_ARCH_PPC64 __ stdu(sp, MemOperand(sp, -32)); __ std(fp, MemOperand(sp, 24)); #else __ stwu(sp, MemOperand(sp, -16)); __ stw(fp, MemOperand(sp, 12)); #endif __ mr(fp, sp); // r4 points to our struct __ mr(r4, r3); // modify field int i of struct __ lwz(r3, MemOperand(r4, offsetof(T, i))); __ srwi(r5, r3, Operand(1)); __ stw(r5, MemOperand(r4, offsetof(T, i))); // modify field char c of struct __ lbz(r5, MemOperand(r4, offsetof(T, c))); __ add(r3, r5, r3); __ slwi(r5, r5, Operand(2)); __ stb(r5, MemOperand(r4, offsetof(T, c))); // modify field int16_t s of struct __ lhz(r5, MemOperand(r4, offsetof(T, s))); __ add(r3, r5, r3); __ srwi(r5, r5, Operand(3)); __ sth(r5, MemOperand(r4, offsetof(T, s))); // restore frame #if V8_TARGET_ARCH_PPC64 __ addi(r11, fp, Operand(32)); __ ld(fp, MemOperand(r11, -8)); #else __ addi(r11, fp, Operand(16)); __ lwz(fp, MemOperand(r11, -4)); #endif __ mr(sp, r11); __ blr(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG code->Print(); #endif auto f = GeneratedCode::FromCode(*code); t.i = 100000; t.c = 10; t.s = 1000; intptr_t res = reinterpret_cast(f.Call(&t, 0, 0, 0, 0)); ::printf("f() = %" V8PRIdPTR "\n", res); CHECK_EQ(101010, static_cast(res)); CHECK_EQ(100000 / 2, t.i); CHECK_EQ(10 * 4, t.c); CHECK_EQ(1000 / 8, t.s); } #if 0 TEST(4) { // Test the VFP floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; int i; double m; double n; float x; float y; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(CcTest::i_isolate(), nullptr, 0); Label L, C; if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ vldr(d6, r4, offsetof(T, a)); __ vldr(d7, r4, offsetof(T, b)); __ vadd(d5, d6, d7); __ vstr(d5, r4, offsetof(T, c)); __ vmov(r2, r3, d5); __ vmov(d4, r2, r3); __ vstr(d4, r4, offsetof(T, b)); // Load t.x and t.y, switch values, and store back to the struct. __ vldr(s0, r4, offsetof(T, x)); __ vldr(s31, r4, offsetof(T, y)); __ vmov(s16, s0); __ vmov(s0, s31); __ vmov(s31, s16); __ vstr(s0, r4, offsetof(T, x)); __ vstr(s31, r4, offsetof(T, y)); // Move a literal into a register that can be encoded in the instruction. __ vmov(d4, 1.0); __ vstr(d4, r4, offsetof(T, e)); // Move a literal into a register that requires 64 bits to encode. // 0x3FF0000010000000 = 1.000000059604644775390625 __ vmov(d4, 1.000000059604644775390625); __ vstr(d4, r4, offsetof(T, d)); // Convert from floating point to integer. __ vmov(d4, 2.0); __ vcvt_s32_f64(s31, d4); __ vstr(s31, r4, offsetof(T, i)); // Convert from integer to floating point. __ mov(lr, Operand(42)); __ vmov(s31, lr); __ vcvt_f64_s32(d4, s31); __ vstr(d4, r4, offsetof(T, f)); // Test vabs. __ vldr(d1, r4, offsetof(T, g)); __ vabs(d0, d1); __ vstr(d0, r4, offsetof(T, g)); __ vldr(d2, r4, offsetof(T, h)); __ vabs(d0, d2); __ vstr(d0, r4, offsetof(T, h)); // Test vneg. __ vldr(d1, r4, offsetof(T, m)); __ vneg(d0, d1); __ vstr(d0, r4, offsetof(T, m)); __ vldr(d1, r4, offsetof(T, n)); __ vneg(d0, d1); __ vstr(d0, r4, offsetof(T, n)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto f = GeneratedCode::FromCode(*code); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.g = -2718.2818; t.h = 31415926.5; t.i = 0; t.m = -2718.2818; t.n = 123.456; t.x = 4.5; t.y = 9.0; f.Call(&t, 0, 0, 0, 0); CHECK_EQ(4.5, t.y); CHECK_EQ(9.0, t.x); CHECK_EQ(-123.456, t.n); CHECK_EQ(2718.2818, t.m); CHECK_EQ(2, t.i); CHECK_EQ(2718.2818, t.g); CHECK_EQ(31415926.5, t.h); CHECK_EQ(42.0, t.f); CHECK_EQ(1.0, t.e); CHECK_EQ(1.000000059604644775390625, t.d); CHECK_EQ(4.25, t.c); CHECK_EQ(4.25, t.b); CHECK_EQ(1.5, t.a); } } TEST(5) { // Test the ARMv7 bitfield instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); // On entry, r0 = 0xAAAAAAAA = 0b10..10101010. __ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555 __ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11 __ bfc(r0, 1, 3); // 0b11..111111110001 = -15 __ mov(r1, Operand(7)); __ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7 __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto f = GeneratedCode::FromCode(*code); int res = reinterpret_cast(f.Call(0xAAAAAAAA, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(-7, res); } } TEST(6) { // Test saturating instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); __ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF. __ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F. __ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0. __ addi(r0, r1, Operand(r2)); __ addi(r0, r0, Operand(r3)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto f = GeneratedCode::FromCode(*code); int res = reinterpret_cast(f.Call(0xFFFF, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(382, res); } } enum VCVTTypes { s32_f64, u32_f64 }; static void TestRoundingMode(VCVTTypes types, VFPRoundingMode mode, double value, int expected, bool expected_exception = false) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); Label wrong_exception; __ vmrs(r1); // Set custom FPSCR. __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask)); __ orr(r2, r2, Operand(mode)); __ vmsr(r2); // Load value, convert, and move back result to r0 if everything went well. __ vmov(d1, value); switch (types) { case s32_f64: __ vcvt_s32_f64(s0, d1, kFPSCRRounding); break; case u32_f64: __ vcvt_u32_f64(s0, d1, kFPSCRRounding); break; default: UNREACHABLE(); break; } // Check for vfp exceptions __ vmrs(r2); __ tst(r2, Operand(kVFPExceptionMask)); // Check that we behaved as expected. __ b(&wrong_exception, expected_exception ? eq : ne); // There was no exception. Retrieve the result and return. __ vmov(r0, s0); __ mov(pc, Operand(lr)); // The exception behaviour is not what we expected. // Load a special value and return. __ bind(&wrong_exception); __ mov(r0, Operand(11223344)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto f = GeneratedCode::FromCode(*code); int res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ::printf("res = %d\n", res); CHECK_EQ(expected, res); } } TEST(7) { // Test vfp rounding modes. // s32_f64 (double to integer). TestRoundingMode(s32_f64, RN, 0, 0); TestRoundingMode(s32_f64, RN, 0.5, 0); TestRoundingMode(s32_f64, RN, -0.5, 0); TestRoundingMode(s32_f64, RN, 1.5, 2); TestRoundingMode(s32_f64, RN, -1.5, -2); TestRoundingMode(s32_f64, RN, 123.7, 124); TestRoundingMode(s32_f64, RN, -123.7, -124); TestRoundingMode(s32_f64, RN, 123456.2, 123456); TestRoundingMode(s32_f64, RN, -123456.2, -123456); TestRoundingMode(s32_f64, RN, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true); TestRoundingMode(s32_f64, RN, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true); TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true); TestRoundingMode(s32_f64, RM, 0, 0); TestRoundingMode(s32_f64, RM, 0.5, 0); TestRoundingMode(s32_f64, RM, -0.5, -1); TestRoundingMode(s32_f64, RM, 123.7, 123); TestRoundingMode(s32_f64, RM, -123.7, -124); TestRoundingMode(s32_f64, RM, 123456.2, 123456); TestRoundingMode(s32_f64, RM, -123456.2, -123457); TestRoundingMode(s32_f64, RM, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RM, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true); TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, 0, 0); TestRoundingMode(s32_f64, RZ, 0.5, 0); TestRoundingMode(s32_f64, RZ, -0.5, 0); TestRoundingMode(s32_f64, RZ, 123.7, 123); TestRoundingMode(s32_f64, RZ, -123.7, -123); TestRoundingMode(s32_f64, RZ, 123456.2, 123456); TestRoundingMode(s32_f64, RZ, -123456.2, -123456); TestRoundingMode(s32_f64, RZ, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RZ, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true); // u32_f64 (double to integer). // Negative values. TestRoundingMode(u32_f64, RN, -0.5, 0); TestRoundingMode(u32_f64, RN, -123456.7, 0, true); TestRoundingMode(u32_f64, RN, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RM, -0.5, 0, true); TestRoundingMode(u32_f64, RM, -123456.7, 0, true); TestRoundingMode(u32_f64, RM, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RZ, -0.5, 0); TestRoundingMode(u32_f64, RZ, -123456.7, 0, true); TestRoundingMode(u32_f64, RZ, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true); // Positive values. // kMaxInt is the maximum *signed* integer: 0x7FFFFFFF. static const uint32_t kMaxUInt = 0xFFFFFFFFu; TestRoundingMode(u32_f64, RZ, 0, 0); TestRoundingMode(u32_f64, RZ, 0.5, 0); TestRoundingMode(u32_f64, RZ, 123.7, 123); TestRoundingMode(u32_f64, RZ, 123456.2, 123456); TestRoundingMode(u32_f64, RZ, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RM, 0, 0); TestRoundingMode(u32_f64, RM, 0.5, 0); TestRoundingMode(u32_f64, RM, 123.7, 123); TestRoundingMode(u32_f64, RM, 123456.2, 123456); TestRoundingMode(u32_f64, RM, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RN, 0, 0); TestRoundingMode(u32_f64, RN, 0.5, 0); TestRoundingMode(u32_f64, RN, 1.5, 2); TestRoundingMode(u32_f64, RN, 123.7, 124); TestRoundingMode(u32_f64, RN, 123456.2, 123456); TestRoundingMode(u32_f64, RN, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true); TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true); } TEST(8) { // Test VFP multi load/store with ia_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ addi(r4, r0, Operand(offsetof(D, a))); __ vldm(ia_w, r4, d0, d3); __ vldm(ia_w, r4, d4, d7); __ addi(r4, r0, Operand(offsetof(D, a))); __ vstm(ia_w, r4, d6, d7); __ vstm(ia_w, r4, d0, d5); __ addi(r4, r1, Operand(offsetof(F, a))); __ vldm(ia_w, r4, s0, s3); __ vldm(ia_w, r4, s4, s7); __ addi(r4, r1, Operand(offsetof(F, a))); __ vstm(ia_w, r4, s6, s7); __ vstm(ia_w, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto fn = GeneratedCode::FromCode(*code); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; fn.Call(&d, &f, 0, 0, 0); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } } TEST(9) { // Test VFP multi load/store with ia. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ addi(r4, r0, Operand(offsetof(D, a))); __ vldm(ia, r4, d0, d3); __ addi(r4, r4, Operand(4 * 8)); __ vldm(ia, r4, d4, d7); __ addi(r4, r0, Operand(offsetof(D, a))); __ vstm(ia, r4, d6, d7); __ addi(r4, r4, Operand(2 * 8)); __ vstm(ia, r4, d0, d5); __ addi(r4, r1, Operand(offsetof(F, a))); __ vldm(ia, r4, s0, s3); __ addi(r4, r4, Operand(4 * 4)); __ vldm(ia, r4, s4, s7); __ addi(r4, r1, Operand(offsetof(F, a))); __ vstm(ia, r4, s6, s7); __ addi(r4, r4, Operand(2 * 4)); __ vstm(ia, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto fn = GeneratedCode::FromCode(*code); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; fn.Call(&d, &f, 0, 0, 0); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } } TEST(10) { // Test VFP multi load/store with db_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(VFP2)) { CpuFeatures::Scope scope(VFP2); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ addi(r4, r0, Operand(offsetof(D, h) + 8)); __ vldm(db_w, r4, d4, d7); __ vldm(db_w, r4, d0, d3); __ addi(r4, r0, Operand(offsetof(D, h) + 8)); __ vstm(db_w, r4, d0, d5); __ vstm(db_w, r4, d6, d7); __ addi(r4, r1, Operand(offsetof(F, h) + 4)); __ vldm(db_w, r4, s4, s7); __ vldm(db_w, r4, s0, s3); __ addi(r4, r1, Operand(offsetof(F, h) + 4)); __ vstm(db_w, r4, s0, s5); __ vstm(db_w, r4, s6, s7); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto fn = GeneratedCode::FromCode(*code); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; fn.Call(&d, &f, 0, 0, 0); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } } TEST(11) { // Test instructions using the carry flag. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t a; int32_t b; int32_t c; int32_t d; } I; I i; i.a = 0xABCD0001; i.b = 0xABCD0000; Assembler assm(isolate, nullptr, 0); // Test HeapObject untagging. __ ldr(r1, MemOperand(r0, offsetof(I, a))); __ mov(r1, Operand(r1, ASR, 1), SetCC); __ adc(r1, r1, Operand(r1), LeaveCC, cs); __ str(r1, MemOperand(r0, offsetof(I, a))); __ ldr(r2, MemOperand(r0, offsetof(I, b))); __ mov(r2, Operand(r2, ASR, 1), SetCC); __ adc(r2, r2, Operand(r2), LeaveCC, cs); __ str(r2, MemOperand(r0, offsetof(I, b))); // Test corner cases. __ mov(r1, Operand(0xFFFFFFFF)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, offsetof(I, c))); __ mov(r1, Operand(0xFFFFFFFF)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, offsetof(I, d))); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Object* code = isolate->heap()->CreateCode( desc, Code::STUB, Handle())->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif auto f = GeneratedCode::FromCode(*code); f.Call(&i, 0, 0, 0, 0); CHECK_EQ(0xABCD0001, i.a); CHECK_EQ(static_cast(0xABCD0000) >> 1, i.b); CHECK_EQ(0x00000000, i.c); CHECK_EQ(0xFFFFFFFF, i.d); } TEST(12) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label target; __ b(eq, &target); __ b(ne, &target); __ bind(&target); __ nop(); } #endif #undef __ } // namespace internal } // namespace v8