// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/objects.h" #include #include #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/api.h" #include "src/arguments.h" #include "src/base/bits.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-dependencies.h" #include "src/compiler.h" #include "src/cpu-profiler.h" #include "src/date.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/execution.h" #include "src/field-index-inl.h" #include "src/field-index.h" #include "src/full-codegen/full-codegen.h" #include "src/hydrogen.h" #include "src/ic/ic.h" #include "src/interpreter/bytecodes.h" #include "src/isolate-inl.h" #include "src/log.h" #include "src/lookup.h" #include "src/macro-assembler.h" #include "src/messages.h" #include "src/objects-inl.h" #include "src/prototype.h" #include "src/safepoint-table.h" #include "src/string-builder.h" #include "src/string-search.h" #include "src/string-stream.h" #include "src/utils.h" #ifdef ENABLE_DISASSEMBLER #include "src/disasm.h" #include "src/disassembler.h" #endif namespace v8 { namespace internal { Handle Object::OptimalType(Isolate* isolate, Representation representation) { if (representation.IsNone()) return HeapType::None(isolate); if (FLAG_track_field_types) { if (representation.IsHeapObject() && IsHeapObject()) { // We can track only JavaScript objects with stable maps. Handle map(HeapObject::cast(this)->map(), isolate); if (map->is_stable() && map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE && map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE) { return HeapType::Class(map, isolate); } } } return HeapType::Any(isolate); } MaybeHandle Object::ToObject(Isolate* isolate, Handle object, Handle native_context) { if (object->IsJSReceiver()) return Handle::cast(object); Handle constructor; if (object->IsSmi()) { constructor = handle(native_context->number_function(), isolate); } else { int constructor_function_index = Handle::cast(object)->map()->GetConstructorFunctionIndex(); if (constructor_function_index == Map::kNoConstructorFunctionIndex) { return MaybeHandle(); } constructor = handle( JSFunction::cast(native_context->get(constructor_function_index)), isolate); } Handle result = isolate->factory()->NewJSObject(constructor); Handle::cast(result)->set_value(*object); return result; } // static MaybeHandle Object::ToNumber(Handle input) { while (true) { if (input->IsNumber()) { return input; } Isolate* const isolate = Handle::cast(input)->GetIsolate(); if (input->IsOddball()) { return handle(Handle::cast(input)->to_number(), isolate); } if (input->IsString()) { return String::ToNumber(Handle::cast(input)); } if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber), Object); } if (input->IsSimd128Value()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber), Object); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle::cast(input), ToPrimitiveHint::kNumber), Object); } } // static MaybeHandle Object::ToString(Isolate* isolate, Handle input) { while (true) { if (input->IsString()) { return Handle::cast(input); } if (input->IsOddball()) { return handle(Handle::cast(input)->to_string(), isolate); } if (input->IsNumber()) { return isolate->factory()->NumberToString(input); } if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString), String); } if (input->IsSimd128Value()) { return Simd128Value::ToString(Handle::cast(input)); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle::cast(input), ToPrimitiveHint::kString), String); } } bool Object::BooleanValue() { if (IsBoolean()) return IsTrue(); if (IsSmi()) return Smi::cast(this)->value() != 0; if (IsUndefined() || IsNull()) return false; if (IsUndetectableObject()) return false; // Undetectable object is false. if (IsString()) return String::cast(this)->length() != 0; if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue(); return true; } bool Object::StrictEquals(Object* that) { if (this->IsNumber()) { if (!that->IsNumber()) return false; double const x = this->Number(); double const y = that->Number(); // Must check explicitly for NaN:s on Windows, but -0 works fine. return x == y && !std::isnan(x) && !std::isnan(y); } else if (this->IsString()) { if (!that->IsString()) return false; return String::cast(this)->Equals(String::cast(that)); } else if (this->IsSimd128Value()) { if (!that->IsSimd128Value()) return false; return Simd128Value::cast(this)->Equals(Simd128Value::cast(that)); } return this == that; } // static Handle Object::TypeOf(Isolate* isolate, Handle object) { if (object->IsNumber()) return isolate->factory()->number_string(); if (object->IsUndefined() || object->IsUndetectableObject()) { return isolate->factory()->undefined_string(); } if (object->IsBoolean()) return isolate->factory()->boolean_string(); if (object->IsSymbol()) return isolate->factory()->symbol_string(); #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (object->Is##Type()) return isolate->factory()->type##_string(); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE if (object->IsCallable()) return isolate->factory()->function_string(); return isolate->factory()->object_string(); } // static MaybeHandle Object::Multiply(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() * rhs->Number()); } // static MaybeHandle Object::Divide(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() / rhs->Number()); } // static MaybeHandle Object::Modulus(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number())); } // static MaybeHandle Object::Add(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (lhs->IsNumber() && rhs->IsNumber()) { return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } else if (lhs->IsString() && rhs->IsString()) { return isolate->factory()->NewConsString(Handle::cast(lhs), Handle::cast(rhs)); } else if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object); if (lhs->IsString() || rhs->IsString()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs), Object); return isolate->factory()->NewConsString(Handle::cast(lhs), Handle::cast(rhs)); } ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } // static MaybeHandle Object::Subtract(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() - rhs->Number()); } // static MaybeHandle Object::ShiftLeft(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) << (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle Object::ShiftRight(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >> (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle Object::ShiftRightLogical(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >> (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle Object::BitwiseAnd(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) & NumberToInt32(*rhs)); } // static MaybeHandle Object::BitwiseOr(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) | NumberToInt32(*rhs)); } // static MaybeHandle Object::BitwiseXor(Isolate* isolate, Handle lhs, Handle rhs, Strength strength) { if (!lhs->IsNumber() || !rhs->IsNumber()) { if (is_strong(strength)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kStrongImplicitConversion), Object); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^ NumberToInt32(*rhs)); } bool Object::IsPromise(Handle object) { if (!object->IsJSObject()) return false; auto js_object = Handle::cast(object); // Promises can't have access checks. if (js_object->map()->is_access_check_needed()) return false; auto isolate = js_object->GetIsolate(); // TODO(dcarney): this should just be read from the symbol registry so as not // to be context dependent. auto key = isolate->factory()->promise_status_symbol(); // Shouldn't be possible to throw here. return JSObject::HasRealNamedProperty(js_object, key).FromJust(); } // static MaybeHandle Object::GetMethod(Handle receiver, Handle name) { Handle func; Isolate* isolate = receiver->GetIsolate(); ASSIGN_RETURN_ON_EXCEPTION(isolate, func, JSReceiver::GetProperty(receiver, name), Object); if (func->IsNull() || func->IsUndefined()) { return isolate->factory()->undefined_value(); } if (!func->IsCallable()) { // TODO(bmeurer): Better error message here? THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCalledNonCallable, func), Object); } return func; } MaybeHandle Object::GetProperty(LookupIterator* it, LanguageMode language_mode) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyWithHandler( it->GetHolder(), it->GetReceiver(), it->GetName()); case LookupIterator::INTERCEPTOR: { bool done; Handle result; ASSIGN_RETURN_ON_EXCEPTION( it->isolate(), result, JSObject::GetPropertyWithInterceptor(it, &done), Object); if (done) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyWithFailedAccessCheck(it); case LookupIterator::ACCESSOR: return GetPropertyWithAccessor(it, language_mode); case LookupIterator::INTEGER_INDEXED_EXOTIC: return ReadAbsentProperty(it, language_mode); case LookupIterator::DATA: return it->GetDataValue(); } } return ReadAbsentProperty(it, language_mode); } Handle JSReceiver::GetDataProperty(Handle object, Handle name) { LookupIterator it(object, name, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); return GetDataProperty(&it); } Handle JSReceiver::GetDataProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) continue; // Fall through. case LookupIterator::JSPROXY: it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::ACCESSOR: // TODO(verwaest): For now this doesn't call into // ExecutableAccessorInfo, since clients don't need it. Update once // relevant. it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return it->isolate()->factory()->undefined_value(); case LookupIterator::DATA: return it->GetDataValue(); } } return it->isolate()->factory()->undefined_value(); } bool Object::ToInt32(int32_t* value) { if (IsSmi()) { *value = Smi::cast(this)->value(); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (FastI2D(FastD2I(num)) == num) { *value = FastD2I(num); return true; } } return false; } bool Object::ToUint32(uint32_t* value) { if (IsSmi()) { int num = Smi::cast(this)->value(); if (num >= 0) { *value = static_cast(num); return true; } } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (num >= 0 && FastUI2D(FastD2UI(num)) == num) { *value = FastD2UI(num); return true; } } return false; } bool FunctionTemplateInfo::IsTemplateFor(Object* object) { if (!object->IsHeapObject()) return false; return IsTemplateFor(HeapObject::cast(object)->map()); } bool FunctionTemplateInfo::IsTemplateFor(Map* map) { // There is a constraint on the object; check. if (!map->IsJSObjectMap()) return false; // Fetch the constructor function of the object. Object* cons_obj = map->GetConstructor(); if (!cons_obj->IsJSFunction()) return false; JSFunction* fun = JSFunction::cast(cons_obj); // Iterate through the chain of inheriting function templates to // see if the required one occurs. for (Object* type = fun->shared()->function_data(); type->IsFunctionTemplateInfo(); type = FunctionTemplateInfo::cast(type)->parent_template()) { if (type == this) return true; } // Didn't find the required type in the inheritance chain. return false; } // TODO(dcarney): CallOptimization duplicates this logic, merge. Object* FunctionTemplateInfo::GetCompatibleReceiver(Isolate* isolate, Object* receiver) { // API calls are only supported with JSObject receivers. if (!receiver->IsJSObject()) return isolate->heap()->null_value(); Object* recv_type = this->signature(); // No signature, return holder. if (recv_type->IsUndefined()) return receiver; FunctionTemplateInfo* signature = FunctionTemplateInfo::cast(recv_type); // Check the receiver. for (PrototypeIterator iter(isolate, receiver, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) { if (signature->IsTemplateFor(iter.GetCurrent())) return iter.GetCurrent(); } return isolate->heap()->null_value(); } Handle JSObject::EnsureWritableFastElements( Handle object) { DCHECK(object->HasFastSmiOrObjectElements()); Isolate* isolate = object->GetIsolate(); Handle elems(FixedArray::cast(object->elements()), isolate); if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems; Handle writable_elems = isolate->factory()->CopyFixedArrayWithMap( elems, isolate->factory()->fixed_array_map()); object->set_elements(*writable_elems); isolate->counters()->cow_arrays_converted()->Increment(); return writable_elems; } MaybeHandle JSProxy::GetPropertyWithHandler(Handle proxy, Handle receiver, Handle name) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return isolate->factory()->undefined_value(); Handle args[] = { receiver, name }; return CallTrap( proxy, "get", isolate->derived_get_trap(), arraysize(args), args); } MaybeHandle Object::GetPropertyWithAccessor( LookupIterator* it, LanguageMode language_mode) { Isolate* isolate = it->isolate(); Handle structure = it->GetAccessors(); Handle receiver = it->GetReceiver(); // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the getter. DCHECK(!structure->IsForeign()); // API style callbacks. if (structure->IsAccessorInfo()) { Handle holder = it->GetHolder(); Handle name = it->GetName(); Handle info = Handle::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, name, receiver), Object); } v8::AccessorNameGetterCallback call_fun = v8::ToCData(info->getter()); if (call_fun == nullptr) return isolate->factory()->undefined_value(); LOG(isolate, ApiNamedPropertyAccess("load", *holder, *name)); PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder); v8::Local result = args.Call(call_fun, v8::Utils::ToLocal(name)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) { return ReadAbsentProperty(isolate, receiver, name, language_mode); } Handle return_value = v8::Utils::OpenHandle(*result); return_value->VerifyApiCallResultType(); // Rebox handle before return. return handle(*return_value, isolate); } // Regular accessor. Handle getter(AccessorPair::cast(*structure)->getter(), isolate); if (getter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return Object::GetPropertyWithDefinedGetter( receiver, Handle::cast(getter)); } // Getter is not a function. return ReadAbsentProperty(isolate, receiver, it->GetName(), language_mode); } bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate, Handle info, Handle map) { if (!info->HasExpectedReceiverType()) return true; if (!map->IsJSObjectMap()) return false; return FunctionTemplateInfo::cast(info->expected_receiver_type()) ->IsTemplateFor(*map); } MaybeHandle Object::SetPropertyWithAccessor( LookupIterator* it, Handle value, LanguageMode language_mode) { Isolate* isolate = it->isolate(); Handle structure = it->GetAccessors(); Handle receiver = it->GetReceiver(); // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the setter. DCHECK(!structure->IsForeign()); // API style callbacks. if (structure->IsExecutableAccessorInfo()) { Handle holder = it->GetHolder(); Handle name = it->GetName(); Handle info = Handle::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, name, receiver), Object); } v8::AccessorNameSetterCallback call_fun = v8::ToCData(info->setter()); if (call_fun == nullptr) return value; LOG(isolate, ApiNamedPropertyAccess("store", *holder, *name)); PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder); args.Call(call_fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return value; } // Regular accessor. Handle setter(AccessorPair::cast(*structure)->setter(), isolate); if (setter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle::cast(setter), value); } if (is_sloppy(language_mode)) return value; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kNoSetterInCallback, it->GetName(), it->GetHolder()), Object); } MaybeHandle Object::GetPropertyWithDefinedGetter( Handle receiver, Handle getter) { Isolate* isolate = getter->GetIsolate(); // Platforms with simulators like arm/arm64 expose a funny issue. If the // simulator has a separate JS stack pointer from the C++ stack pointer, it // can miss C++ stack overflows in the stack guard at the start of JavaScript // functions. It would be very expensive to check the C++ stack pointer at // that location. The best solution seems to be to break the impasse by // adding checks at possible recursion points. What's more, we don't put // this stack check behind the USE_SIMULATOR define in order to keep // behavior the same between hardware and simulators. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { isolate->StackOverflow(); return MaybeHandle(); } Debug* debug = isolate->debug(); // Handle stepping into a getter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->is_active()) debug->HandleStepIn(getter, false); return Execution::Call(isolate, getter, receiver, 0, NULL, true); } MaybeHandle Object::SetPropertyWithDefinedSetter( Handle receiver, Handle setter, Handle value) { Isolate* isolate = setter->GetIsolate(); Debug* debug = isolate->debug(); // Handle stepping into a setter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->is_active()) debug->HandleStepIn(setter, false); Handle argv[] = { value }; RETURN_ON_EXCEPTION(isolate, Execution::Call(isolate, setter, receiver, arraysize(argv), argv, true), Object); return value; } // static bool JSObject::AllCanRead(LookupIterator* it) { // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of // which have already been checked. DCHECK(it->state() == LookupIterator::ACCESS_CHECK || it->state() == LookupIterator::INTERCEPTOR); for (it->Next(); it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { auto accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_read()) return true; } } else if (it->state() == LookupIterator::INTERCEPTOR) { if (it->GetInterceptor()->all_can_read()) return true; } } return false; } MaybeHandle JSObject::GetPropertyWithFailedAccessCheck( LookupIterator* it) { Handle checked = it->GetHolder(); while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return GetPropertyWithAccessor(it, SLOPPY); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); bool done; Handle result; ASSIGN_RETURN_ON_EXCEPTION(it->isolate(), result, GetPropertyWithInterceptor(it, &done), Object); if (done) return result; } it->isolate()->ReportFailedAccessCheck(checked); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return it->factory()->undefined_value(); } Maybe JSObject::GetPropertyAttributesWithFailedAccessCheck( LookupIterator* it) { Handle checked = it->GetHolder(); while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return Just(it->property_details().attributes()); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); auto result = GetPropertyAttributesWithInterceptor(it); if (it->isolate()->has_scheduled_exception()) break; if (result.IsJust() && result.FromJust() != ABSENT) return result; } it->isolate()->ReportFailedAccessCheck(checked); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing()); return Just(ABSENT); } // static bool JSObject::AllCanWrite(LookupIterator* it) { for (; it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { Handle accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_write()) return true; } } } return false; } MaybeHandle JSObject::SetPropertyWithFailedAccessCheck( LookupIterator* it, Handle value) { Handle checked = it->GetHolder(); if (AllCanWrite(it)) { // The supplied language-mode is ignored by SetPropertyWithAccessor. return SetPropertyWithAccessor(it, value, SLOPPY); } it->isolate()->ReportFailedAccessCheck(checked); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return value; } void JSObject::SetNormalizedProperty(Handle object, Handle name, Handle value, PropertyDetails details) { DCHECK(!object->HasFastProperties()); if (!name->IsUniqueName()) { name = object->GetIsolate()->factory()->InternalizeString( Handle::cast(name)); } if (object->IsGlobalObject()) { Handle property_dictionary(object->global_dictionary()); int entry = property_dictionary->FindEntry(name); if (entry == GlobalDictionary::kNotFound) { auto cell = object->GetIsolate()->factory()->NewPropertyCell(); cell->set_value(*value); auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined : PropertyCellType::kConstant; details = details.set_cell_type(cell_type); value = cell; property_dictionary = GlobalDictionary::Add(property_dictionary, name, value, details); object->set_properties(*property_dictionary); } else { PropertyCell::UpdateCell(property_dictionary, entry, value, details); } } else { Handle property_dictionary(object->property_dictionary()); int entry = property_dictionary->FindEntry(name); if (entry == NameDictionary::kNotFound) { property_dictionary = NameDictionary::Add(property_dictionary, name, value, details); object->set_properties(*property_dictionary); } else { PropertyDetails original_details = property_dictionary->DetailsAt(entry); int enumeration_index = original_details.dictionary_index(); DCHECK(enumeration_index > 0); details = details.set_index(enumeration_index); property_dictionary->SetEntry(entry, name, value, details); } } } bool Object::HasInPrototypeChain(Isolate* isolate, Object* target) { PrototypeIterator iter(isolate, this, PrototypeIterator::START_AT_RECEIVER); while (true) { iter.AdvanceIgnoringProxies(); if (iter.IsAtEnd()) return false; if (iter.IsAtEnd(target)) return true; } } Map* Object::GetRootMap(Isolate* isolate) { DisallowHeapAllocation no_alloc; if (IsSmi()) { Context* native_context = isolate->context()->native_context(); return native_context->number_function()->initial_map(); } // The object is either a number, a string, a symbol, a boolean, a SIMD value, // a real JS object, or a Harmony proxy. HeapObject* heap_object = HeapObject::cast(this); if (heap_object->IsJSReceiver()) { return heap_object->map(); } int constructor_function_index = heap_object->map()->GetConstructorFunctionIndex(); if (constructor_function_index != Map::kNoConstructorFunctionIndex) { Context* native_context = isolate->context()->native_context(); JSFunction* constructor_function = JSFunction::cast(native_context->get(constructor_function_index)); return constructor_function->initial_map(); } return isolate->heap()->null_value()->map(); } Object* Object::GetHash() { Object* hash = GetSimpleHash(); if (hash->IsSmi()) return hash; DCHECK(IsJSReceiver()); return JSReceiver::cast(this)->GetIdentityHash(); } Object* Object::GetSimpleHash() { // The object is either a Smi, a HeapNumber, a name, an odd-ball, // a SIMD value type, a real JS object, or a Harmony proxy. if (IsSmi()) { uint32_t hash = ComputeIntegerHash(Smi::cast(this)->value(), kZeroHashSeed); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue); if (i::IsMinusZero(num)) num = 0; if (IsSmiDouble(num)) { return Smi::FromInt(FastD2I(num))->GetHash(); } uint32_t hash = ComputeLongHash(double_to_uint64(num)); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsName()) { uint32_t hash = Name::cast(this)->Hash(); return Smi::FromInt(hash); } if (IsOddball()) { uint32_t hash = Oddball::cast(this)->to_string()->Hash(); return Smi::FromInt(hash); } if (IsSimd128Value()) { uint32_t hash = Simd128Value::cast(this)->Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } DCHECK(IsJSReceiver()); JSReceiver* receiver = JSReceiver::cast(this); return receiver->GetHeap()->undefined_value(); } Handle Object::GetOrCreateHash(Isolate* isolate, Handle object) { Handle hash(object->GetSimpleHash(), isolate); if (hash->IsSmi()) return Handle::cast(hash); DCHECK(object->IsJSReceiver()); return JSReceiver::GetOrCreateIdentityHash(Handle::cast(object)); } bool Object::SameValue(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // SameValue(NaN, NaN) is true. if (this_value != other_value) { return std::isnan(this_value) && std::isnan(other_value); } // SameValue(0.0, -0.0) is false. return (std::signbit(this_value) == std::signbit(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsSimd128Value() && other->IsSimd128Value()) { if (IsFloat32x4() && other->IsFloat32x4()) { Float32x4* a = Float32x4::cast(this); Float32x4* b = Float32x4::cast(other); for (int i = 0; i < 4; i++) { float x = a->get_lane(i); float y = b->get_lane(i); // Implements the ES5 SameValue operation for floating point types. // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue if (x != y && !(std::isnan(x) && std::isnan(y))) return false; if (std::signbit(x) != std::signbit(y)) return false; } return true; } else { Simd128Value* a = Simd128Value::cast(this); Simd128Value* b = Simd128Value::cast(other); return a->map()->instance_type() == b->map()->instance_type() && a->BitwiseEquals(b); } } return false; } bool Object::SameValueZero(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // +0 == -0 is true return this_value == other_value || (std::isnan(this_value) && std::isnan(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsSimd128Value() && other->IsSimd128Value()) { if (IsFloat32x4() && other->IsFloat32x4()) { Float32x4* a = Float32x4::cast(this); Float32x4* b = Float32x4::cast(other); for (int i = 0; i < 4; i++) { float x = a->get_lane(i); float y = b->get_lane(i); // Implements the ES6 SameValueZero operation for floating point types. // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero if (x != y && !(std::isnan(x) && std::isnan(y))) return false; // SameValueZero doesn't distinguish between 0 and -0. } return true; } else { Simd128Value* a = Simd128Value::cast(this); Simd128Value* b = Simd128Value::cast(other); return a->map()->instance_type() == b->map()->instance_type() && a->BitwiseEquals(b); } } return false; } void Object::ShortPrint(FILE* out) { OFStream os(out); os << Brief(this); } void Object::ShortPrint(StringStream* accumulator) { std::ostringstream os; os << Brief(this); accumulator->Add(os.str().c_str()); } void Object::ShortPrint(std::ostream& os) { os << Brief(this); } std::ostream& operator<<(std::ostream& os, const Brief& v) { if (v.value->IsSmi()) { Smi::cast(v.value)->SmiPrint(os); } else { // TODO(svenpanne) Const-correct HeapObjectShortPrint! HeapObject* obj = const_cast(HeapObject::cast(v.value)); obj->HeapObjectShortPrint(os); } return os; } void Smi::SmiPrint(std::ostream& os) const { // NOLINT os << value(); } // Should a word be prefixed by 'a' or 'an' in order to read naturally in // English? Returns false for non-ASCII or words that don't start with // a capital letter. The a/an rule follows pronunciation in English. // We don't use the BBC's overcorrect "an historic occasion" though if // you speak a dialect you may well say "an 'istoric occasion". static bool AnWord(String* str) { if (str->length() == 0) return false; // A nothing. int c0 = str->Get(0); int c1 = str->length() > 1 ? str->Get(1) : 0; if (c0 == 'U') { if (c1 > 'Z') { return true; // An Umpire, but a UTF8String, a U. } } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { return true; // An Ape, an ABCBook. } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || c0 == 'S' || c0 == 'X')) { return true; // An MP3File, an M. } return false; } Handle String::SlowFlatten(Handle cons, PretenureFlag pretenure) { DCHECK(AllowHeapAllocation::IsAllowed()); DCHECK(cons->second()->length() != 0); Isolate* isolate = cons->GetIsolate(); int length = cons->length(); PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure : TENURED; Handle result; if (cons->IsOneByteRepresentation()) { Handle flat = isolate->factory()->NewRawOneByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } else { Handle flat = isolate->factory()->NewRawTwoByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } cons->set_first(*result); cons->set_second(isolate->heap()->empty_string()); DCHECK(result->IsFlat()); return result; } bool String::MakeExternal(v8::String::ExternalStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast(this->length()) == resource->length()); ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_one_byte = this->IsOneByteRepresentation(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? (is_one_byte ? heap->short_external_internalized_string_with_one_byte_data_map() : heap->short_external_internalized_string_map()) : (is_one_byte ? heap->short_external_string_with_one_byte_data_map() : heap->short_external_string_map()); } else { new_map = is_internalized ? (is_one_byte ? heap->external_internalized_string_with_one_byte_data_map() : heap->external_internalized_string_map()) : (is_one_byte ? heap->external_string_with_one_byte_data_map() : heap->external_string_map()); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalTwoByteString* self = ExternalTwoByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER); return true; } bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast(this->length()) == resource->length()); if (this->IsTwoByteRepresentation()) { ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(String::IsOneByte(smart_chars.start(), this->length())); } ScopedVector smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? heap->short_external_one_byte_internalized_string_map() : heap->short_external_one_byte_string_map(); } else { new_map = is_internalized ? heap->external_one_byte_internalized_string_map() : heap->external_one_byte_string_map(); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalOneByteString* self = ExternalOneByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER); return true; } void String::StringShortPrint(StringStream* accumulator) { int len = length(); if (len > kMaxShortPrintLength) { accumulator->Add("", len); return; } if (!LooksValid()) { accumulator->Add(""); return; } StringCharacterStream stream(this); bool truncated = false; if (len > kMaxShortPrintLength) { len = kMaxShortPrintLength; truncated = true; } bool one_byte = true; for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c < 32 || c >= 127) { one_byte = false; } } stream.Reset(this); if (one_byte) { accumulator->Add("Put(static_cast(stream.GetNext())); } accumulator->Put('>'); } else { // Backslash indicates that the string contains control // characters and that backslashes are therefore escaped. accumulator->Add("Add("\\n"); } else if (c == '\r') { accumulator->Add("\\r"); } else if (c == '\\') { accumulator->Add("\\\\"); } else if (c < 32 || c > 126) { accumulator->Add("\\x%02x", c); } else { accumulator->Put(static_cast(c)); } } if (truncated) { accumulator->Put('.'); accumulator->Put('.'); accumulator->Put('.'); } accumulator->Put('>'); } return; } void String::PrintUC16(std::ostream& os, int start, int end) { // NOLINT if (end < 0) end = length(); StringCharacterStream stream(this, start); for (int i = start; i < end && stream.HasMore(); i++) { os << AsUC16(stream.GetNext()); } } void JSObject::JSObjectShortPrint(StringStream* accumulator) { switch (map()->instance_type()) { case JS_ARRAY_TYPE: { double length = JSArray::cast(this)->length()->IsUndefined() ? 0 : JSArray::cast(this)->length()->Number(); accumulator->Add("", static_cast(length)); break; } case JS_WEAK_MAP_TYPE: { accumulator->Add(""); break; } case JS_WEAK_SET_TYPE: { accumulator->Add(""); break; } case JS_REGEXP_TYPE: { accumulator->Add(""); break; } case JS_FUNCTION_TYPE: { JSFunction* function = JSFunction::cast(this); Object* fun_name = function->shared()->DebugName(); bool printed = false; if (fun_name->IsString()) { String* str = String::cast(fun_name); if (str->length() > 0) { accumulator->Add("Put(str); printed = true; } } if (!printed) { accumulator->Add("Add(" (SharedFunctionInfo %p)", reinterpret_cast(function->shared())); accumulator->Put('>'); break; } case JS_GENERATOR_OBJECT_TYPE: { accumulator->Add(""); break; } case JS_MODULE_TYPE: { accumulator->Add(""); break; } // All other JSObjects are rather similar to each other (JSObject, // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). default: { Map* map_of_this = map(); Heap* heap = GetHeap(); Object* constructor = map_of_this->GetConstructor(); bool printed = false; if (constructor->IsHeapObject() && !heap->Contains(HeapObject::cast(constructor))) { accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); } else { bool global_object = IsJSGlobalProxy(); if (constructor->IsJSFunction()) { if (!heap->Contains(JSFunction::cast(constructor)->shared())) { accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); } else { Object* constructor_name = JSFunction::cast(constructor)->shared()->name(); if (constructor_name->IsString()) { String* str = String::cast(constructor_name); if (str->length() > 0) { bool vowel = AnWord(str); accumulator->Add("<%sa%s ", global_object ? "Global Object: " : "", vowel ? "n" : ""); accumulator->Put(str); accumulator->Add(" with %smap %p", map_of_this->is_deprecated() ? "deprecated " : "", map_of_this); printed = true; } } } } if (!printed) { accumulator->Add("Add(" value = "); JSValue::cast(this)->value()->ShortPrint(accumulator); } accumulator->Put('>'); break; } } } void JSObject::PrintElementsTransition( FILE* file, Handle object, ElementsKind from_kind, Handle from_elements, ElementsKind to_kind, Handle to_elements) { if (from_kind != to_kind) { OFStream os(file); os << "elements transition [" << ElementsKindToString(from_kind) << " -> " << ElementsKindToString(to_kind) << "] in "; JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true); PrintF(file, " for "); object->ShortPrint(file); PrintF(file, " from "); from_elements->ShortPrint(file); PrintF(file, " to "); to_elements->ShortPrint(file); PrintF(file, "\n"); } } void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind, PropertyAttributes attributes) { OFStream os(file); os << "[reconfiguring "; constructor_name()->PrintOn(file); os << "] "; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast(name) << "}"; } os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: "; os << attributes << " ["; JavaScriptFrame::PrintTop(GetIsolate(), file, false, true); os << "]\n"; } void Map::PrintGeneralization(FILE* file, const char* reason, int modify_index, int split, int descriptors, bool constant_to_field, Representation old_representation, Representation new_representation, HeapType* old_field_type, HeapType* new_field_type) { OFStream os(file); os << "[generalizing "; constructor_name()->PrintOn(file); os << "] "; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast(name) << "}"; } os << ":"; if (constant_to_field) { os << "c"; } else { os << old_representation.Mnemonic() << "{"; old_field_type->PrintTo(os, HeapType::SEMANTIC_DIM); os << "}"; } os << "->" << new_representation.Mnemonic() << "{"; new_field_type->PrintTo(os, HeapType::SEMANTIC_DIM); os << "} ("; if (strlen(reason) > 0) { os << reason; } else { os << "+" << (descriptors - split) << " maps"; } os << ") ["; JavaScriptFrame::PrintTop(GetIsolate(), file, false, true); os << "]\n"; } void JSObject::PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map) { PrintF(file, "[migrating "); map()->constructor_name()->PrintOn(file); PrintF(file, "] "); DescriptorArray* o = original_map->instance_descriptors(); DescriptorArray* n = new_map->instance_descriptors(); for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) { Representation o_r = o->GetDetails(i).representation(); Representation n_r = n->GetDetails(i).representation(); if (!o_r.Equals(n_r)) { String::cast(o->GetKey(i))->PrintOn(file); PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic()); } else if (o->GetDetails(i).type() == DATA_CONSTANT && n->GetDetails(i).type() == DATA) { Name* name = o->GetKey(i); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { PrintF(file, "{symbol %p}", static_cast(name)); } PrintF(file, " "); } } PrintF(file, "\n"); } void HeapObject::HeapObjectShortPrint(std::ostream& os) { // NOLINT Heap* heap = GetHeap(); if (!heap->Contains(this)) { os << "!!!INVALID POINTER!!!"; return; } if (!heap->Contains(map())) { os << "!!!INVALID MAP!!!"; return; } os << this << " "; if (IsString()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(this)->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } if (IsJSObject()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); JSObject::cast(this)->JSObjectShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } switch (map()->instance_type()) { case MAP_TYPE: os << "elements_kind()) << ")>"; break; case FIXED_ARRAY_TYPE: os << "length() << "]>"; break; case FIXED_DOUBLE_ARRAY_TYPE: os << "length() << "]>"; break; case BYTE_ARRAY_TYPE: os << "length() << "]>"; break; case BYTECODE_ARRAY_TYPE: os << "length() << "]>"; break; case FREE_SPACE_TYPE: os << "Size() << "]>"; break; #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ os << "length() \ << "]>"; \ break; TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT) #undef TYPED_ARRAY_SHORT_PRINT case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo* shared = SharedFunctionInfo::cast(this); base::SmartArrayPointer debug_name = shared->DebugName()->ToCString(); if (debug_name[0] != 0) { os << ""; } else { os << ""; } break; } case JS_MESSAGE_OBJECT_TYPE: os << ""; break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ os << "<" #Name ">"; \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE case CODE_TYPE: { Code* code = Code::cast(this); os << "kind()) << ">"; break; } case ODDBALL_TYPE: { if (IsUndefined()) { os << ""; } else if (IsTheHole()) { os << ""; } else if (IsNull()) { os << ""; } else if (IsTrue()) { os << ""; } else if (IsFalse()) { os << ""; } else { os << ""; } break; } case SYMBOL_TYPE: { Symbol* symbol = Symbol::cast(this); symbol->SymbolShortPrint(os); break; } case HEAP_NUMBER_TYPE: { os << "HeapNumberPrint(os); os << ">"; break; } case MUTABLE_HEAP_NUMBER_TYPE: { os << "HeapNumberPrint(os); os << '>'; break; } case SIMD128_VALUE_TYPE: { #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (Is##Type()) { \ os << "<" #Type ">"; \ break; \ } SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE UNREACHABLE(); break; } case JS_PROXY_TYPE: os << ""; break; case JS_FUNCTION_PROXY_TYPE: os << ""; break; case FOREIGN_TYPE: os << ""; break; case CELL_TYPE: { os << "Cell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); Cell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } case PROPERTY_CELL_TYPE: { os << "PropertyCell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); PropertyCell* cell = PropertyCell::cast(this); cell->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get() << " " << cell->property_details(); break; } case WEAK_CELL_TYPE: { os << "WeakCell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); WeakCell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } default: os << "instance_type() << ")>"; break; } } void HeapObject::Iterate(ObjectVisitor* v) { // Handle header IteratePointer(v, kMapOffset); // Handle object body Map* m = map(); IterateBody(m->instance_type(), SizeFromMap(m), v); } bool HeapNumber::HeapNumberBooleanValue() { return DoubleToBoolean(value()); } void HeapNumber::HeapNumberPrint(std::ostream& os) { // NOLINT os << value(); } #define FIELD_ADDR_CONST(p, offset) \ (reinterpret_cast(p) + offset - kHeapObjectTag) #define READ_INT32_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define READ_INT64_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) // static Handle Simd128Value::ToString(Handle input) { #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (input->Is##Type()) return Type::ToString(Handle::cast(input)); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE UNREACHABLE(); return Handle::null(); } // static Handle Float32x4::ToString(Handle input) { Isolate* const isolate = input->GetIsolate(); char arr[100]; Vector buffer(arr, arraysize(arr)); std::ostringstream os; os << "SIMD.Float32x4(" << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")"; return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); } #define SIMD128_BOOL_TO_STRING(Type, lane_count) \ Handle Type::ToString(Handle input) { \ Isolate* const isolate = input->GetIsolate(); \ std::ostringstream os; \ os << "SIMD." #Type "("; \ os << (input->get_lane(0) ? "true" : "false"); \ for (int i = 1; i < lane_count; i++) { \ os << ", " << (input->get_lane(i) ? "true" : "false"); \ } \ os << ")"; \ return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \ } SIMD128_BOOL_TO_STRING(Bool32x4, 4) SIMD128_BOOL_TO_STRING(Bool16x8, 8) SIMD128_BOOL_TO_STRING(Bool8x16, 16) #undef SIMD128_BOOL_TO_STRING #define SIMD128_INT_TO_STRING(Type, lane_count) \ Handle Type::ToString(Handle input) { \ Isolate* const isolate = input->GetIsolate(); \ char arr[100]; \ Vector buffer(arr, arraysize(arr)); \ std::ostringstream os; \ os << "SIMD." #Type "("; \ os << IntToCString(input->get_lane(0), buffer); \ for (int i = 1; i < lane_count; i++) { \ os << ", " << IntToCString(input->get_lane(i), buffer); \ } \ os << ")"; \ return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \ } SIMD128_INT_TO_STRING(Int32x4, 4) SIMD128_INT_TO_STRING(Uint32x4, 4) SIMD128_INT_TO_STRING(Int16x8, 8) SIMD128_INT_TO_STRING(Uint16x8, 8) SIMD128_INT_TO_STRING(Int8x16, 16) SIMD128_INT_TO_STRING(Uint8x16, 16) #undef SIMD128_INT_TO_STRING bool Simd128Value::BitwiseEquals(const Simd128Value* other) const { return READ_INT64_FIELD(this, kValueOffset) == READ_INT64_FIELD(other, kValueOffset) && READ_INT64_FIELD(this, kValueOffset + kInt64Size) == READ_INT64_FIELD(other, kValueOffset + kInt64Size); } uint32_t Simd128Value::Hash() const { uint32_t seed = v8::internal::kZeroHashSeed; uint32_t hash; hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31); return hash; } void Simd128Value::CopyBits(void* destination) const { memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size); } String* JSReceiver::class_name() { if (IsJSFunction() || IsJSFunctionProxy()) { return GetHeap()->Function_string(); } Object* maybe_constructor = map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_string(); } String* Map::constructor_name() { if (is_prototype_map() && prototype_info()->IsPrototypeInfo()) { PrototypeInfo* proto_info = PrototypeInfo::cast(prototype_info()); if (proto_info->constructor_name()->IsString()) { return String::cast(proto_info->constructor_name()); } } Object* maybe_constructor = GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); String* name = String::cast(constructor->shared()->name()); if (name->length() > 0) return name; String* inferred_name = constructor->shared()->inferred_name(); if (inferred_name->length() > 0) return inferred_name; Object* proto = prototype(); if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); } // TODO(rossberg): what about proxies? // If the constructor is not present, return "Object". return GetHeap()->Object_string(); } String* JSReceiver::constructor_name() { return map()->constructor_name(); } static Handle WrapType(Handle type) { if (type->IsClass()) return Map::WeakCellForMap(type->AsClass()->Map()); return type; } MaybeHandle Map::CopyWithField(Handle map, Handle name, Handle type, PropertyAttributes attributes, Representation representation, TransitionFlag flag) { DCHECK(DescriptorArray::kNotFound == map->instance_descriptors()->Search( *name, map->NumberOfOwnDescriptors())); // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle(); } Isolate* isolate = map->GetIsolate(); // Compute the new index for new field. int index = map->NextFreePropertyIndex(); if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) { representation = Representation::Tagged(); type = HeapType::Any(isolate); } Handle wrapped_type(WrapType(type)); DataDescriptor new_field_desc(name, index, wrapped_type, attributes, representation); Handle new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag); int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); return new_map; } MaybeHandle Map::CopyWithConstant(Handle map, Handle name, Handle constant, PropertyAttributes attributes, TransitionFlag flag) { // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle(); } // Allocate new instance descriptors with (name, constant) added. DataConstantDescriptor new_constant_desc(name, constant, attributes); return Map::CopyAddDescriptor(map, &new_constant_desc, flag); } void JSObject::AddSlowProperty(Handle object, Handle name, Handle value, PropertyAttributes attributes) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); if (object->IsGlobalObject()) { Handle dict(object->global_dictionary()); PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell); int entry = dict->FindEntry(name); // If there's a cell there, just invalidate and set the property. if (entry != GlobalDictionary::kNotFound) { PropertyCell::UpdateCell(dict, entry, value, details); // TODO(ishell): move this to UpdateCell. // Need to adjust the details. int index = dict->NextEnumerationIndex(); dict->SetNextEnumerationIndex(index + 1); PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry)); details = cell->property_details().set_index(index); cell->set_property_details(details); } else { auto cell = isolate->factory()->NewPropertyCell(); cell->set_value(*value); auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined : PropertyCellType::kConstant; details = details.set_cell_type(cell_type); value = cell; Handle result = GlobalDictionary::Add(dict, name, value, details); if (*dict != *result) object->set_properties(*result); } } else { Handle dict(object->property_dictionary()); PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell); Handle result = NameDictionary::Add(dict, name, value, details); if (*dict != *result) object->set_properties(*result); } } Context* JSObject::GetCreationContext() { Object* constructor = this->map()->GetConstructor(); JSFunction* function; if (!constructor->IsJSFunction()) { // Functions have null as a constructor, // but any JSFunction knows its context immediately. function = JSFunction::cast(this); } else { function = JSFunction::cast(constructor); } return function->context()->native_context(); } MaybeHandle JSObject::EnqueueChangeRecord(Handle object, const char* type_str, Handle name, Handle old_value) { DCHECK(!object->IsJSGlobalProxy()); DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle type = isolate->factory()->InternalizeUtf8String(type_str); Handle args[] = { type, object, name, old_value }; int argc = name.is_null() ? 2 : old_value->IsTheHole() ? 3 : 4; return Execution::Call(isolate, Handle(isolate->observers_notify_change()), isolate->factory()->undefined_value(), argc, args); } const char* Representation::Mnemonic() const { switch (kind_) { case kNone: return "v"; case kTagged: return "t"; case kSmi: return "s"; case kDouble: return "d"; case kInteger32: return "i"; case kHeapObject: return "h"; case kExternal: return "x"; default: UNREACHABLE(); return NULL; } } bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields, int target_inobject, int target_unused, int* old_number_of_fields) { // If fields were added (or removed), rewrite the instance. *old_number_of_fields = NumberOfFields(); DCHECK(target_number_of_fields >= *old_number_of_fields); if (target_number_of_fields != *old_number_of_fields) return true; // If smi descriptors were replaced by double descriptors, rewrite. DescriptorArray* old_desc = instance_descriptors(); DescriptorArray* new_desc = target->instance_descriptors(); int limit = NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if (new_desc->GetDetails(i).representation().IsDouble() != old_desc->GetDetails(i).representation().IsDouble()) { return true; } } // If no fields were added, and no inobject properties were removed, setting // the map is sufficient. if (target_inobject == GetInObjectProperties()) return false; // In-object slack tracking may have reduced the object size of the new map. // In that case, succeed if all existing fields were inobject, and they still // fit within the new inobject size. DCHECK(target_inobject < GetInObjectProperties()); if (target_number_of_fields <= target_inobject) { DCHECK(target_number_of_fields + target_unused == target_inobject); return false; } // Otherwise, properties will need to be moved to the backing store. return true; } static void UpdatePrototypeUserRegistration(Handle old_map, Handle new_map, Isolate* isolate) { if (!FLAG_track_prototype_users) return; if (!old_map->is_prototype_map()) return; DCHECK(new_map->is_prototype_map()); bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate); new_map->set_prototype_info(old_map->prototype_info()); old_map->set_prototype_info(Smi::FromInt(0)); if (FLAG_trace_prototype_users) { PrintF("Moving prototype_info %p from map %p to map %p.\n", reinterpret_cast(new_map->prototype_info()), reinterpret_cast(*old_map), reinterpret_cast(*new_map)); } if (was_registered) { if (new_map->prototype_info()->IsPrototypeInfo()) { // The new map isn't registered with its prototype yet; reflect this fact // in the PrototypeInfo it just inherited from the old map. PrototypeInfo::cast(new_map->prototype_info()) ->set_registry_slot(PrototypeInfo::UNREGISTERED); } JSObject::LazyRegisterPrototypeUser(new_map, isolate); } } void JSObject::MigrateToMap(Handle object, Handle new_map, int expected_additional_properties) { if (object->map() == *new_map) return; // If this object is a prototype (the callee will check), invalidate any // prototype chains involving it. InvalidatePrototypeChains(object->map()); Handle old_map(object->map()); // If the map was registered with its prototype before, ensure that it // registers with its new prototype now. This preserves the invariant that // when a map on a prototype chain is registered with its prototype, then // all prototypes further up the chain are also registered with their // respective prototypes. UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate()); if (object->HasFastProperties()) { if (!new_map->is_dictionary_map()) { MigrateFastToFast(object, new_map); if (old_map->is_prototype_map()) { DCHECK(!old_map->is_stable()); DCHECK(new_map->is_stable()); // Clear out the old descriptor array to avoid problems to sharing // the descriptor array without using an explicit. old_map->InitializeDescriptors( old_map->GetHeap()->empty_descriptor_array(), LayoutDescriptor::FastPointerLayout()); // Ensure that no transition was inserted for prototype migrations. DCHECK_EQ(0, TransitionArray::NumberOfTransitions( old_map->raw_transitions())); DCHECK(new_map->GetBackPointer()->IsUndefined()); } } else { MigrateFastToSlow(object, new_map, expected_additional_properties); } } else { // For slow-to-fast migrations JSObject::MigrateSlowToFast() // must be used instead. CHECK(new_map->is_dictionary_map()); // Slow-to-slow migration is trivial. object->set_map(*new_map); } // Careful: Don't allocate here! // For some callers of this method, |object| might be in an inconsistent // state now: the new map might have a new elements_kind, but the object's // elements pointer hasn't been updated yet. Callers will fix this, but in // the meantime, (indirectly) calling JSObjectVerify() must be avoided. // When adding code here, add a DisallowHeapAllocation too. } // To migrate a fast instance to a fast map: // - First check whether the instance needs to be rewritten. If not, simply // change the map. // - Otherwise, allocate a fixed array large enough to hold all fields, in // addition to unused space. // - Copy all existing properties in, in the following order: backing store // properties, unused fields, inobject properties. // - If all allocation succeeded, commit the state atomically: // * Copy inobject properties from the backing store back into the object. // * Trim the difference in instance size of the object. This also cleanly // frees inobject properties that moved to the backing store. // * If there are properties left in the backing store, trim of the space used // to temporarily store the inobject properties. // * If there are properties left in the backing store, install the backing // store. void JSObject::MigrateFastToFast(Handle object, Handle new_map) { Isolate* isolate = object->GetIsolate(); Handle old_map(object->map()); int old_number_of_fields; int number_of_fields = new_map->NumberOfFields(); int inobject = new_map->GetInObjectProperties(); int unused = new_map->unused_property_fields(); // Nothing to do if no functions were converted to fields and no smis were // converted to doubles. if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject, unused, &old_number_of_fields)) { object->synchronized_set_map(*new_map); return; } int total_size = number_of_fields + unused; int external = total_size - inobject; if (number_of_fields != old_number_of_fields && new_map->GetBackPointer() == *old_map) { PropertyDetails details = new_map->GetLastDescriptorDetails(); if (old_map->unused_property_fields() > 0) { if (details.representation().IsDouble()) { FieldIndex index = FieldIndex::ForDescriptor(*new_map, new_map->LastAdded()); if (new_map->IsUnboxedDoubleField(index)) { object->RawFastDoublePropertyAtPut(index, 0); } else { Handle value = isolate->factory()->NewHeapNumber(0, MUTABLE); object->RawFastPropertyAtPut(index, *value); } } object->synchronized_set_map(*new_map); return; } DCHECK(number_of_fields == old_number_of_fields + 1); // This migration is a transition from a map that has run out of property // space. Therefore it could be done by extending the backing store. int grow_by = external - object->properties()->length(); Handle old_storage = handle(object->properties(), isolate); Handle new_storage = isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by); // Properly initialize newly added property. Handle value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } DCHECK(details.type() == DATA); int target_index = details.field_index() - inobject; DCHECK(target_index >= 0); // Must be a backing store index. new_storage->set(target_index, *value); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Set the new property value and do the map transition. object->set_properties(*new_storage); object->synchronized_set_map(*new_map); return; } Handle array = isolate->factory()->NewFixedArray(total_size); Handle old_descriptors(old_map->instance_descriptors()); Handle new_descriptors(new_map->instance_descriptors()); int old_nof = old_map->NumberOfOwnDescriptors(); int new_nof = new_map->NumberOfOwnDescriptors(); // This method only supports generalizing instances to at least the same // number of properties. DCHECK(old_nof <= new_nof); for (int i = 0; i < old_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != DATA) continue; PropertyDetails old_details = old_descriptors->GetDetails(i); Representation old_representation = old_details.representation(); Representation representation = details.representation(); Handle value; if (old_details.type() == ACCESSOR_CONSTANT) { // In case of kAccessor -> kData property reconfiguration, the property // must already be prepared for data or certain type. DCHECK(!details.representation().IsNone()); if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } } else if (old_details.type() == DATA_CONSTANT) { value = handle(old_descriptors->GetValue(i), isolate); DCHECK(!old_representation.IsDouble() && !representation.IsDouble()); } else { FieldIndex index = FieldIndex::ForDescriptor(*old_map, i); if (object->IsUnboxedDoubleField(index)) { double old = object->RawFastDoublePropertyAt(index); value = isolate->factory()->NewHeapNumber( old, representation.IsDouble() ? MUTABLE : IMMUTABLE); } else { value = handle(object->RawFastPropertyAt(index), isolate); if (!old_representation.IsDouble() && representation.IsDouble()) { if (old_representation.IsNone()) { value = handle(Smi::FromInt(0), isolate); } value = Object::NewStorageFor(isolate, value, representation); } else if (old_representation.IsDouble() && !representation.IsDouble()) { value = Object::WrapForRead(isolate, value, old_representation); } } } DCHECK(!(representation.IsDouble() && value->IsSmi())); int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } for (int i = old_nof; i < new_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != DATA) continue; Handle value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Copy (real) inobject properties. If necessary, stop at number_of_fields to // avoid overwriting |one_pointer_filler_map|. int limit = Min(inobject, number_of_fields); for (int i = 0; i < limit; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); Object* value = array->get(external + i); // Can't use JSObject::FastPropertyAtPut() because proper map was not set // yet. if (new_map->IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); object->RawFastDoublePropertyAtPut(index, HeapNumber::cast(value)->value()); } else { object->RawFastPropertyAtPut(index, value); } } Heap* heap = isolate->heap(); // If there are properties in the new backing store, trim it to the correct // size and install the backing store into the object. if (external > 0) { heap->RightTrimFixedArray(*array, inobject); object->set_properties(*array); } // Create filler object past the new instance size. int new_instance_size = new_map->instance_size(); int instance_size_delta = old_map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Address address = object->address(); heap->CreateFillerObjectAt( address + new_instance_size, instance_size_delta); heap->AdjustLiveBytes(*object, -instance_size_delta, Heap::CONCURRENT_TO_SWEEPER); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); } int Map::NumberOfFields() { DescriptorArray* descriptors = instance_descriptors(); int result = 0; for (int i = 0; i < NumberOfOwnDescriptors(); i++) { if (descriptors->GetDetails(i).location() == kField) result++; } return result; } Handle Map::CopyGeneralizeAllRepresentations( Handle map, int modify_index, StoreMode store_mode, PropertyKind kind, PropertyAttributes attributes, const char* reason) { Isolate* isolate = map->GetIsolate(); Handle old_descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle descriptors = DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors); for (int i = 0; i < number_of_own_descriptors; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == DATA) { descriptors->SetValue(i, HeapType::Any()); } } Handle new_layout_descriptor( LayoutDescriptor::FastPointerLayout(), isolate); Handle new_map = CopyReplaceDescriptors( map, descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle(), reason, SPECIAL_TRANSITION); // Unless the instance is being migrated, ensure that modify_index is a field. if (modify_index >= 0) { PropertyDetails details = descriptors->GetDetails(modify_index); if (store_mode == FORCE_FIELD && (details.type() != DATA || details.attributes() != attributes)) { int field_index = details.type() == DATA ? details.field_index() : new_map->NumberOfFields(); DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate), field_index, attributes, Representation::Tagged()); descriptors->Replace(modify_index, &d); if (details.type() != DATA) { int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); } } else { DCHECK(details.attributes() == attributes); } if (FLAG_trace_generalization) { HeapType* field_type = (details.type() == DATA) ? map->instance_descriptors()->GetFieldType(modify_index) : NULL; map->PrintGeneralization( stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(), new_map->NumberOfOwnDescriptors(), details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD, details.representation(), Representation::Tagged(), field_type, HeapType::Any()); } } return new_map; } void Map::DeprecateTransitionTree() { if (is_deprecated()) return; Object* transitions = raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = 0; i < num_transitions; ++i) { TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree(); } deprecate(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kTransitionGroup); NotifyLeafMapLayoutChange(); } static inline bool EqualImmutableValues(Object* obj1, Object* obj2) { if (obj1 == obj2) return true; // Valid for both kData and kAccessor kinds. // TODO(ishell): compare AccessorPairs. return false; } // Invalidates a transition target at |key|, and installs |new_descriptors| over // the current instance_descriptors to ensure proper sharing of descriptor // arrays. // Returns true if the transition target at given key was deprecated. bool Map::DeprecateTarget(PropertyKind kind, Name* key, PropertyAttributes attributes, DescriptorArray* new_descriptors, LayoutDescriptor* new_layout_descriptor) { bool transition_target_deprecated = false; Map* maybe_transition = TransitionArray::SearchTransition(this, kind, key, attributes); if (maybe_transition != NULL) { maybe_transition->DeprecateTransitionTree(); transition_target_deprecated = true; } // Don't overwrite the empty descriptor array. if (NumberOfOwnDescriptors() == 0) return transition_target_deprecated; DescriptorArray* to_replace = instance_descriptors(); Map* current = this; GetHeap()->incremental_marking()->RecordWrites(to_replace); while (current->instance_descriptors() == to_replace) { current->SetEnumLength(kInvalidEnumCacheSentinel); current->UpdateDescriptors(new_descriptors, new_layout_descriptor); Object* next = current->GetBackPointer(); if (next->IsUndefined()) break; current = Map::cast(next); } set_owns_descriptors(false); return transition_target_deprecated; } Map* Map::FindRootMap() { Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) return result; result = Map::cast(back); } } Map* Map::FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors) { DisallowHeapAllocation no_allocation; // This can only be called on roots of transition trees. DCHECK_EQ(verbatim, NumberOfOwnDescriptors()); Map* current = this; for (int i = verbatim; i < length; i++) { Name* name = descriptors->GetKey(i); PropertyDetails details = descriptors->GetDetails(i); Map* next = TransitionArray::SearchTransition(current, details.kind(), name, details.attributes()); if (next == NULL) break; DescriptorArray* next_descriptors = next->instance_descriptors(); PropertyDetails next_details = next_descriptors->GetDetails(i); DCHECK_EQ(details.kind(), next_details.kind()); DCHECK_EQ(details.attributes(), next_details.attributes()); if (details.location() != next_details.location()) break; if (!details.representation().Equals(next_details.representation())) break; if (next_details.location() == kField) { HeapType* next_field_type = next_descriptors->GetFieldType(i); if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) { break; } } else { if (!EqualImmutableValues(descriptors->GetValue(i), next_descriptors->GetValue(i))) { break; } } current = next; } return current; } Map* Map::FindFieldOwner(int descriptor) { DisallowHeapAllocation no_allocation; DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type()); Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) break; Map* parent = Map::cast(back); if (parent->NumberOfOwnDescriptors() <= descriptor) break; result = parent; } return result; } void Map::UpdateFieldType(int descriptor, Handle name, Representation new_representation, Handle new_wrapped_type) { DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell()); DisallowHeapAllocation no_allocation; PropertyDetails details = instance_descriptors()->GetDetails(descriptor); if (details.type() != DATA) return; Object* transitions = raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = 0; i < num_transitions; ++i) { Map* target = TransitionArray::GetTarget(transitions, i); target->UpdateFieldType(descriptor, name, new_representation, new_wrapped_type); } // It is allowed to change representation here only from None to something. DCHECK(details.representation().Equals(new_representation) || details.representation().IsNone()); // Skip if already updated the shared descriptor. if (instance_descriptors()->GetValue(descriptor) == *new_wrapped_type) return; DataDescriptor d(name, instance_descriptors()->GetFieldIndex(descriptor), new_wrapped_type, details.attributes(), new_representation); instance_descriptors()->Replace(descriptor, &d); } // static Handle Map::GeneralizeFieldType(Handle type1, Handle type2, Isolate* isolate) { if (type1->NowIs(type2)) return type2; if (type2->NowIs(type1)) return type1; return HeapType::Any(isolate); } // static void Map::GeneralizeFieldType(Handle map, int modify_index, Representation new_representation, Handle new_field_type) { Isolate* isolate = map->GetIsolate(); // Check if we actually need to generalize the field type at all. Handle old_descriptors(map->instance_descriptors(), isolate); Representation old_representation = old_descriptors->GetDetails(modify_index).representation(); Handle old_field_type(old_descriptors->GetFieldType(modify_index), isolate); if (old_representation.Equals(new_representation) && new_field_type->NowIs(old_field_type)) { DCHECK(Map::GeneralizeFieldType(old_field_type, new_field_type, isolate)->NowIs(old_field_type)); return; } // Determine the field owner. Handle field_owner(map->FindFieldOwner(modify_index), isolate); Handle descriptors( field_owner->instance_descriptors(), isolate); DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index)); bool old_field_type_was_cleared = old_field_type->Is(HeapType::None()) && old_representation.IsHeapObject(); // Determine the generalized new field type. Conservatively assume type Any // for cleared field types because the cleared type could have been a // deprecated map and there still could be live instances with a non- // deprecated version of the map. new_field_type = old_field_type_was_cleared ? HeapType::Any(isolate) : Map::GeneralizeFieldType(old_field_type, new_field_type, isolate); PropertyDetails details = descriptors->GetDetails(modify_index); Handle name(descriptors->GetKey(modify_index)); Handle wrapped_type(WrapType(new_field_type)); field_owner->UpdateFieldType(modify_index, name, new_representation, wrapped_type); field_owner->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kFieldTypeGroup); if (FLAG_trace_generalization) { map->PrintGeneralization( stdout, "field type generalization", modify_index, map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false, details.representation(), details.representation(), *old_field_type, *new_field_type); } } static inline Handle GetFieldType(Isolate* isolate, Handle descriptors, int descriptor, PropertyLocation location, Representation representation) { #ifdef DEBUG PropertyDetails details = descriptors->GetDetails(descriptor); DCHECK_EQ(kData, details.kind()); DCHECK_EQ(details.location(), location); #endif if (location == kField) { return handle(descriptors->GetFieldType(descriptor), isolate); } else { return descriptors->GetValue(descriptor) ->OptimalType(isolate, representation); } } // Reconfigures property at |modify_index| with |new_kind|, |new_attributes|, // |store_mode| and/or |new_representation|/|new_field_type|. // If |modify_index| is negative then no properties are reconfigured but the // map is migrated to the up-to-date non-deprecated state. // // This method rewrites or completes the transition tree to reflect the new // change. To avoid high degrees over polymorphism, and to stabilize quickly, // on every rewrite the new type is deduced by merging the current type with // any potential new (partial) version of the type in the transition tree. // To do this, on each rewrite: // - Search the root of the transition tree using FindRootMap. // - Find |target_map|, the newest matching version of this map using the // virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at // |modify_index| is considered to be of |new_kind| and having // |new_attributes|) to walk the transition tree. // - Merge/generalize the "enhanced" descriptor array of the |old_map| and // descriptor array of the |target_map|. // - Generalize the |modify_index| descriptor using |new_representation| and // |new_field_type|. // - Walk the tree again starting from the root towards |target_map|. Stop at // |split_map|, the first map who's descriptor array does not match the merged // descriptor array. // - If |target_map| == |split_map|, |target_map| is in the expected state. // Return it. // - Otherwise, invalidate the outdated transition target from |target_map|, and // replace its transition tree with a new branch for the updated descriptors. Handle Map::ReconfigureProperty(Handle old_map, int modify_index, PropertyKind new_kind, PropertyAttributes new_attributes, Representation new_representation, Handle new_field_type, StoreMode store_mode) { DCHECK_NE(kAccessor, new_kind); // TODO(ishell): not supported yet. DCHECK(store_mode != FORCE_FIELD || modify_index >= 0); Isolate* isolate = old_map->GetIsolate(); Handle old_descriptors( old_map->instance_descriptors(), isolate); int old_nof = old_map->NumberOfOwnDescriptors(); // If it's just a representation generalization case (i.e. property kind and // attributes stays unchanged) it's fine to transition from None to anything // but double without any modification to the object, because the default // uninitialized value for representation None can be overwritten by both // smi and tagged values. Doubles, however, would require a box allocation. if (modify_index >= 0 && !new_representation.IsNone() && !new_representation.IsDouble()) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); Representation old_representation = old_details.representation(); if (old_representation.IsNone()) { DCHECK_EQ(new_kind, old_details.kind()); DCHECK_EQ(new_attributes, old_details.attributes()); DCHECK_EQ(DATA, old_details.type()); if (FLAG_trace_generalization) { old_map->PrintGeneralization( stdout, "uninitialized field", modify_index, old_map->NumberOfOwnDescriptors(), old_map->NumberOfOwnDescriptors(), false, old_representation, new_representation, old_descriptors->GetFieldType(modify_index), *new_field_type); } Handle field_owner(old_map->FindFieldOwner(modify_index), isolate); GeneralizeFieldType(field_owner, modify_index, new_representation, new_field_type); DCHECK(old_descriptors->GetDetails(modify_index) .representation() .Equals(new_representation)); DCHECK( old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type)); return old_map; } } // Check the state of the root map. Handle root_map(old_map->FindRootMap(), isolate); if (!old_map->EquivalentToForTransition(*root_map)) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_NotEquivalent"); } ElementsKind from_kind = root_map->elements_kind(); ElementsKind to_kind = old_map->elements_kind(); // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS. if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS && to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS && !(IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_InvalidElementsTransition"); } int root_nof = root_map->NumberOfOwnDescriptors(); if (modify_index >= 0 && modify_index < root_nof) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); if (old_details.kind() != new_kind || old_details.attributes() != new_attributes) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_RootModification1"); } if ((old_details.type() != DATA && store_mode == FORCE_FIELD) || (old_details.type() == DATA && (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) || !new_representation.fits_into(old_details.representation())))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_RootModification2"); } } // From here on, use the map with correct elements kind as root map. if (from_kind != to_kind) { root_map = Map::AsElementsKind(root_map, to_kind); } Handle target_map = root_map; for (int i = root_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyKind next_kind; PropertyLocation next_location; PropertyAttributes next_attributes; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_location = kField; next_attributes = new_attributes; // If property kind is not reconfigured merge the result with // representation/field type from the old descriptor. next_representation = new_representation; if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { next_kind = old_details.kind(); next_location = old_details.location(); next_attributes = old_details.attributes(); next_representation = old_details.representation(); } Map* transition = TransitionArray::SearchTransition( *target_map, next_kind, old_descriptors->GetKey(i), next_attributes); if (transition == NULL) break; Handle tmp_map(transition, isolate); Handle tmp_descriptors = handle( tmp_map->instance_descriptors(), isolate); // Check if target map is incompatible. PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(next_kind, tmp_details.kind()); DCHECK_EQ(next_attributes, tmp_details.attributes()); if (next_kind == kAccessor && !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_Incompatible"); } if (next_location == kField && tmp_details.location() == kDescriptor) break; Representation tmp_representation = tmp_details.representation(); if (!next_representation.fits_into(tmp_representation)) break; PropertyLocation old_location = old_details.location(); PropertyLocation tmp_location = tmp_details.location(); if (tmp_location == kField) { if (next_kind == kData) { Handle next_field_type; if (modify_index == i) { next_field_type = new_field_type; if (!property_kind_reconfiguration) { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), tmp_representation); next_field_type = GeneralizeFieldType(next_field_type, old_field_type, isolate); } } else { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), tmp_representation); next_field_type = old_field_type; } GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type); } } else if (old_location == kField || !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { break; } DCHECK(!tmp_map->is_deprecated()); target_map = tmp_map; } // Directly change the map if the target map is more general. Handle target_descriptors( target_map->instance_descriptors(), isolate); int target_nof = target_map->NumberOfOwnDescriptors(); if (target_nof == old_nof && (store_mode != FORCE_FIELD || (modify_index >= 0 && target_descriptors->GetDetails(modify_index).location() == kField))) { #ifdef DEBUG if (modify_index >= 0) { PropertyDetails details = target_descriptors->GetDetails(modify_index); DCHECK_EQ(new_kind, details.kind()); DCHECK_EQ(new_attributes, details.attributes()); DCHECK(new_representation.fits_into(details.representation())); DCHECK(details.location() != kField || new_field_type->NowIs( target_descriptors->GetFieldType(modify_index))); } #endif if (*target_map != *old_map) { old_map->NotifyLeafMapLayoutChange(); } return target_map; } // Find the last compatible target map in the transition tree. for (int i = target_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyKind next_kind; PropertyAttributes next_attributes; if (modify_index == i) { next_kind = new_kind; next_attributes = new_attributes; } else { next_kind = old_details.kind(); next_attributes = old_details.attributes(); } Map* transition = TransitionArray::SearchTransition( *target_map, next_kind, old_descriptors->GetKey(i), next_attributes); if (transition == NULL) break; Handle tmp_map(transition, isolate); Handle tmp_descriptors( tmp_map->instance_descriptors(), isolate); // Check if target map is compatible. #ifdef DEBUG PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(next_kind, tmp_details.kind()); DCHECK_EQ(next_attributes, tmp_details.attributes()); #endif if (next_kind == kAccessor && !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_Incompatible"); } DCHECK(!tmp_map->is_deprecated()); target_map = tmp_map; } target_nof = target_map->NumberOfOwnDescriptors(); target_descriptors = handle(target_map->instance_descriptors(), isolate); // Allocate a new descriptor array large enough to hold the required // descriptors, with minimally the exact same size as the old descriptor // array. int new_slack = Max( old_nof, old_descriptors->number_of_descriptors()) - old_nof; Handle new_descriptors = DescriptorArray::Allocate( isolate, old_nof, new_slack); DCHECK(new_descriptors->length() > target_descriptors->length() || new_descriptors->NumberOfSlackDescriptors() > 0 || new_descriptors->number_of_descriptors() == old_descriptors->number_of_descriptors()); DCHECK(new_descriptors->number_of_descriptors() == old_nof); // 0 -> |root_nof| int current_offset = 0; for (int i = 0; i < root_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); if (old_details.location() == kField) { current_offset += old_details.field_width_in_words(); } Descriptor d(handle(old_descriptors->GetKey(i), isolate), handle(old_descriptors->GetValue(i), isolate), old_details); new_descriptors->Set(i, &d); } // |root_nof| -> |target_nof| for (int i = root_nof; i < target_nof; ++i) { Handle target_key(target_descriptors->GetKey(i), isolate); PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyDetails target_details = target_descriptors->GetDetails(i); PropertyKind next_kind; PropertyAttributes next_attributes; PropertyLocation next_location; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_attributes = new_attributes; next_location = kField; // Merge new representation/field type with ones from the target // descriptor. If property kind is not reconfigured merge the result with // representation/field type from the old descriptor. next_representation = new_representation.generalize(target_details.representation()); if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { // Merge old_descriptor and target_descriptor entries. DCHECK_EQ(target_details.kind(), old_details.kind()); next_kind = target_details.kind(); next_attributes = target_details.attributes(); next_location = old_details.location() == kField || target_details.location() == kField || !EqualImmutableValues(target_descriptors->GetValue(i), old_descriptors->GetValue(i)) ? kField : kDescriptor; next_representation = old_details.representation().generalize( target_details.representation()); } DCHECK_EQ(next_kind, target_details.kind()); DCHECK_EQ(next_attributes, target_details.attributes()); if (next_location == kField) { if (next_kind == kData) { Handle target_field_type = GetFieldType(isolate, target_descriptors, i, target_details.location(), next_representation); Handle next_field_type; if (modify_index == i) { next_field_type = GeneralizeFieldType(target_field_type, new_field_type, isolate); if (!property_kind_reconfiguration) { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType(next_field_type, old_field_type, isolate); } } else { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType(target_field_type, old_field_type, isolate); } Handle wrapped_type(WrapType(next_field_type)); DataDescriptor d(target_key, current_offset, wrapped_type, next_attributes, next_representation); current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { UNIMPLEMENTED(); // TODO(ishell): implement. } } else { PropertyDetails details(next_attributes, next_kind, next_location, next_representation); Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate), details); new_descriptors->Set(i, &d); } } // |target_nof| -> |old_nof| for (int i = target_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Handle old_key(old_descriptors->GetKey(i), isolate); // Merge old_descriptor entry and modified details together. PropertyKind next_kind; PropertyAttributes next_attributes; PropertyLocation next_location; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); // In case of property kind reconfiguration it is not necessary to // take into account representation/field type of the old descriptor. property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_attributes = new_attributes; next_location = kField; next_representation = new_representation; if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { next_kind = old_details.kind(); next_attributes = old_details.attributes(); next_location = old_details.location(); next_representation = old_details.representation(); } if (next_location == kField) { if (next_kind == kData) { Handle next_field_type; if (modify_index == i) { next_field_type = new_field_type; if (!property_kind_reconfiguration) { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType(next_field_type, old_field_type, isolate); } } else { Handle old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = old_field_type; } Handle wrapped_type(WrapType(next_field_type)); DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes, next_representation); current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { UNIMPLEMENTED(); // TODO(ishell): implement. } } else { PropertyDetails details(next_attributes, next_kind, next_location, next_representation); Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate), details); new_descriptors->Set(i, &d); } } new_descriptors->Sort(); DCHECK(store_mode != FORCE_FIELD || new_descriptors->GetDetails(modify_index).location() == kField); Handle split_map(root_map->FindLastMatchMap( root_nof, old_nof, *new_descriptors), isolate); int split_nof = split_map->NumberOfOwnDescriptors(); DCHECK_NE(old_nof, split_nof); Handle new_layout_descriptor = LayoutDescriptor::New(split_map, new_descriptors, old_nof); PropertyKind split_kind; PropertyAttributes split_attributes; if (modify_index == split_nof) { split_kind = new_kind; split_attributes = new_attributes; } else { PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof); split_kind = split_prop_details.kind(); split_attributes = split_prop_details.attributes(); } bool transition_target_deprecated = split_map->DeprecateTarget( split_kind, old_descriptors->GetKey(split_nof), split_attributes, *new_descriptors, *new_layout_descriptor); // If |transition_target_deprecated| is true then the transition array // already contains entry for given descriptor. This means that the transition // could be inserted regardless of whether transitions array is full or not. if (!transition_target_deprecated && !TransitionArray::CanHaveMoreTransitions(split_map)) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_CantHaveMoreTransitions"); } old_map->NotifyLeafMapLayoutChange(); if (FLAG_trace_generalization && modify_index >= 0) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); PropertyDetails new_details = new_descriptors->GetDetails(modify_index); Handle old_field_type = (old_details.type() == DATA) ? handle(old_descriptors->GetFieldType(modify_index), isolate) : HeapType::Constant( handle(old_descriptors->GetValue(modify_index), isolate), isolate); Handle new_field_type = (new_details.type() == DATA) ? handle(new_descriptors->GetFieldType(modify_index), isolate) : HeapType::Constant( handle(new_descriptors->GetValue(modify_index), isolate), isolate); old_map->PrintGeneralization( stdout, "", modify_index, split_nof, old_nof, old_details.location() == kDescriptor && store_mode == FORCE_FIELD, old_details.representation(), new_details.representation(), *old_field_type, *new_field_type); } // Add missing transitions. Handle new_map = split_map; for (int i = split_nof; i < old_nof; ++i) { new_map = CopyInstallDescriptors(new_map, i, new_descriptors, new_layout_descriptor); } new_map->set_owns_descriptors(true); return new_map; } // Generalize the representation of all DATA descriptors. Handle Map::GeneralizeAllFieldRepresentations( Handle map) { Handle descriptors(map->instance_descriptors()); for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() == DATA) { map = ReconfigureProperty(map, i, kData, details.attributes(), Representation::Tagged(), HeapType::Any(map->GetIsolate()), FORCE_FIELD); } } return map; } // static MaybeHandle Map::TryUpdate(Handle old_map) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(old_map->GetIsolate()); if (!old_map->is_deprecated()) return old_map; // Check the state of the root map. Map* root_map = old_map->FindRootMap(); if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle(); ElementsKind from_kind = root_map->elements_kind(); ElementsKind to_kind = old_map->elements_kind(); if (from_kind != to_kind) { // Try to follow existing elements kind transitions. root_map = root_map->LookupElementsTransitionMap(to_kind); if (root_map == NULL) return MaybeHandle(); // From here on, use the map with correct elements kind as root map. } int root_nof = root_map->NumberOfOwnDescriptors(); int old_nof = old_map->NumberOfOwnDescriptors(); DescriptorArray* old_descriptors = old_map->instance_descriptors(); Map* new_map = root_map; for (int i = root_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Map* transition = TransitionArray::SearchTransition( new_map, old_details.kind(), old_descriptors->GetKey(i), old_details.attributes()); if (transition == NULL) return MaybeHandle(); new_map = transition; DescriptorArray* new_descriptors = new_map->instance_descriptors(); PropertyDetails new_details = new_descriptors->GetDetails(i); DCHECK_EQ(old_details.kind(), new_details.kind()); DCHECK_EQ(old_details.attributes(), new_details.attributes()); if (!old_details.representation().fits_into(new_details.representation())) { return MaybeHandle(); } switch (new_details.type()) { case DATA: { HeapType* new_type = new_descriptors->GetFieldType(i); PropertyType old_property_type = old_details.type(); if (old_property_type == DATA) { HeapType* old_type = old_descriptors->GetFieldType(i); if (!old_type->NowIs(new_type)) { return MaybeHandle(); } } else { DCHECK(old_property_type == DATA_CONSTANT); Object* old_value = old_descriptors->GetValue(i); if (!new_type->NowContains(old_value)) { return MaybeHandle(); } } break; } case ACCESSOR: { #ifdef DEBUG HeapType* new_type = new_descriptors->GetFieldType(i); DCHECK(HeapType::Any()->Is(new_type)); #endif break; } case DATA_CONSTANT: case ACCESSOR_CONSTANT: { Object* old_value = old_descriptors->GetValue(i); Object* new_value = new_descriptors->GetValue(i); if (old_details.location() == kField || old_value != new_value) { return MaybeHandle(); } break; } } } if (new_map->NumberOfOwnDescriptors() != old_nof) return MaybeHandle(); return handle(new_map); } // static Handle Map::Update(Handle map) { if (!map->is_deprecated()) return map; return ReconfigureProperty(map, -1, kData, NONE, Representation::None(), HeapType::None(map->GetIsolate()), ALLOW_IN_DESCRIPTOR); } MaybeHandle JSObject::SetPropertyWithInterceptor(LookupIterator* it, Handle value) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle interceptor(it->GetInterceptor()); if (interceptor->setter()->IsUndefined()) return MaybeHandle(); Handle holder = it->GetHolder(); v8::Local result; PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder); if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertySetterCallback setter = v8::ToCData(interceptor->setter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-set", *holder, index)); result = args.Call(setter, index, v8::Utils::ToLocal(value)); } else { Handle name = it->name(); if (name->IsSymbol() && !interceptor->can_intercept_symbols()) { return MaybeHandle(); } v8::GenericNamedPropertySetterCallback setter = v8::ToCData( interceptor->setter()); LOG(it->isolate(), ApiNamedPropertyAccess("interceptor-named-set", *holder, *name)); result = args.Call(setter, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value)); } RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); if (result.IsEmpty()) return MaybeHandle(); #ifdef DEBUG Handle result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); #endif return value; } MaybeHandle Object::SetProperty(Handle object, Handle name, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { LookupIterator it(object, name); return SetProperty(&it, value, language_mode, store_mode); } MaybeHandle Object::SetPropertyInternal(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode, bool* found) { // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(it->isolate()); *found = true; bool done = false; for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; // Check whether it makes sense to reuse the lookup iterator. Here it // might still call into setters up the prototype chain. return JSObject::SetPropertyWithFailedAccessCheck(it, value); case LookupIterator::JSPROXY: if (it->HolderIsReceiverOrHiddenPrototype()) { return JSProxy::SetPropertyWithHandler( it->GetHolder(), it->GetReceiver(), it->GetName(), value, language_mode); } else { // TODO(verwaest): Use the MaybeHandle to indicate result. bool has_result = false; MaybeHandle maybe_result = JSProxy::SetPropertyViaPrototypesWithHandler( it->GetHolder(), it->GetReceiver(), it->GetName(), value, language_mode, &has_result); if (has_result) return maybe_result; done = true; } break; case LookupIterator::INTERCEPTOR: if (it->HolderIsReceiverOrHiddenPrototype()) { MaybeHandle maybe_result = JSObject::SetPropertyWithInterceptor(it, value); if (!maybe_result.is_null()) return maybe_result; if (it->isolate()->has_pending_exception()) return maybe_result; } else { Maybe maybe_attributes = JSObject::GetPropertyAttributesWithInterceptor(it); if (!maybe_attributes.IsJust()) return MaybeHandle(); done = maybe_attributes.FromJust() != ABSENT; if (done && (maybe_attributes.FromJust() & READ_ONLY) != 0) { return WriteToReadOnlyProperty(it, value, language_mode); } } break; case LookupIterator::ACCESSOR: { if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, language_mode); } Handle accessors = it->GetAccessors(); if (accessors->IsAccessorInfo() && !it->HolderIsReceiverOrHiddenPrototype() && AccessorInfo::cast(*accessors)->is_special_data_property()) { done = true; break; } return SetPropertyWithAccessor(it, value, language_mode); } case LookupIterator::INTEGER_INDEXED_EXOTIC: // TODO(verwaest): We should throw an exception. return value; case LookupIterator::DATA: if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, language_mode); } if (it->HolderIsReceiverOrHiddenPrototype()) { return SetDataProperty(it, value); } done = true; break; case LookupIterator::TRANSITION: done = true; break; } if (done) break; } // If the receiver is the JSGlobalObject, the store was contextual. In case // the property did not exist yet on the global object itself, we have to // throw a reference error in strict mode. if (it->GetReceiver()->IsJSGlobalObject() && is_strict(language_mode)) { THROW_NEW_ERROR(it->isolate(), NewReferenceError(MessageTemplate::kNotDefined, it->name()), Object); } *found = false; return MaybeHandle(); } MaybeHandle Object::SetProperty(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { bool found = false; MaybeHandle result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; return AddDataProperty(it, value, NONE, language_mode, store_mode); } MaybeHandle Object::SetSuperProperty(LookupIterator* it, Handle value, LanguageMode language_mode, StoreFromKeyed store_mode) { bool found = false; MaybeHandle result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; if (!it->GetReceiver()->IsJSReceiver()) { return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, language_mode); } LookupIterator::Configuration c = LookupIterator::OWN; LookupIterator own_lookup = it->IsElement() ? LookupIterator(it->isolate(), it->GetReceiver(), it->index(), c) : LookupIterator(it->GetReceiver(), it->name(), c); for (; own_lookup.IsFound(); own_lookup.Next()) { switch (own_lookup.state()) { case LookupIterator::ACCESS_CHECK: if (!own_lookup.HasAccess()) { return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value); } break; case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineNonconfigurableProperty(it->isolate(), it->GetName(), value, language_mode); case LookupIterator::DATA: { PropertyDetails details = own_lookup.property_details(); if (details.IsConfigurable() || !details.IsReadOnly()) { return JSObject::DefineOwnPropertyIgnoreAttributes( &own_lookup, value, details.attributes()); } return WriteToReadOnlyProperty(&own_lookup, value, language_mode); } case LookupIterator::ACCESSOR: { PropertyDetails details = own_lookup.property_details(); if (details.IsConfigurable()) { return JSObject::DefineOwnPropertyIgnoreAttributes( &own_lookup, value, details.attributes()); } return RedefineNonconfigurableProperty(it->isolate(), it->GetName(), value, language_mode); } case LookupIterator::INTERCEPTOR: case LookupIterator::JSPROXY: { bool found = false; MaybeHandle result = SetPropertyInternal( &own_lookup, value, language_mode, store_mode, &found); if (found) return result; break; } case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } } return JSObject::AddDataProperty(&own_lookup, value, NONE, language_mode, store_mode); } MaybeHandle Object::ReadAbsentProperty(LookupIterator* it, LanguageMode language_mode) { if (is_strong(language_mode)) { THROW_NEW_ERROR(it->isolate(), NewTypeError(MessageTemplate::kStrongPropertyAccess, it->GetName(), it->GetReceiver()), Object); } return it->isolate()->factory()->undefined_value(); } MaybeHandle Object::ReadAbsentProperty(Isolate* isolate, Handle receiver, Handle name, LanguageMode language_mode) { if (is_strong(language_mode)) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kStrongPropertyAccess, name, receiver), Object); } return isolate->factory()->undefined_value(); } MaybeHandle Object::WriteToReadOnlyProperty( LookupIterator* it, Handle value, LanguageMode language_mode) { return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, language_mode); } MaybeHandle Object::WriteToReadOnlyProperty( Isolate* isolate, Handle receiver, Handle name, Handle value, LanguageMode language_mode) { if (is_sloppy(language_mode)) return value; THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name, receiver), Object); } MaybeHandle Object::RedefineNonconfigurableProperty( Isolate* isolate, Handle name, Handle value, LanguageMode language_mode) { if (is_sloppy(language_mode)) return value; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kRedefineDisallowed, name), Object); } MaybeHandle Object::SetDataProperty(LookupIterator* it, Handle value) { // Proxies are handled on the WithHandler path. Other non-JSObjects cannot // have own properties. Handle receiver = Handle::cast(it->GetReceiver()); // Store on the holder which may be hidden behind the receiver. DCHECK(it->HolderIsReceiverOrHiddenPrototype()); // Old value for the observation change record. // Fetch before transforming the object since the encoding may become // incompatible with what's cached in |it|. bool is_observed = receiver->map()->is_observed() && (it->IsElement() || !it->isolate()->IsInternallyUsedPropertyName(it->name())); MaybeHandle maybe_old; if (is_observed) maybe_old = it->GetDataValue(); Handle to_assign = value; // Convert the incoming value to a number for storing into typed arrays. if (it->IsElement() && receiver->HasFixedTypedArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { ASSIGN_RETURN_ON_EXCEPTION(it->isolate(), to_assign, Object::ToNumber(value), Object); // ToNumber above might modify the receiver, causing the cached // holder_map to mismatch the actual holder->map() after this point. // Reload the map to be in consistent state. Other cached state cannot // have been invalidated since typed array elements cannot be reconfigured // in any way. it->ReloadHolderMap(); // We have to recheck the length. However, it can only change if the // underlying buffer was neutered, so just check that. if (Handle::cast(receiver)->WasNeutered()) { return value; } } } // Possibly migrate to the most up-to-date map that will be able to store // |value| under it->name(). it->PrepareForDataProperty(to_assign); // Write the property value. it->WriteDataValue(to_assign); // Send the change record if there are observers. if (is_observed && !value->SameValue(*maybe_old.ToHandleChecked())) { RETURN_ON_EXCEPTION(it->isolate(), JSObject::EnqueueChangeRecord( receiver, "update", it->GetName(), maybe_old.ToHandleChecked()), Object); } return value; } MUST_USE_RESULT static MaybeHandle BeginPerformSplice( Handle object) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle args[] = {object}; return Execution::Call( isolate, Handle(isolate->observers_begin_perform_splice()), isolate->factory()->undefined_value(), arraysize(args), args); } MUST_USE_RESULT static MaybeHandle EndPerformSplice( Handle object) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle args[] = {object}; return Execution::Call( isolate, Handle(isolate->observers_end_perform_splice()), isolate->factory()->undefined_value(), arraysize(args), args); } MUST_USE_RESULT static MaybeHandle EnqueueSpliceRecord( Handle object, uint32_t index, Handle deleted, uint32_t add_count) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle index_object = isolate->factory()->NewNumberFromUint(index); Handle add_count_object = isolate->factory()->NewNumberFromUint(add_count); Handle args[] = {object, index_object, deleted, add_count_object}; return Execution::Call( isolate, Handle(isolate->observers_enqueue_splice()), isolate->factory()->undefined_value(), arraysize(args), args); } MaybeHandle Object::AddDataProperty(LookupIterator* it, Handle value, PropertyAttributes attributes, LanguageMode language_mode, StoreFromKeyed store_mode) { DCHECK(!it->GetReceiver()->IsJSProxy()); if (!it->GetReceiver()->IsJSObject()) { // TODO(verwaest): Throw a TypeError with a more specific message. return WriteToReadOnlyProperty(it, value, language_mode); } DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state()); Handle receiver = it->GetStoreTarget(); // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject) // instead. If the prototype is Null, the proxy is detached. if (receiver->IsJSGlobalProxy()) return value; Isolate* isolate = it->isolate(); if (!receiver->map()->is_extensible() && (it->IsElement() || !isolate->IsInternallyUsedPropertyName(it->name()))) { if (is_sloppy(language_mode)) return value; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName()), Object); } if (it->IsElement()) { if (receiver->IsJSArray()) { Handle array = Handle::cast(receiver); if (JSArray::WouldChangeReadOnlyLength(array, it->index())) { if (is_sloppy(language_mode)) return value; return JSArray::ReadOnlyLengthError(array); } if (FLAG_trace_external_array_abuse && array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "typed elements write", it->index(), true); } if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "elements write", it->index(), false); } } MaybeHandle result = JSObject::AddDataElement(receiver, it->index(), value, attributes); JSObject::ValidateElements(receiver); return result; } else { // Migrate to the most up-to-date map that will be able to store |value| // under it->name() with |attributes|. it->PrepareTransitionToDataProperty(value, attributes, store_mode); DCHECK_EQ(LookupIterator::TRANSITION, it->state()); it->ApplyTransitionToDataProperty(); // TODO(verwaest): Encapsulate dictionary handling better. if (receiver->map()->is_dictionary_map()) { // TODO(verwaest): Probably should ensure this is done beforehand. it->InternalizeName(); // TODO(dcarney): just populate TransitionPropertyCell here? JSObject::AddSlowProperty(receiver, it->name(), value, attributes); } else { // Write the property value. it->WriteDataValue(value); } // Send the change record if there are observers. if (receiver->map()->is_observed() && !isolate->IsInternallyUsedPropertyName(it->name())) { RETURN_ON_EXCEPTION(isolate, JSObject::EnqueueChangeRecord( receiver, "add", it->name(), it->factory()->the_hole_value()), Object); } } return value; } void Map::EnsureDescriptorSlack(Handle map, int slack) { // Only supports adding slack to owned descriptors. DCHECK(map->owns_descriptors()); Handle descriptors(map->instance_descriptors()); int old_size = map->NumberOfOwnDescriptors(); if (slack <= descriptors->NumberOfSlackDescriptors()) return; Handle new_descriptors = DescriptorArray::CopyUpTo( descriptors, old_size, slack); DisallowHeapAllocation no_allocation; // The descriptors are still the same, so keep the layout descriptor. LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor(); if (old_size == 0) { map->UpdateDescriptors(*new_descriptors, layout_descriptor); return; } // If the source descriptors had an enum cache we copy it. This ensures // that the maps to which we push the new descriptor array back can rely // on a cache always being available once it is set. If the map has more // enumerated descriptors than available in the original cache, the cache // will be lazily replaced by the extended cache when needed. if (descriptors->HasEnumCache()) { new_descriptors->CopyEnumCacheFrom(*descriptors); } // Replace descriptors by new_descriptors in all maps that share it. map->GetHeap()->incremental_marking()->RecordWrites(*descriptors); Map* walk_map; for (Object* current = map->GetBackPointer(); !current->IsUndefined(); current = walk_map->GetBackPointer()) { walk_map = Map::cast(current); if (walk_map->instance_descriptors() != *descriptors) break; walk_map->UpdateDescriptors(*new_descriptors, layout_descriptor); } map->UpdateDescriptors(*new_descriptors, layout_descriptor); } template static int AppendUniqueCallbacks(NeanderArray* callbacks, Handle array, int valid_descriptors) { int nof_callbacks = callbacks->length(); Isolate* isolate = array->GetIsolate(); // Ensure the keys are unique names before writing them into the // instance descriptor. Since it may cause a GC, it has to be done before we // temporarily put the heap in an invalid state while appending descriptors. for (int i = 0; i < nof_callbacks; ++i) { Handle entry(AccessorInfo::cast(callbacks->get(i))); if (entry->name()->IsUniqueName()) continue; Handle key = isolate->factory()->InternalizeString( Handle(String::cast(entry->name()))); entry->set_name(*key); } // Fill in new callback descriptors. Process the callbacks from // back to front so that the last callback with a given name takes // precedence over previously added callbacks with that name. for (int i = nof_callbacks - 1; i >= 0; i--) { Handle entry(AccessorInfo::cast(callbacks->get(i))); Handle key(Name::cast(entry->name())); // Check if a descriptor with this name already exists before writing. if (!T::Contains(key, entry, valid_descriptors, array)) { T::Insert(key, entry, valid_descriptors, array); valid_descriptors++; } } return valid_descriptors; } struct DescriptorArrayAppender { typedef DescriptorArray Array; static bool Contains(Handle key, Handle entry, int valid_descriptors, Handle array) { DisallowHeapAllocation no_gc; return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound; } static void Insert(Handle key, Handle entry, int valid_descriptors, Handle array) { DisallowHeapAllocation no_gc; AccessorConstantDescriptor desc(key, entry, entry->property_attributes()); array->Append(&desc); } }; struct FixedArrayAppender { typedef FixedArray Array; static bool Contains(Handle key, Handle entry, int valid_descriptors, Handle array) { for (int i = 0; i < valid_descriptors; i++) { if (*key == AccessorInfo::cast(array->get(i))->name()) return true; } return false; } static void Insert(Handle key, Handle entry, int valid_descriptors, Handle array) { DisallowHeapAllocation no_gc; array->set(valid_descriptors, *entry); } }; void Map::AppendCallbackDescriptors(Handle map, Handle descriptors) { int nof = map->NumberOfOwnDescriptors(); Handle array(map->instance_descriptors()); NeanderArray callbacks(descriptors); DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length()); nof = AppendUniqueCallbacks(&callbacks, array, nof); map->SetNumberOfOwnDescriptors(nof); } int AccessorInfo::AppendUnique(Handle descriptors, Handle array, int valid_descriptors) { NeanderArray callbacks(descriptors); DCHECK(array->length() >= callbacks.length() + valid_descriptors); return AppendUniqueCallbacks(&callbacks, array, valid_descriptors); } static bool ContainsMap(MapHandleList* maps, Map* map) { DCHECK_NOT_NULL(map); for (int i = 0; i < maps->length(); ++i) { if (!maps->at(i).is_null() && *maps->at(i) == map) return true; } return false; } Handle Map::FindTransitionedMap(Handle map, MapHandleList* candidates) { ElementsKind kind = map->elements_kind(); bool packed = IsFastPackedElementsKind(kind); Map* transition = nullptr; if (IsTransitionableFastElementsKind(kind)) { for (Map* current = map->ElementsTransitionMap(); current != nullptr && current->has_fast_elements(); current = current->ElementsTransitionMap()) { if (ContainsMap(candidates, current) && (packed || !IsFastPackedElementsKind(current->elements_kind()))) { transition = current; packed = packed && IsFastPackedElementsKind(current->elements_kind()); } } } return transition == nullptr ? Handle() : handle(transition); } static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) { Map* current_map = map; ElementsKind kind = map->elements_kind(); while (kind != to_kind) { Map* next_map = current_map->ElementsTransitionMap(); if (next_map == nullptr) return current_map; kind = next_map->elements_kind(); current_map = next_map; } DCHECK_EQ(to_kind, current_map->elements_kind()); return current_map; } Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) { Map* to_map = FindClosestElementsTransition(this, to_kind); if (to_map->elements_kind() == to_kind) return to_map; return nullptr; } bool Map::IsMapInArrayPrototypeChain() { Isolate* isolate = GetIsolate(); if (isolate->initial_array_prototype()->map() == this) { return true; } if (isolate->initial_object_prototype()->map() == this) { return true; } return false; } Handle Map::WeakCellForMap(Handle map) { Isolate* isolate = map->GetIsolate(); if (map->weak_cell_cache()->IsWeakCell()) { return Handle(WeakCell::cast(map->weak_cell_cache())); } Handle weak_cell = isolate->factory()->NewWeakCell(map); map->set_weak_cell_cache(*weak_cell); return weak_cell; } static Handle AddMissingElementsTransitions(Handle map, ElementsKind to_kind) { DCHECK(IsTransitionElementsKind(map->elements_kind())); Handle current_map = map; ElementsKind kind = map->elements_kind(); TransitionFlag flag; if (map->is_prototype_map()) { flag = OMIT_TRANSITION; } else { flag = INSERT_TRANSITION; if (IsFastElementsKind(kind)) { while (kind != to_kind && !IsTerminalElementsKind(kind)) { kind = GetNextTransitionElementsKind(kind); current_map = Map::CopyAsElementsKind(current_map, kind, flag); } } } // In case we are exiting the fast elements kind system, just add the map in // the end. if (kind != to_kind) { current_map = Map::CopyAsElementsKind(current_map, to_kind, flag); } DCHECK(current_map->elements_kind() == to_kind); return current_map; } Handle Map::TransitionElementsTo(Handle map, ElementsKind to_kind) { ElementsKind from_kind = map->elements_kind(); if (from_kind == to_kind) return map; Isolate* isolate = map->GetIsolate(); Context* native_context = isolate->context()->native_context(); if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->fast_aliased_arguments_map()) { DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->slow_aliased_arguments_map()); } } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->slow_aliased_arguments_map()) { DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->fast_aliased_arguments_map()); } } else { Object* maybe_array_maps = map->is_strong() ? native_context->js_array_strong_maps() : native_context->js_array_maps(); if (maybe_array_maps->IsFixedArray()) { DisallowHeapAllocation no_gc; FixedArray* array_maps = FixedArray::cast(maybe_array_maps); if (array_maps->get(from_kind) == *map) { Object* maybe_transitioned_map = array_maps->get(to_kind); if (maybe_transitioned_map->IsMap()) { return handle(Map::cast(maybe_transitioned_map)); } } } } DCHECK(!map->IsUndefined()); bool allow_store_transition = IsTransitionElementsKind(from_kind); // Only store fast element maps in ascending generality. if (IsFastElementsKind(to_kind)) { allow_store_transition = allow_store_transition && IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind); } if (!allow_store_transition) { return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION); } return Map::AsElementsKind(map, to_kind); } // static Handle Map::AsElementsKind(Handle map, ElementsKind kind) { Handle closest_map(FindClosestElementsTransition(*map, kind)); if (closest_map->elements_kind() == kind) { return closest_map; } return AddMissingElementsTransitions(closest_map, kind); } Handle JSObject::GetElementsTransitionMap(Handle object, ElementsKind to_kind) { Handle map(object->map()); return Map::TransitionElementsTo(map, to_kind); } Maybe JSProxy::HasPropertyWithHandler(Handle proxy, Handle name) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return Just(false); Handle args[] = { name }; Handle result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, result, CallTrap(proxy, "has", isolate->derived_has_trap(), arraysize(args), args), Nothing()); return Just(result->BooleanValue()); } MaybeHandle JSProxy::SetPropertyWithHandler( Handle proxy, Handle receiver, Handle name, Handle value, LanguageMode language_mode) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return value; Handle args[] = { receiver, name, value }; RETURN_ON_EXCEPTION( isolate, CallTrap(proxy, "set", isolate->derived_set_trap(), arraysize(args), args), Object); return value; } MaybeHandle JSProxy::SetPropertyViaPrototypesWithHandler( Handle proxy, Handle receiver, Handle name, Handle value, LanguageMode language_mode, bool* done) { Isolate* isolate = proxy->GetIsolate(); Handle handler(proxy->handler(), isolate); // Trap might morph proxy. // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) { *done = false; return isolate->factory()->the_hole_value(); } *done = true; // except where redefined... Handle args[] = { name }; Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, CallTrap(proxy, "getPropertyDescriptor", Handle(), arraysize(args), args), Object); if (result->IsUndefined()) { *done = false; return isolate->factory()->the_hole_value(); } // Emulate [[GetProperty]] semantics for proxies. Handle argv[] = { result }; Handle desc; ASSIGN_RETURN_ON_EXCEPTION( isolate, desc, Execution::Call(isolate, isolate->to_complete_property_descriptor(), result, arraysize(argv), argv), Object); // [[GetProperty]] requires to check that all properties are configurable. Handle configurable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("configurable_")); Handle configurable = Object::GetProperty(desc, configurable_name).ToHandleChecked(); DCHECK(configurable->IsBoolean()); if (configurable->IsFalse()) { Handle trap = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("getPropertyDescriptor")); THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyPropNotConfigurable, handler, name, trap), Object); } DCHECK(configurable->IsTrue()); // Check for DataDescriptor. Handle hasWritable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("hasWritable_")); Handle hasWritable = Object::GetProperty(desc, hasWritable_name).ToHandleChecked(); DCHECK(hasWritable->IsBoolean()); if (hasWritable->IsTrue()) { Handle writable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("writable_")); Handle writable = Object::GetProperty(desc, writable_name).ToHandleChecked(); DCHECK(writable->IsBoolean()); *done = writable->IsFalse(); if (!*done) return isolate->factory()->the_hole_value(); return WriteToReadOnlyProperty(isolate, receiver, name, value, language_mode); } // We have an AccessorDescriptor. Handle set_name = isolate->factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("set_")); Handle setter = Object::GetProperty(desc, set_name).ToHandleChecked(); if (!setter->IsUndefined()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle::cast(setter), value); } if (is_sloppy(language_mode)) return value; THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kNoSetterInCallback, name, proxy), Object); } MaybeHandle JSProxy::DeletePropertyWithHandler( Handle proxy, Handle name, LanguageMode language_mode) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return isolate->factory()->false_value(); Handle args[] = { name }; Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, CallTrap(proxy, "delete", Handle(), arraysize(args), args), Object); bool result_bool = result->BooleanValue(); if (is_strict(language_mode) && !result_bool) { Handle handler(proxy->handler(), isolate); THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyHandlerDeleteFailed, handler), Object); } return isolate->factory()->ToBoolean(result_bool); } Maybe JSProxy::GetPropertyAttributesWithHandler( Handle proxy, Handle receiver, Handle name) { Isolate* isolate = proxy->GetIsolate(); HandleScope scope(isolate); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return Just(ABSENT); Handle args[] = { name }; Handle result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, result, proxy->CallTrap(proxy, "getPropertyDescriptor", Handle(), arraysize(args), args), Nothing()); if (result->IsUndefined()) return Just(ABSENT); Handle argv[] = { result }; Handle desc; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, desc, Execution::Call(isolate, isolate->to_complete_property_descriptor(), result, arraysize(argv), argv), Nothing()); // Convert result to PropertyAttributes. Handle enum_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("enumerable_")); Handle enumerable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, enumerable, Object::GetProperty(desc, enum_n), Nothing()); Handle conf_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("configurable_")); Handle configurable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, configurable, Object::GetProperty(desc, conf_n), Nothing()); Handle writ_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("writable_")); Handle writable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, writable, Object::GetProperty(desc, writ_n), Nothing()); if (!writable->BooleanValue()) { Handle set_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("set_")); Handle setter; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, setter, Object::GetProperty(desc, set_n), Nothing()); writable = isolate->factory()->ToBoolean(!setter->IsUndefined()); } if (configurable->IsFalse()) { Handle handler(proxy->handler(), isolate); Handle trap = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("getPropertyDescriptor")); Handle error = isolate->factory()->NewTypeError( MessageTemplate::kProxyPropNotConfigurable, handler, name, trap); isolate->Throw(*error); return Nothing(); } int attributes = NONE; if (!enumerable->BooleanValue()) attributes |= DONT_ENUM; if (!configurable->BooleanValue()) attributes |= DONT_DELETE; if (!writable->BooleanValue()) attributes |= READ_ONLY; return Just(static_cast(attributes)); } void JSProxy::Fix(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); // Save identity hash. Handle hash(proxy->GetIdentityHash(), isolate); if (proxy->IsJSFunctionProxy()) { isolate->factory()->BecomeJSFunction(proxy); // Code will be set on the JavaScript side. } else { isolate->factory()->BecomeJSObject(proxy); } DCHECK(proxy->IsJSObject()); // Inherit identity, if it was present. if (hash->IsSmi()) { JSObject::SetIdentityHash(Handle::cast(proxy), Handle::cast(hash)); } } MaybeHandle JSProxy::CallTrap(Handle proxy, const char* name, Handle derived, int argc, Handle argv[]) { Isolate* isolate = proxy->GetIsolate(); Handle handler(proxy->handler(), isolate); Handle trap_name = isolate->factory()->InternalizeUtf8String(name); Handle trap; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap, Object::GetPropertyOrElement(handler, trap_name), Object); if (trap->IsUndefined()) { if (derived.is_null()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyHandlerTrapMissing, handler, trap_name), Object); } trap = Handle(derived); } return Execution::Call(isolate, trap, handler, argc, argv); } void JSObject::AllocateStorageForMap(Handle object, Handle map) { DCHECK(object->map()->GetInObjectProperties() == map->GetInObjectProperties()); ElementsKind obj_kind = object->map()->elements_kind(); ElementsKind map_kind = map->elements_kind(); if (map_kind != obj_kind) { ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind); if (IsDictionaryElementsKind(obj_kind)) { to_kind = obj_kind; } if (IsDictionaryElementsKind(to_kind)) { NormalizeElements(object); } else { TransitionElementsKind(object, to_kind); } map = Map::AsElementsKind(map, to_kind); } JSObject::MigrateToMap(object, map); } void JSObject::MigrateInstance(Handle object) { Handle original_map(object->map()); Handle map = Map::Update(original_map); map->set_migration_target(true); MigrateToMap(object, map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, *map); } } // static bool JSObject::TryMigrateInstance(Handle object) { Isolate* isolate = object->GetIsolate(); DisallowDeoptimization no_deoptimization(isolate); Handle original_map(object->map(), isolate); Handle new_map; if (!Map::TryUpdate(original_map).ToHandle(&new_map)) { return false; } JSObject::MigrateToMap(object, new_map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, object->map()); } return true; } void JSObject::AddProperty(Handle object, Handle name, Handle value, PropertyAttributes attributes) { LookupIterator it(object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_NE(LookupIterator::ACCESS_CHECK, it.state()); #ifdef DEBUG uint32_t index; DCHECK(!object->IsJSProxy()); DCHECK(!name->AsArrayIndex(&index)); Maybe maybe = GetPropertyAttributes(&it); DCHECK(maybe.IsJust()); DCHECK(!it.IsFound()); DCHECK(object->map()->is_extensible() || it.isolate()->IsInternallyUsedPropertyName(name)); #endif AddDataProperty(&it, value, attributes, STRICT, CERTAINLY_NOT_STORE_FROM_KEYED).Check(); } // static void ExecutableAccessorInfo::ClearSetter(Handle info) { Handle object = v8::FromCData(info->GetIsolate(), nullptr); info->set_setter(*object); } // Reconfigures a property to a data property with attributes, even if it is not // reconfigurable. // Requires a LookupIterator that does not look at the prototype chain beyond // hidden prototypes. MaybeHandle JSObject::DefineOwnPropertyIgnoreAttributes( LookupIterator* it, Handle value, PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) { Handle object = Handle::cast(it->GetReceiver()); bool is_observed = object->map()->is_observed() && (it->IsElement() || !it->isolate()->IsInternallyUsedPropertyName(it->name())); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (!it->HasAccess()) { it->isolate()->ReportFailedAccessCheck(it->GetHolder()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return value; } break; // If there's an interceptor, try to store the property with the // interceptor. // In case of success, the attributes will have been reset to the default // attributes of the interceptor, rather than the incoming attributes. // // TODO(verwaest): JSProxy afterwards verify the attributes that the // JSProxy claims it has, and verifies that they are compatible. If not, // they throw. Here we should do the same. case LookupIterator::INTERCEPTOR: if (handling == DONT_FORCE_FIELD) { MaybeHandle maybe_result = JSObject::SetPropertyWithInterceptor(it, value); if (!maybe_result.is_null()) return maybe_result; if (it->isolate()->has_pending_exception()) return maybe_result; } break; case LookupIterator::ACCESSOR: { Handle accessors = it->GetAccessors(); // Special handling for ExecutableAccessorInfo, which behaves like a // data property. if (accessors->IsExecutableAccessorInfo() && handling == DONT_FORCE_FIELD) { PropertyDetails details = it->property_details(); // Ensure the context isn't changed after calling into accessors. AssertNoContextChange ncc(it->isolate()); Handle result; ASSIGN_RETURN_ON_EXCEPTION( it->isolate(), result, JSObject::SetPropertyWithAccessor(it, value, STRICT), Object); DCHECK(result->SameValue(*value)); if (details.attributes() == attributes) return value; // Reconfigure the accessor if attributes mismatch. Handle new_data = Accessors::CloneAccessor( it->isolate(), Handle::cast(accessors)); new_data->set_property_attributes(attributes); // By clearing the setter we don't have to introduce a lookup to // the setter, simply make it unavailable to reflect the // attributes. if (attributes & READ_ONLY) { ExecutableAccessorInfo::ClearSetter(new_data); } it->TransitionToAccessorPair(new_data, attributes); } else { it->ReconfigureDataProperty(value, attributes); it->WriteDataValue(value); } if (is_observed) { RETURN_ON_EXCEPTION( it->isolate(), EnqueueChangeRecord(object, "reconfigure", it->GetName(), it->factory()->the_hole_value()), Object); } return value; } case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineNonconfigurableProperty(it->isolate(), it->GetName(), value, STRICT); case LookupIterator::DATA: { PropertyDetails details = it->property_details(); Handle old_value = it->factory()->the_hole_value(); // Regular property update if the attributes match. if (details.attributes() == attributes) { return SetDataProperty(it, value); } // Special case: properties of typed arrays cannot be reconfigured to // non-writable nor to non-enumerable. if (it->IsElement() && object->HasFixedTypedArrayElements()) { return RedefineNonconfigurableProperty(it->isolate(), it->GetName(), value, STRICT); } // Reconfigure the data property if the attributes mismatch. if (is_observed) old_value = it->GetDataValue(); it->ReconfigureDataProperty(value, attributes); it->WriteDataValue(value); if (is_observed) { if (old_value->SameValue(*value)) { old_value = it->factory()->the_hole_value(); } RETURN_ON_EXCEPTION(it->isolate(), EnqueueChangeRecord(object, "reconfigure", it->GetName(), old_value), Object); } return value; } } } return AddDataProperty(it, value, attributes, STRICT, CERTAINLY_NOT_STORE_FROM_KEYED); } MaybeHandle JSObject::SetOwnPropertyIgnoreAttributes( Handle object, Handle name, Handle value, PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) { DCHECK(!value->IsTheHole()); LookupIterator it(object, name, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling); } MaybeHandle JSObject::SetOwnElementIgnoreAttributes( Handle object, uint32_t index, Handle value, PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling); } MaybeHandle JSObject::DefinePropertyOrElementIgnoreAttributes( Handle object, Handle name, Handle value, PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling); } Maybe JSObject::CreateDataProperty(LookupIterator* it, Handle value) { DCHECK(it->GetReceiver()->IsJSObject()); Maybe maybe = JSReceiver::GetPropertyAttributes(it); if (maybe.IsNothing()) return Nothing(); if (it->IsFound()) { if (!it->IsConfigurable()) return Just(false); } else { if (!JSObject::cast(*it->GetReceiver())->IsExtensible()) return Just(false); } RETURN_ON_EXCEPTION_VALUE( it->isolate(), DefineOwnPropertyIgnoreAttributes(it, value, NONE, DONT_FORCE_FIELD), Nothing()); return Just(true); } Maybe JSObject::GetPropertyAttributesWithInterceptor( LookupIterator* it) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); HandleScope scope(isolate); Handle holder = it->GetHolder(); Handle interceptor(it->GetInterceptor()); if (!it->IsElement() && it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) { return Just(ABSENT); } PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder); if (!interceptor->query()->IsUndefined()) { v8::Local result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyQueryCallback query = v8::ToCData(interceptor->query()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-has", *holder, index)); result = args.Call(query, index); } else { Handle name = it->name(); v8::GenericNamedPropertyQueryCallback query = v8::ToCData( interceptor->query()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-has", *holder, *name)); result = args.Call(query, v8::Utils::ToLocal(name)); } if (!result.IsEmpty()) { DCHECK(result->IsInt32()); return Just(static_cast( result->Int32Value(reinterpret_cast(isolate) ->GetCurrentContext()).FromJust())); } } else if (!interceptor->getter()->IsUndefined()) { // TODO(verwaest): Use GetPropertyWithInterceptor? v8::Local result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyGetterCallback getter = v8::ToCData(interceptor->getter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-get-has", *holder, index)); result = args.Call(getter, index); } else { Handle name = it->name(); v8::GenericNamedPropertyGetterCallback getter = v8::ToCData( interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get-has", *holder, *name)); result = args.Call(getter, v8::Utils::ToLocal(name)); } if (!result.IsEmpty()) return Just(DONT_ENUM); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing()); return Just(ABSENT); } Maybe JSReceiver::GetPropertyAttributes( LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyAttributesWithHandler( it->GetHolder(), it->GetReceiver(), it->GetName()); case LookupIterator::INTERCEPTOR: { Maybe result = JSObject::GetPropertyAttributesWithInterceptor(it); if (!result.IsJust()) return result; if (result.FromJust() != ABSENT) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyAttributesWithFailedAccessCheck(it); case LookupIterator::INTEGER_INDEXED_EXOTIC: return Just(ABSENT); case LookupIterator::ACCESSOR: case LookupIterator::DATA: return Just(it->property_details().attributes()); } } return Just(ABSENT); } Handle NormalizedMapCache::New(Isolate* isolate) { Handle array( isolate->factory()->NewFixedArray(kEntries, TENURED)); return Handle::cast(array); } MaybeHandle NormalizedMapCache::Get(Handle fast_map, PropertyNormalizationMode mode) { DisallowHeapAllocation no_gc; Object* value = FixedArray::get(GetIndex(fast_map)); if (!value->IsMap() || !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) { return MaybeHandle(); } return handle(Map::cast(value)); } void NormalizedMapCache::Set(Handle fast_map, Handle normalized_map) { DisallowHeapAllocation no_gc; DCHECK(normalized_map->is_dictionary_map()); FixedArray::set(GetIndex(fast_map), *normalized_map); } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } void HeapObject::UpdateMapCodeCache(Handle object, Handle name, Handle code) { Handle map(object->map()); Map::UpdateCodeCache(map, name, code); } void JSObject::NormalizeProperties(Handle object, PropertyNormalizationMode mode, int expected_additional_properties, const char* reason) { if (!object->HasFastProperties()) return; Handle map(object->map()); Handle new_map = Map::Normalize(map, mode, reason); MigrateToMap(object, new_map, expected_additional_properties); } void JSObject::MigrateFastToSlow(Handle object, Handle new_map, int expected_additional_properties) { // The global object is always normalized. DCHECK(!object->IsGlobalObject()); // JSGlobalProxy must never be normalized DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle map(object->map()); // Allocate new content. int real_size = map->NumberOfOwnDescriptors(); int property_count = real_size; if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } Handle dictionary = NameDictionary::New(isolate, property_count); Handle descs(map->instance_descriptors()); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); Handle key(descs->GetKey(i)); switch (details.type()) { case DATA_CONSTANT: { Handle value(descs->GetConstant(i), isolate); PropertyDetails d(details.attributes(), DATA, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case DATA: { FieldIndex index = FieldIndex::ForDescriptor(*map, i); Handle value; if (object->IsUnboxedDoubleField(index)) { double old_value = object->RawFastDoublePropertyAt(index); value = isolate->factory()->NewHeapNumber(old_value); } else { value = handle(object->RawFastPropertyAt(index), isolate); if (details.representation().IsDouble()) { DCHECK(value->IsMutableHeapNumber()); Handle old = Handle::cast(value); value = isolate->factory()->NewHeapNumber(old->value()); } } PropertyDetails d(details.attributes(), DATA, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case ACCESSOR: { FieldIndex index = FieldIndex::ForDescriptor(*map, i); Handle value(object->RawFastPropertyAt(index), isolate); PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case ACCESSOR_CONSTANT: { Handle value(descs->GetCallbacksObject(i), isolate); PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } } } // Copy the next enumeration index from instance descriptor. dictionary->SetNextEnumerationIndex(real_size + 1); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Heap* heap = isolate->heap(); heap->CreateFillerObjectAt(object->address() + new_instance_size, instance_size_delta); heap->AdjustLiveBytes(*object, -instance_size_delta, Heap::CONCURRENT_TO_SWEEPER); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); object->set_properties(*dictionary); // Ensure that in-object space of slow-mode object does not contain random // garbage. int inobject_properties = new_map->GetInObjectProperties(); for (int i = 0; i < inobject_properties; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); object->RawFastPropertyAtPut(index, Smi::FromInt(0)); } isolate->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object properties have been normalized:\n"; object->Print(os); } #endif } void JSObject::MigrateSlowToFast(Handle object, int unused_property_fields, const char* reason) { if (object->HasFastProperties()) return; DCHECK(!object->IsGlobalObject()); Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); Handle dictionary(object->property_dictionary()); // Make sure we preserve dictionary representation if there are too many // descriptors. int number_of_elements = dictionary->NumberOfElements(); if (number_of_elements > kMaxNumberOfDescriptors) return; Handle iteration_order; if (number_of_elements != dictionary->NextEnumerationIndex()) { iteration_order = NameDictionary::DoGenerateNewEnumerationIndices(dictionary); } else { iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary); } int instance_descriptor_length = iteration_order->length(); int number_of_fields = 0; // Compute the length of the instance descriptor. for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); DCHECK(dictionary->IsKey(dictionary->KeyAt(index))); Object* value = dictionary->ValueAt(index); PropertyType type = dictionary->DetailsAt(index).type(); if (type == DATA && !value->IsJSFunction()) { number_of_fields += 1; } } Handle old_map(object->map(), isolate); int inobject_props = old_map->GetInObjectProperties(); // Allocate new map. Handle new_map = Map::CopyDropDescriptors(old_map); new_map->set_dictionary_map(false); UpdatePrototypeUserRegistration(old_map, new_map, isolate); #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n", reinterpret_cast(*old_map), reinterpret_cast(*new_map), reason); } #endif if (instance_descriptor_length == 0) { DisallowHeapAllocation no_gc; DCHECK_LE(unused_property_fields, inobject_props); // Transform the object. new_map->set_unused_property_fields(inobject_props); object->synchronized_set_map(*new_map); object->set_properties(isolate->heap()->empty_fixed_array()); // Check that it really works. DCHECK(object->HasFastProperties()); return; } // Allocate the instance descriptor. Handle descriptors = DescriptorArray::Allocate( isolate, instance_descriptor_length); int number_of_allocated_fields = number_of_fields + unused_property_fields - inobject_props; if (number_of_allocated_fields < 0) { // There is enough inobject space for all fields (including unused). number_of_allocated_fields = 0; unused_property_fields = inobject_props - number_of_fields; } // Allocate the fixed array for the fields. Handle fields = factory->NewFixedArray( number_of_allocated_fields); // Fill in the instance descriptor and the fields. int current_offset = 0; for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); Object* k = dictionary->KeyAt(index); DCHECK(dictionary->IsKey(k)); // Dictionary keys are internalized upon insertion. // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild. CHECK(k->IsUniqueName()); Handle key(Name::cast(k), isolate); Object* value = dictionary->ValueAt(index); PropertyDetails details = dictionary->DetailsAt(index); int enumeration_index = details.dictionary_index(); PropertyType type = details.type(); if (value->IsJSFunction()) { DataConstantDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else if (type == DATA) { if (current_offset < inobject_props) { object->InObjectPropertyAtPut(current_offset, value, UPDATE_WRITE_BARRIER); } else { int offset = current_offset - inobject_props; fields->set(offset, value); } DataDescriptor d(key, current_offset, details.attributes(), // TODO(verwaest): value->OptimalRepresentation(); Representation::Tagged()); current_offset += d.GetDetails().field_width_in_words(); descriptors->Set(enumeration_index - 1, &d); } else if (type == ACCESSOR_CONSTANT) { AccessorConstantDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else { UNREACHABLE(); } } DCHECK(current_offset == number_of_fields); descriptors->Sort(); Handle layout_descriptor = LayoutDescriptor::New( new_map, descriptors, descriptors->number_of_descriptors()); DisallowHeapAllocation no_gc; new_map->InitializeDescriptors(*descriptors, *layout_descriptor); new_map->set_unused_property_fields(unused_property_fields); // Transform the object. object->synchronized_set_map(*new_map); object->set_properties(*fields); DCHECK(object->IsJSObject()); // Check that it really works. DCHECK(object->HasFastProperties()); } void JSObject::ResetElements(Handle object) { Isolate* isolate = object->GetIsolate(); CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map()); if (object->map()->has_dictionary_elements()) { Handle new_elements = SeededNumberDictionary::New(isolate, 0); object->set_elements(*new_elements); } else { object->set_elements(object->map()->GetInitialElements()); } } static Handle CopyFastElementsToDictionary( Handle array, int length, Handle dictionary, bool used_as_prototype) { Isolate* isolate = array->GetIsolate(); Factory* factory = isolate->factory(); bool has_double_elements = array->IsFixedDoubleArray(); for (int i = 0; i < length; i++) { Handle value; if (has_double_elements) { Handle double_array = Handle::cast(array); if (double_array->is_the_hole(i)) { value = factory->the_hole_value(); } else { value = factory->NewHeapNumber(double_array->get_scalar(i)); } } else { value = handle(Handle::cast(array)->get(i), isolate); } if (!value->IsTheHole()) { PropertyDetails details = PropertyDetails::Empty(); dictionary = SeededNumberDictionary::AddNumberEntry( dictionary, i, value, details, used_as_prototype); } } return dictionary; } void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) { if (dictionary->requires_slow_elements()) return; dictionary->set_requires_slow_elements(); // TODO(verwaest): Remove this hack. if (map()->is_prototype_map()) { GetHeap()->ClearAllKeyedStoreICs(); } } Handle JSObject::GetNormalizedElementDictionary( Handle object, Handle elements) { DCHECK(!object->HasDictionaryElements()); DCHECK(!object->HasSlowArgumentsElements()); Isolate* isolate = object->GetIsolate(); // Ensure that notifications fire if the array or object prototypes are // normalizing. isolate->UpdateArrayProtectorOnNormalizeElements(object); int length = object->IsJSArray() ? Smi::cast(Handle::cast(object)->length())->value() : elements->length(); int used = object->GetFastElementsUsage(); Handle dictionary = SeededNumberDictionary::New(isolate, used); return CopyFastElementsToDictionary(elements, length, dictionary, object->map()->is_prototype_map()); } Handle JSObject::NormalizeElements( Handle object) { DCHECK(!object->HasFixedTypedArrayElements()); Isolate* isolate = object->GetIsolate(); // Find the backing store. Handle elements(object->elements(), isolate); bool is_arguments = object->HasSloppyArgumentsElements(); if (is_arguments) { FixedArray* parameter_map = FixedArray::cast(*elements); elements = handle(FixedArrayBase::cast(parameter_map->get(1)), isolate); } if (elements->IsDictionary()) { return Handle::cast(elements); } DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastDoubleElements() || object->HasFastArgumentsElements()); Handle dictionary = GetNormalizedElementDictionary(object, elements); // Switch to using the dictionary as the backing storage for elements. ElementsKind target_kind = is_arguments ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS : DICTIONARY_ELEMENTS; Handle new_map = JSObject::GetElementsTransitionMap(object, target_kind); // Set the new map first to satify the elements type assert in set_elements(). JSObject::MigrateToMap(object, new_map); if (is_arguments) { FixedArray::cast(object->elements())->set(1, *dictionary); } else { object->set_elements(*dictionary); } isolate->counters()->elements_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object elements have been normalized:\n"; object->Print(os); } #endif DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements()); return dictionary; } static Smi* GenerateIdentityHash(Isolate* isolate) { int hash_value; int attempts = 0; do { // Generate a random 32-bit hash value but limit range to fit // within a smi. hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue; attempts++; } while (hash_value == 0 && attempts < 30); hash_value = hash_value != 0 ? hash_value : 1; // never return 0 return Smi::FromInt(hash_value); } void JSObject::SetIdentityHash(Handle object, Handle hash) { DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); Handle hash_code_symbol(isolate->heap()->hash_code_symbol()); JSObject::AddProperty(object, hash_code_symbol, hash, NONE); } template static Handle GetOrCreateIdentityHashHelper(Handle proxy) { Isolate* isolate = proxy->GetIsolate(); Handle maybe_hash(proxy->hash(), isolate); if (maybe_hash->IsSmi()) return Handle::cast(maybe_hash); Handle hash(GenerateIdentityHash(isolate), isolate); proxy->set_hash(*hash); return hash; } Object* JSObject::GetIdentityHash() { DisallowHeapAllocation no_gc; Isolate* isolate = GetIsolate(); if (IsJSGlobalProxy()) { return JSGlobalProxy::cast(this)->hash(); } Handle hash_code_symbol(isolate->heap()->hash_code_symbol()); Handle stored_value = Object::GetPropertyOrElement(Handle(this, isolate), hash_code_symbol).ToHandleChecked(); return stored_value->IsSmi() ? *stored_value : isolate->heap()->undefined_value(); } Handle JSObject::GetOrCreateIdentityHash(Handle object) { if (object->IsJSGlobalProxy()) { return GetOrCreateIdentityHashHelper(Handle::cast(object)); } Isolate* isolate = object->GetIsolate(); Handle maybe_hash(object->GetIdentityHash(), isolate); if (maybe_hash->IsSmi()) return Handle::cast(maybe_hash); Handle hash(GenerateIdentityHash(isolate), isolate); Handle hash_code_symbol(isolate->heap()->hash_code_symbol()); JSObject::AddProperty(object, hash_code_symbol, hash, NONE); return hash; } Object* JSProxy::GetIdentityHash() { return this->hash(); } Handle JSProxy::GetOrCreateIdentityHash(Handle proxy) { return GetOrCreateIdentityHashHelper(proxy); } Object* JSObject::GetHiddenProperty(Handle key) { DisallowHeapAllocation no_gc; DCHECK(key->IsUniqueName()); if (IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. PrototypeIterator iter(GetIsolate(), this); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return GetHeap()->the_hole_value(); DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return iter.GetCurrent()->GetHiddenProperty(key); } DCHECK(!IsJSGlobalProxy()); Object* inline_value = GetHiddenPropertiesHashTable(); if (inline_value->IsUndefined()) return GetHeap()->the_hole_value(); ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value); Object* entry = hashtable->Lookup(key); return entry; } Handle JSObject::SetHiddenProperty(Handle object, Handle key, Handle value) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. PrototypeIterator iter(isolate, object); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return isolate->factory()->undefined_value(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return SetHiddenProperty(PrototypeIterator::GetCurrent(iter), key, value); } DCHECK(!object->IsJSGlobalProxy()); Handle inline_value(object->GetHiddenPropertiesHashTable(), isolate); Handle hashtable = GetOrCreateHiddenPropertiesHashtable(object); // If it was found, check if the key is already in the dictionary. Handle new_table = ObjectHashTable::Put(hashtable, key, value); if (*new_table != *hashtable) { // If adding the key expanded the dictionary (i.e., Add returned a new // dictionary), store it back to the object. SetHiddenPropertiesHashTable(object, new_table); } // Return this to mark success. return object; } void JSObject::DeleteHiddenProperty(Handle object, Handle key) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return DeleteHiddenProperty(PrototypeIterator::GetCurrent(iter), key); } Object* inline_value = object->GetHiddenPropertiesHashTable(); if (inline_value->IsUndefined()) return; Handle hashtable(ObjectHashTable::cast(inline_value)); bool was_present = false; ObjectHashTable::Remove(hashtable, key, &was_present); } bool JSObject::HasHiddenProperties(Handle object) { Handle hidden = object->GetIsolate()->factory()->hidden_string(); LookupIterator it(object, hidden, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe maybe = GetPropertyAttributes(&it); // Cannot get an exception since the hidden_string isn't accessible to JS. DCHECK(maybe.IsJust()); return maybe.FromJust() != ABSENT; } Object* JSObject::GetHiddenPropertiesHashTable() { DCHECK(!IsJSGlobalProxy()); if (HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden string. Since the // hidden strings hash code is zero (and no other name has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = this->map()->instance_descriptors(); if (descriptors->number_of_descriptors() > 0) { int sorted_index = descriptors->GetSortedKeyIndex(0); if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() && sorted_index < map()->NumberOfOwnDescriptors()) { DCHECK(descriptors->GetType(sorted_index) == DATA); DCHECK(descriptors->GetDetails(sorted_index).representation(). IsCompatibleForLoad(Representation::Tagged())); FieldIndex index = FieldIndex::ForDescriptor(this->map(), sorted_index); return this->RawFastPropertyAt(index); } else { return GetHeap()->undefined_value(); } } else { return GetHeap()->undefined_value(); } } else { Isolate* isolate = GetIsolate(); LookupIterator it(handle(this), isolate->factory()->hidden_string(), LookupIterator::OWN_SKIP_INTERCEPTOR); // Access check is always skipped for the hidden string anyways. return *GetDataProperty(&it); } } Handle JSObject::GetOrCreateHiddenPropertiesHashtable( Handle object) { Isolate* isolate = object->GetIsolate(); static const int kInitialCapacity = 4; Handle inline_value(object->GetHiddenPropertiesHashTable(), isolate); if (inline_value->IsHashTable()) { return Handle::cast(inline_value); } Handle hashtable = ObjectHashTable::New( isolate, kInitialCapacity, USE_CUSTOM_MINIMUM_CAPACITY); DCHECK(inline_value->IsUndefined()); SetHiddenPropertiesHashTable(object, hashtable); return hashtable; } Handle JSObject::SetHiddenPropertiesHashTable(Handle object, Handle value) { DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); Handle name = isolate->factory()->hidden_string(); SetOwnPropertyIgnoreAttributes(object, name, value, DONT_ENUM).Assert(); return object; } MaybeHandle JSObject::DeletePropertyWithInterceptor( LookupIterator* it) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle interceptor(it->GetInterceptor()); if (interceptor->deleter()->IsUndefined()) return MaybeHandle(); Handle holder = it->GetHolder(); PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder); v8::Local result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyDeleterCallback deleter = v8::ToCData(interceptor->deleter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-delete", *holder, index)); result = args.Call(deleter, index); } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) { return MaybeHandle(); } else { Handle name = it->name(); v8::GenericNamedPropertyDeleterCallback deleter = v8::ToCData( interceptor->deleter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-delete", *holder, *name)); result = args.Call(deleter, v8::Utils::ToLocal(name)); } RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) return MaybeHandle(); DCHECK(result->IsBoolean()); Handle result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox CustomArguments::kReturnValueOffset before returning. return handle(*result_internal, isolate); } void JSObject::DeleteNormalizedProperty(Handle object, Handle name, int entry) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); if (object->IsGlobalObject()) { // If we have a global object, invalidate the cell and swap in a new one. Handle dictionary(object->global_dictionary()); DCHECK_NE(GlobalDictionary::kNotFound, entry); auto cell = PropertyCell::InvalidateEntry(dictionary, entry); cell->set_value(isolate->heap()->the_hole_value()); // TODO(ishell): InvalidateForDelete cell->set_property_details( cell->property_details().set_cell_type(PropertyCellType::kInvalidated)); } else { Handle dictionary(object->property_dictionary()); DCHECK_NE(NameDictionary::kNotFound, entry); NameDictionary::DeleteProperty(dictionary, entry); Handle new_properties = NameDictionary::Shrink(dictionary, name); object->set_properties(*new_properties); } } // ECMA-262, 3rd, 8.6.2.5 MaybeHandle JSReceiver::DeleteProperty(LookupIterator* it, LanguageMode language_mode) { Isolate* isolate = it->isolate(); if (it->state() == LookupIterator::JSPROXY) { return JSProxy::DeletePropertyWithHandler(it->GetHolder(), it->GetName(), language_mode); } Handle receiver = Handle::cast(it->GetReceiver()); bool is_observed = receiver->map()->is_observed() && (it->IsElement() || !isolate->IsInternallyUsedPropertyName(it->name())); Handle old_value = it->factory()->the_hole_value(); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; isolate->ReportFailedAccessCheck(it->GetHolder()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return it->factory()->false_value(); case LookupIterator::INTERCEPTOR: { MaybeHandle maybe_result = JSObject::DeletePropertyWithInterceptor(it); // Delete with interceptor succeeded. Return result. if (!maybe_result.is_null()) return maybe_result; // An exception was thrown in the interceptor. Propagate. if (isolate->has_pending_exception()) return maybe_result; break; } case LookupIterator::INTEGER_INDEXED_EXOTIC: return it->factory()->true_value(); case LookupIterator::DATA: if (is_observed) { old_value = it->GetDataValue(); } // Fall through. case LookupIterator::ACCESSOR: { if (!it->IsConfigurable() || receiver->map()->is_strong()) { // Fail if the property is not configurable, or on a strong object. if (is_strict(language_mode)) { MessageTemplate::Template templ = receiver->map()->is_strong() ? MessageTemplate::kStrongDeleteProperty : MessageTemplate::kStrictDeleteProperty; THROW_NEW_ERROR( isolate, NewTypeError(templ, it->GetName(), receiver), Object); } return it->factory()->false_value(); } it->Delete(); if (is_observed) { RETURN_ON_EXCEPTION(isolate, JSObject::EnqueueChangeRecord( receiver, "delete", it->GetName(), old_value), Object); } return it->factory()->true_value(); } } } return it->factory()->true_value(); } MaybeHandle JSReceiver::DeleteElement(Handle object, uint32_t index, LanguageMode language_mode) { LookupIterator it(object->GetIsolate(), object, index, LookupIterator::HIDDEN); return DeleteProperty(&it, language_mode); } MaybeHandle JSReceiver::DeleteProperty(Handle object, Handle name, LanguageMode language_mode) { LookupIterator it(object, name, LookupIterator::HIDDEN); return JSObject::DeleteProperty(&it, language_mode); } MaybeHandle JSReceiver::DeletePropertyOrElement( Handle object, Handle name, LanguageMode language_mode) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, LookupIterator::HIDDEN); return JSObject::DeleteProperty(&it, language_mode); } bool JSObject::ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object) { DCHECK(IsFastObjectElementsKind(kind) || kind == DICTIONARY_ELEMENTS); if (IsFastObjectElementsKind(kind)) { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : elements->length(); for (int i = 0; i < length; ++i) { Object* element = elements->get(i); if (!element->IsTheHole() && element == object) return true; } } else { Object* key = SeededNumberDictionary::cast(elements)->SlowReverseLookup(object); if (!key->IsUndefined()) return true; } return false; } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = GetHeap(); DisallowHeapAllocation no_allocation; // Is the object the constructor for this object? if (map_of_this->GetConstructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. ElementsKind kind = GetElementsKind(); switch (kind) { // Raw pixels and external arrays do not reference other // objects. #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: break; case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: break; case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: case DICTIONARY_ELEMENTS: { FixedArray* elements = FixedArray::cast(this->elements()); if (ReferencesObjectFromElements(elements, kind, obj)) return true; break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); // Check the mapped parameters. int length = parameter_map->length(); for (int i = 2; i < length; ++i) { Object* value = parameter_map->get(i); if (!value->IsTheHole() && value == obj) return true; } // Check the arguments. FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_HOLEY_ELEMENTS; if (ReferencesObjectFromElements(arguments, kind, obj)) return true; break; } } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. Map* arguments_map = heap->isolate()->context()->native_context()->sloppy_arguments_map(); JSFunction* arguments_function = JSFunction::cast(arguments_map->GetConstructor()); // Get the context and don't check if it is the native context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsNativeContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->GetConstructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension (if any) if it can have references. if (context->has_extension() && !context->IsCatchContext()) { // With harmony scoping, a JSFunction may have a script context. // TODO(mvstanton): walk into the ScopeInfo. if (context->IsScriptContext()) { return false; } return context->extension_object()->ReferencesObject(obj); } } // No references to object. return false; } MaybeHandle JSObject::PreventExtensions(Handle object) { if (!object->map()->is_extensible()) return object; if (!object->HasSloppyArgumentsElements() && !object->map()->is_observed()) { return PreventExtensionsWithTransition(object); } Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(object)) { isolate->ReportFailedAccessCheck(object); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->false_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return object; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensions(PrototypeIterator::GetCurrent(iter)); } // It's not possible to seal objects with external array elements if (object->HasFixedTypedArrayElements()) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kCannotPreventExtExternalArray), Object); } // If there are fast elements we normalize. Handle dictionary = NormalizeElements(object); DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements()); // Make sure that we never go back to fast case. object->RequireSlowElements(*dictionary); // Do a map transition, other objects with this map may still // be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle new_map = Map::Copy(handle(object->map()), "PreventExtensions"); new_map->set_is_extensible(false); JSObject::MigrateToMap(object, new_map); DCHECK(!object->map()->is_extensible()); if (object->map()->is_observed()) { RETURN_ON_EXCEPTION( isolate, EnqueueChangeRecord(object, "preventExtensions", Handle(), isolate->factory()->the_hole_value()), Object); } return object; } bool JSObject::IsExtensible() { if (IsJSGlobalProxy()) { PrototypeIterator iter(GetIsolate(), this); if (iter.IsAtEnd()) return false; DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return iter.GetCurrent()->map()->is_extensible(); } return map()->is_extensible(); } template static void ApplyAttributesToDictionary(Dictionary* dictionary, const PropertyAttributes attributes) { int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k) && !(k->IsSymbol() && Symbol::cast(k)->is_private())) { PropertyDetails details = dictionary->DetailsAt(i); int attrs = attributes; // READ_ONLY is an invalid attribute for JS setters/getters. if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) { Object* v = dictionary->ValueAt(i); if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value(); if (v->IsAccessorPair()) attrs &= ~READ_ONLY; } details = details.CopyAddAttributes( static_cast(attrs)); dictionary->DetailsAtPut(i, details); } } } template MaybeHandle JSObject::PreventExtensionsWithTransition( Handle object) { STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN); // Sealing/freezing sloppy arguments should be handled elsewhere. DCHECK(!object->HasSloppyArgumentsElements()); DCHECK(!object->map()->is_observed()); Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(object)) { isolate->ReportFailedAccessCheck(object); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->false_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return object; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensionsWithTransition( PrototypeIterator::GetCurrent(iter)); } // It's not possible to seal or freeze objects with external array elements if (object->HasFixedTypedArrayElements()) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kCannotPreventExtExternalArray), Object); } Handle new_element_dictionary; if (!object->HasDictionaryElements()) { int length = object->IsJSArray() ? Smi::cast(Handle::cast(object)->length())->value() : object->elements()->length(); new_element_dictionary = length == 0 ? isolate->factory()->empty_slow_element_dictionary() : GetNormalizedElementDictionary( object, handle(object->elements())); } Handle transition_marker; if (attrs == NONE) { transition_marker = isolate->factory()->nonextensible_symbol(); } else if (attrs == SEALED) { transition_marker = isolate->factory()->sealed_symbol(); } else { DCHECK(attrs == FROZEN); transition_marker = isolate->factory()->frozen_symbol(); } Handle old_map(object->map(), isolate); Map* transition = TransitionArray::SearchSpecial(*old_map, *transition_marker); if (transition != NULL) { Handle transition_map(transition, isolate); DCHECK(transition_map->has_dictionary_elements()); DCHECK(!transition_map->is_extensible()); JSObject::MigrateToMap(object, transition_map); } else if (TransitionArray::CanHaveMoreTransitions(old_map)) { // Create a new descriptor array with the appropriate property attributes Handle new_map = Map::CopyForPreventExtensions( old_map, attrs, transition_marker, "CopyForPreventExtensions"); JSObject::MigrateToMap(object, new_map); } else { DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map()); // Slow path: need to normalize properties for safety NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "SlowPreventExtensions"); // Create a new map, since other objects with this map may be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle new_map = Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions"); new_map->set_is_extensible(false); new_map->set_elements_kind(DICTIONARY_ELEMENTS); JSObject::MigrateToMap(object, new_map); if (attrs != NONE) { if (object->IsGlobalObject()) { ApplyAttributesToDictionary(object->global_dictionary(), attrs); } else { ApplyAttributesToDictionary(object->property_dictionary(), attrs); } } } DCHECK(object->map()->has_dictionary_elements()); if (!new_element_dictionary.is_null()) { object->set_elements(*new_element_dictionary); } if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) { SeededNumberDictionary* dictionary = object->element_dictionary(); // Make sure we never go back to the fast case object->RequireSlowElements(dictionary); if (attrs != NONE) { ApplyAttributesToDictionary(dictionary, attrs); } } return object; } MaybeHandle JSObject::Freeze(Handle object) { return PreventExtensionsWithTransition(object); } MaybeHandle JSObject::Seal(Handle object) { return PreventExtensionsWithTransition(object); } void JSObject::SetObserved(Handle object) { DCHECK(!object->IsJSGlobalProxy()); DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); Handle new_map; Handle old_map(object->map(), isolate); DCHECK(!old_map->is_observed()); Map* transition = TransitionArray::SearchSpecial( *old_map, isolate->heap()->observed_symbol()); if (transition != NULL) { new_map = handle(transition, isolate); DCHECK(new_map->is_observed()); } else if (TransitionArray::CanHaveMoreTransitions(old_map)) { new_map = Map::CopyForObserved(old_map); } else { new_map = Map::Copy(old_map, "SlowObserved"); new_map->set_is_observed(); } JSObject::MigrateToMap(object, new_map); } Handle JSObject::FastPropertyAt(Handle object, Representation representation, FieldIndex index) { Isolate* isolate = object->GetIsolate(); if (object->IsUnboxedDoubleField(index)) { double value = object->RawFastDoublePropertyAt(index); return isolate->factory()->NewHeapNumber(value); } Handle raw_value(object->RawFastPropertyAt(index), isolate); return Object::WrapForRead(isolate, raw_value, representation); } template class JSObjectWalkVisitor { public: JSObjectWalkVisitor(ContextObject* site_context, bool copying, JSObject::DeepCopyHints hints) : site_context_(site_context), copying_(copying), hints_(hints) {} MUST_USE_RESULT MaybeHandle StructureWalk(Handle object); protected: MUST_USE_RESULT inline MaybeHandle VisitElementOrProperty( Handle object, Handle value) { Handle current_site = site_context()->EnterNewScope(); MaybeHandle copy_of_value = StructureWalk(value); site_context()->ExitScope(current_site, value); return copy_of_value; } inline ContextObject* site_context() { return site_context_; } inline Isolate* isolate() { return site_context()->isolate(); } inline bool copying() const { return copying_; } private: ContextObject* site_context_; const bool copying_; const JSObject::DeepCopyHints hints_; }; template MaybeHandle JSObjectWalkVisitor::StructureWalk( Handle object) { Isolate* isolate = this->isolate(); bool copying = this->copying(); bool shallow = hints_ == JSObject::kObjectIsShallow; if (!shallow) { StackLimitCheck check(isolate); if (check.HasOverflowed()) { isolate->StackOverflow(); return MaybeHandle(); } } if (object->map()->is_deprecated()) { JSObject::MigrateInstance(object); } Handle copy; if (copying) { Handle site_to_pass; if (site_context()->ShouldCreateMemento(object)) { site_to_pass = site_context()->current(); } copy = isolate->factory()->CopyJSObjectWithAllocationSite( object, site_to_pass); } else { copy = object; } DCHECK(copying || copy.is_identical_to(object)); ElementsKind kind = copy->GetElementsKind(); if (copying && IsFastSmiOrObjectElementsKind(kind) && FixedArray::cast(copy->elements())->map() == isolate->heap()->fixed_cow_array_map()) { isolate->counters()->cow_arrays_created_runtime()->Increment(); } if (!shallow) { HandleScope scope(isolate); // Deep copy own properties. if (copy->HasFastProperties()) { Handle descriptors(copy->map()->instance_descriptors()); int limit = copy->map()->NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() != DATA) continue; FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i); if (object->IsUnboxedDoubleField(index)) { if (copying) { double value = object->RawFastDoublePropertyAt(index); copy->RawFastDoublePropertyAtPut(index, value); } } else { Handle value(object->RawFastPropertyAt(index), isolate); if (value->IsJSObject()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, VisitElementOrProperty(copy, Handle::cast(value)), JSObject); if (copying) { copy->FastPropertyAtPut(index, *value); } } else { if (copying) { Representation representation = details.representation(); value = Object::NewStorageFor(isolate, value, representation); copy->FastPropertyAtPut(index, *value); } } } } } else { Handle names = isolate->factory()->NewFixedArray(copy->NumberOfOwnProperties()); copy->GetOwnPropertyNames(*names, 0); for (int i = 0; i < names->length(); i++) { DCHECK(names->get(i)->IsString()); Handle key_string(String::cast(names->get(i))); Maybe maybe = JSReceiver::GetOwnPropertyAttributes(copy, key_string); DCHECK(maybe.IsJust()); PropertyAttributes attributes = maybe.FromJust(); // Only deep copy fields from the object literal expression. // In particular, don't try to copy the length attribute of // an array. if (attributes != NONE) continue; Handle value = Object::GetProperty(copy, key_string).ToHandleChecked(); if (value->IsJSObject()) { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle::cast(value)), JSObject); if (copying) { // Creating object copy for literals. No strict mode needed. JSObject::SetProperty(copy, key_string, result, SLOPPY).Assert(); } } } } // Deep copy own elements. // Pixel elements cannot be created using an object literal. DCHECK(!copy->HasFixedTypedArrayElements()); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { Handle elements(FixedArray::cast(copy->elements())); if (elements->map() == isolate->heap()->fixed_cow_array_map()) { #ifdef DEBUG for (int i = 0; i < elements->length(); i++) { DCHECK(!elements->get(i)->IsJSObject()); } #endif } else { for (int i = 0; i < elements->length(); i++) { Handle value(elements->get(i), isolate); DCHECK(value->IsSmi() || value->IsTheHole() || (IsFastObjectElementsKind(copy->GetElementsKind()))); if (value->IsJSObject()) { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle::cast(value)), JSObject); if (copying) { elements->set(i, *result); } } } } break; } case DICTIONARY_ELEMENTS: { Handle element_dictionary( copy->element_dictionary()); int capacity = element_dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = element_dictionary->KeyAt(i); if (element_dictionary->IsKey(k)) { Handle value(element_dictionary->ValueAt(i), isolate); if (value->IsJSObject()) { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle::cast(value)), JSObject); if (copying) { element_dictionary->ValueAtPut(i, *result); } } } } break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: // No contained objects, nothing to do. break; } } return copy; } MaybeHandle JSObject::DeepWalk( Handle object, AllocationSiteCreationContext* site_context) { JSObjectWalkVisitor v(site_context, false, kNoHints); MaybeHandle result = v.StructureWalk(object); Handle for_assert; DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object)); return result; } MaybeHandle JSObject::DeepCopy( Handle object, AllocationSiteUsageContext* site_context, DeepCopyHints hints) { JSObjectWalkVisitor v(site_context, true, hints); MaybeHandle copy = v.StructureWalk(object); Handle for_assert; DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object)); return copy; } // static MaybeHandle JSReceiver::ToPrimitive(Handle receiver, ToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle exotic_to_prim; ASSIGN_RETURN_ON_EXCEPTION( isolate, exotic_to_prim, GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object); if (!exotic_to_prim->IsUndefined()) { Handle hint_string; switch (hint) { case ToPrimitiveHint::kDefault: hint_string = isolate->factory()->default_string(); break; case ToPrimitiveHint::kNumber: hint_string = isolate->factory()->number_string(); break; case ToPrimitiveHint::kString: hint_string = isolate->factory()->string_string(); break; } Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string), Object); if (result->IsPrimitive()) return result; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString) ? OrdinaryToPrimitiveHint::kString : OrdinaryToPrimitiveHint::kNumber); } // static MaybeHandle JSReceiver::OrdinaryToPrimitive( Handle receiver, OrdinaryToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle method_names[2]; switch (hint) { case OrdinaryToPrimitiveHint::kNumber: method_names[0] = isolate->factory()->valueOf_string(); method_names[1] = isolate->factory()->toString_string(); break; case OrdinaryToPrimitiveHint::kString: method_names[0] = isolate->factory()->toString_string(); method_names[1] = isolate->factory()->valueOf_string(); break; } for (Handle name : method_names) { Handle method; ASSIGN_RETURN_ON_EXCEPTION(isolate, method, JSReceiver::GetProperty(receiver, name), Object); if (method->IsCallable()) { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, method, receiver, 0, NULL), Object); if (result->IsPrimitive()) return result; } } THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that // it is no proxy, has no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSReceiver::IsSimpleEnum() { for (PrototypeIterator iter(GetIsolate(), this, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (!iter.GetCurrent()->IsJSObject()) return false; JSObject* current = iter.GetCurrent(); int enum_length = current->map()->EnumLength(); if (enum_length == kInvalidEnumCacheSentinel) return false; if (current->IsAccessCheckNeeded()) return false; DCHECK(!current->HasNamedInterceptor()); DCHECK(!current->HasIndexedInterceptor()); if (current->NumberOfEnumElements() > 0) return false; if (current != this && enum_length != 0) return false; } return true; } static bool FilterKey(Object* key, PropertyAttributes filter) { if ((filter & SYMBOLIC) && key->IsSymbol()) { return true; } if ((filter & PRIVATE_SYMBOL) && key->IsSymbol() && Symbol::cast(key)->is_private()) { return true; } if ((filter & STRING) && !key->IsSymbol()) { return true; } return false; } int Map::NumberOfDescribedProperties(DescriptorFlag which, PropertyAttributes filter) { int result = 0; DescriptorArray* descs = instance_descriptors(); int limit = which == ALL_DESCRIPTORS ? descs->number_of_descriptors() : NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if ((descs->GetDetails(i).attributes() & filter) == 0 && !FilterKey(descs->GetKey(i), filter)) { result++; } } return result; } int Map::NextFreePropertyIndex() { int free_index = 0; int number_of_own_descriptors = NumberOfOwnDescriptors(); DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { PropertyDetails details = descs->GetDetails(i); if (details.location() == kField) { int candidate = details.field_index() + details.field_width_in_words(); if (candidate > free_index) free_index = candidate; } } return free_index; } static bool ContainsOnlyValidKeys(Handle array) { int len = array->length(); for (int i = 0; i < len; i++) { Object* e = array->get(i); if (!(e->IsName() || e->IsNumber())) return false; } return true; } static Handle ReduceFixedArrayTo( Handle array, int length) { DCHECK(array->length() >= length); if (array->length() == length) return array; Handle new_array = array->GetIsolate()->factory()->NewFixedArray(length); for (int i = 0; i < length; ++i) new_array->set(i, array->get(i)); return new_array; } Handle JSObject::GetEnumPropertyKeys(Handle object, bool cache_result) { Isolate* isolate = object->GetIsolate(); if (object->HasFastProperties()) { int own_property_count = object->map()->EnumLength(); // If the enum length of the given map is set to kInvalidEnumCache, this // means that the map itself has never used the present enum cache. The // first step to using the cache is to set the enum length of the map by // counting the number of own descriptors that are not DONT_ENUM or // SYMBOLIC. if (own_property_count == kInvalidEnumCacheSentinel) { own_property_count = object->map()->NumberOfDescribedProperties( OWN_DESCRIPTORS, DONT_SHOW); } else { DCHECK(own_property_count == object->map()->NumberOfDescribedProperties( OWN_DESCRIPTORS, DONT_SHOW)); } if (object->map()->instance_descriptors()->HasEnumCache()) { DescriptorArray* desc = object->map()->instance_descriptors(); Handle keys(desc->GetEnumCache(), isolate); // In case the number of properties required in the enum are actually // present, we can reuse the enum cache. Otherwise, this means that the // enum cache was generated for a previous (smaller) version of the // Descriptor Array. In that case we regenerate the enum cache. if (own_property_count <= keys->length()) { if (cache_result) object->map()->SetEnumLength(own_property_count); isolate->counters()->enum_cache_hits()->Increment(); return ReduceFixedArrayTo(keys, own_property_count); } } Handle map(object->map()); if (map->instance_descriptors()->IsEmpty()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_result) map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } isolate->counters()->enum_cache_misses()->Increment(); Handle storage = isolate->factory()->NewFixedArray( own_property_count); Handle indices = isolate->factory()->NewFixedArray( own_property_count); Handle descs = Handle(object->map()->instance_descriptors(), isolate); int size = map->NumberOfOwnDescriptors(); int index = 0; for (int i = 0; i < size; i++) { PropertyDetails details = descs->GetDetails(i); Object* key = descs->GetKey(i); if (!(details.IsDontEnum() || key->IsSymbol())) { storage->set(index, key); if (!indices.is_null()) { if (details.type() != DATA) { indices = Handle(); } else { FieldIndex field_index = FieldIndex::ForDescriptor(*map, i); int load_by_field_index = field_index.GetLoadByFieldIndex(); indices->set(index, Smi::FromInt(load_by_field_index)); } } index++; } } DCHECK(index == storage->length()); Handle bridge_storage = isolate->factory()->NewFixedArray( DescriptorArray::kEnumCacheBridgeLength); DescriptorArray* desc = object->map()->instance_descriptors(); desc->SetEnumCache(*bridge_storage, *storage, indices.is_null() ? Object::cast(Smi::FromInt(0)) : Object::cast(*indices)); if (cache_result) { object->map()->SetEnumLength(own_property_count); } return storage; } else if (object->IsGlobalObject()) { Handle dictionary(object->global_dictionary()); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return Handle(isolate->heap()->empty_fixed_array()); } Handle storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } else { Handle dictionary(object->property_dictionary()); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return Handle(isolate->heap()->empty_fixed_array()); } Handle storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } } MaybeHandle JSReceiver::GetKeys(Handle object, KeyCollectionType type) { USE(ContainsOnlyValidKeys); Isolate* isolate = object->GetIsolate(); Handle content = isolate->factory()->empty_fixed_array(); Handle arguments_function( JSFunction::cast(isolate->sloppy_arguments_map()->GetConstructor())); PrototypeIterator::WhereToEnd end = type == OWN_ONLY ? PrototypeIterator::END_AT_NON_HIDDEN : PrototypeIterator::END_AT_NULL; // Only collect keys if access is permitted. for (PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(end); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { Handle proxy = PrototypeIterator::GetCurrent(iter); Handle args[] = { proxy }; Handle names; ASSIGN_RETURN_ON_EXCEPTION( isolate, names, Execution::Call(isolate, isolate->proxy_enumerate(), object, arraysize(args), args), FixedArray); ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike( content, Handle::cast(names)), FixedArray); break; } Handle current = PrototypeIterator::GetCurrent(iter); // Check access rights if required. if (current->IsAccessCheckNeeded() && !isolate->MayAccess(current)) { if (iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) { isolate->ReportFailedAccessCheck(current); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, FixedArray); } break; } // Compute the element keys. Handle element_keys = isolate->factory()->NewFixedArray(current->NumberOfEnumElements()); current->GetEnumElementKeys(*element_keys); ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::UnionOfKeys(content, element_keys), FixedArray); DCHECK(ContainsOnlyValidKeys(content)); // Add the element keys from the interceptor. if (current->HasIndexedInterceptor()) { Handle result; if (JSObject::GetKeysForIndexedInterceptor( current, object).ToHandle(&result)) { ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike(content, result), FixedArray); } DCHECK(ContainsOnlyValidKeys(content)); } // We can cache the computed property keys if access checks are // not needed and no interceptors are involved. // // We do not use the cache if the object has elements and // therefore it does not make sense to cache the property names // for arguments objects. Arguments objects will always have // elements. // Wrapped strings have elements, but don't have an elements // array or dictionary. So the fast inline test for whether to // use the cache says yes, so we should not create a cache. bool cache_enum_keys = ((current->map()->GetConstructor() != *arguments_function) && !current->IsJSValue() && !current->IsAccessCheckNeeded() && !current->HasNamedInterceptor() && !current->HasIndexedInterceptor()); // Compute the property keys and cache them if possible. ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::UnionOfKeys( content, JSObject::GetEnumPropertyKeys(current, cache_enum_keys)), FixedArray); DCHECK(ContainsOnlyValidKeys(content)); // Add the non-symbol property keys from the interceptor. if (current->HasNamedInterceptor()) { Handle result; if (JSObject::GetKeysForNamedInterceptor( current, object).ToHandle(&result)) { ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike( content, result, FixedArray::NON_SYMBOL_KEYS), FixedArray); } DCHECK(ContainsOnlyValidKeys(content)); } } return content; } bool Map::DictionaryElementsInPrototypeChainOnly() { if (IsDictionaryElementsKind(elements_kind())) { return false; } for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) { // Be conservative, don't walk into proxies. if (iter.GetCurrent()->IsJSProxy()) return true; // String wrappers have non-configurable, non-writable elements. if (iter.GetCurrent()->IsStringWrapper()) return true; JSObject* current = iter.GetCurrent(); if (current->HasDictionaryElements() && current->element_dictionary()->requires_slow_elements()) { return true; } if (current->HasSlowArgumentsElements()) { FixedArray* parameter_map = FixedArray::cast(current->elements()); Object* arguments = parameter_map->get(1); if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) { return true; } } } return false; } MaybeHandle JSObject::DefineAccessor(Handle object, Handle name, Handle getter, Handle setter, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(it.GetHolder()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } it.Next(); } // Ignore accessors on typed arrays. if (it.IsElement() && object->HasFixedTypedArrayElements()) { return it.factory()->undefined_value(); } Handle old_value = isolate->factory()->the_hole_value(); bool is_observed = object->map()->is_observed() && !isolate->IsInternallyUsedPropertyName(name); bool preexists = false; if (is_observed) { CHECK(GetPropertyAttributes(&it).IsJust()); preexists = it.IsFound(); if (preexists && (it.state() == LookupIterator::DATA || it.GetAccessors()->IsAccessorInfo())) { old_value = GetProperty(&it).ToHandleChecked(); } } DCHECK(getter->IsSpecFunction() || getter->IsUndefined() || getter->IsNull()); DCHECK(setter->IsSpecFunction() || setter->IsUndefined() || setter->IsNull()); // At least one of the accessors needs to be a new value. DCHECK(!getter->IsNull() || !setter->IsNull()); if (!getter->IsNull()) { it.TransitionToAccessorProperty(ACCESSOR_GETTER, getter, attributes); } if (!setter->IsNull()) { it.TransitionToAccessorProperty(ACCESSOR_SETTER, setter, attributes); } if (is_observed) { // Make sure the top context isn't changed. AssertNoContextChange ncc(isolate); const char* type = preexists ? "reconfigure" : "add"; RETURN_ON_EXCEPTION( isolate, EnqueueChangeRecord(object, type, name, old_value), Object); } return isolate->factory()->undefined_value(); } MaybeHandle JSObject::SetAccessor(Handle object, Handle info) { Isolate* isolate = object->GetIsolate(); Handle name(Name::cast(info->name()), isolate); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that // the FailedAccessCheckCallbackFunction doesn't throw an exception. // // TODO(verwaest): Force throw an exception if the callback doesn't, so we can // remove reliance on default return values. if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(object); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return it.factory()->undefined_value(); } it.Next(); } // Ignore accessors on typed arrays. if (it.IsElement() && object->HasFixedTypedArrayElements()) { return it.factory()->undefined_value(); } CHECK(GetPropertyAttributes(&it).IsJust()); // ES5 forbids turning a property into an accessor if it's not // configurable. See 8.6.1 (Table 5). if (it.IsFound() && !it.IsConfigurable()) { return it.factory()->undefined_value(); } it.TransitionToAccessorPair(info, info->property_attributes()); return object; } MaybeHandle JSObject::GetAccessor(Handle object, Handle name, AccessorComponent component) { Isolate* isolate = object->GetIsolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); for (; it.IsFound(); it.Next()) { switch (it.state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it.HasAccess()) continue; isolate->ReportFailedAccessCheck(it.GetHolder()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); case LookupIterator::JSPROXY: return isolate->factory()->undefined_value(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return isolate->factory()->undefined_value(); case LookupIterator::DATA: continue; case LookupIterator::ACCESSOR: { Handle maybe_pair = it.GetAccessors(); if (maybe_pair->IsAccessorPair()) { return handle( AccessorPair::cast(*maybe_pair)->GetComponent(component), isolate); } } } } return isolate->factory()->undefined_value(); } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { int number_of_own_descriptors = map()->NumberOfOwnDescriptors(); DescriptorArray* descs = map()->instance_descriptors(); bool value_is_number = value->IsNumber(); for (int i = 0; i < number_of_own_descriptors; i++) { if (descs->GetType(i) == DATA) { FieldIndex field_index = FieldIndex::ForDescriptor(map(), i); if (IsUnboxedDoubleField(field_index)) { if (value_is_number) { double property = RawFastDoublePropertyAt(field_index); if (property == value->Number()) { return descs->GetKey(i); } } } else { Object* property = RawFastPropertyAt(field_index); if (field_index.is_double()) { DCHECK(property->IsMutableHeapNumber()); if (value_is_number && property->Number() == value->Number()) { return descs->GetKey(i); } } else if (property == value) { return descs->GetKey(i); } } } else if (descs->GetType(i) == DATA_CONSTANT) { if (descs->GetConstant(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else if (IsGlobalObject()) { return global_dictionary()->SlowReverseLookup(value); } else { return property_dictionary()->SlowReverseLookup(value); } } Handle Map::RawCopy(Handle map, int instance_size) { Isolate* isolate = map->GetIsolate(); Handle result = isolate->factory()->NewMap(map->instance_type(), instance_size); Handle prototype(map->prototype(), isolate); Map::SetPrototype(result, prototype); result->set_constructor_or_backpointer(map->GetConstructor()); result->set_bit_field(map->bit_field()); result->set_bit_field2(map->bit_field2()); int new_bit_field3 = map->bit_field3(); new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true); new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0); new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCacheSentinel); new_bit_field3 = Deprecated::update(new_bit_field3, false); if (!map->is_dictionary_map()) { new_bit_field3 = IsUnstable::update(new_bit_field3, false); } new_bit_field3 = Counter::update(new_bit_field3, kRetainingCounterStart); result->set_bit_field3(new_bit_field3); return result; } Handle Map::Normalize(Handle fast_map, PropertyNormalizationMode mode, const char* reason) { DCHECK(!fast_map->is_dictionary_map()); Isolate* isolate = fast_map->GetIsolate(); Handle maybe_cache(isolate->native_context()->normalized_map_cache(), isolate); bool use_cache = !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(); Handle cache; if (use_cache) cache = Handle::cast(maybe_cache); Handle new_map; if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) new_map->DictionaryMapVerify(); #endif #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit, // except for the code cache, which can contain some ics which can be // applied to the shared map, dependent code and weak cell cache. Handle fresh = Map::CopyNormalized(fast_map, mode); if (new_map->is_prototype_map()) { // For prototype maps, the PrototypeInfo is not copied. DCHECK(memcmp(fresh->address(), new_map->address(), kTransitionsOrPrototypeInfoOffset) == 0); DCHECK(fresh->raw_transitions() == Smi::FromInt(0)); STATIC_ASSERT(kDescriptorsOffset == kTransitionsOrPrototypeInfoOffset + kPointerSize); DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset), HeapObject::RawField(*new_map, kDescriptorsOffset), kCodeCacheOffset - kDescriptorsOffset) == 0); } else { DCHECK(memcmp(fresh->address(), new_map->address(), Map::kCodeCacheOffset) == 0); } STATIC_ASSERT(Map::kDependentCodeOffset == Map::kCodeCacheOffset + kPointerSize); STATIC_ASSERT(Map::kWeakCellCacheOffset == Map::kDependentCodeOffset + kPointerSize); int offset = Map::kWeakCellCacheOffset + kPointerSize; DCHECK(memcmp(fresh->address() + offset, new_map->address() + offset, Map::kSize - offset) == 0); } #endif } else { new_map = Map::CopyNormalized(fast_map, mode); if (use_cache) { cache->Set(fast_map, new_map); isolate->counters()->normalized_maps()->Increment(); } #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n", reinterpret_cast(*fast_map), reinterpret_cast(*new_map), reason); } #endif } fast_map->NotifyLeafMapLayoutChange(); return new_map; } Handle Map::CopyNormalized(Handle map, PropertyNormalizationMode mode) { int new_instance_size = map->instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= map->GetInObjectProperties() * kPointerSize; } Handle result = RawCopy(map, new_instance_size); if (mode != CLEAR_INOBJECT_PROPERTIES) { result->SetInObjectProperties(map->GetInObjectProperties()); } result->set_dictionary_map(true); result->set_migration_target(false); #ifdef VERIFY_HEAP if (FLAG_verify_heap) result->DictionaryMapVerify(); #endif return result; } Handle Map::CopyDropDescriptors(Handle map) { Handle result = RawCopy(map, map->instance_size()); // Please note instance_type and instance_size are set when allocated. result->SetInObjectProperties(map->GetInObjectProperties()); result->set_unused_property_fields(map->unused_property_fields()); result->ClearCodeCache(map->GetHeap()); map->NotifyLeafMapLayoutChange(); return result; } Handle Map::ShareDescriptor(Handle map, Handle descriptors, Descriptor* descriptor) { // Sanity check. This path is only to be taken if the map owns its descriptor // array, implying that its NumberOfOwnDescriptors equals the number of // descriptors in the descriptor array. DCHECK(map->NumberOfOwnDescriptors() == map->instance_descriptors()->number_of_descriptors()); Handle result = CopyDropDescriptors(map); Handle name = descriptor->GetKey(); // Ensure there's space for the new descriptor in the shared descriptor array. if (descriptors->NumberOfSlackDescriptors() == 0) { int old_size = descriptors->number_of_descriptors(); if (old_size == 0) { descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1); } else { int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors); EnsureDescriptorSlack(map, slack); descriptors = handle(map->instance_descriptors()); } } Handle layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails()) : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate()); { DisallowHeapAllocation no_gc; descriptors->Append(descriptor); result->InitializeDescriptors(*descriptors, *layout_descriptor); } DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1); ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION); return result; } #if TRACE_MAPS // static void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) { if (FLAG_trace_maps) { PrintF("[TraceMaps: %s from= %p to= %p name= ", what, reinterpret_cast(from), reinterpret_cast(to)); name->NameShortPrint(); PrintF(" ]\n"); } } // static void Map::TraceAllTransitions(Map* map) { Object* transitions = map->raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = -0; i < num_transitions; ++i) { Map* target = TransitionArray::GetTarget(transitions, i); Name* key = TransitionArray::GetKey(transitions, i); Map::TraceTransition("Transition", map, target, key); Map::TraceAllTransitions(target); } } #endif // TRACE_MAPS void Map::ConnectTransition(Handle parent, Handle child, Handle name, SimpleTransitionFlag flag) { parent->set_owns_descriptors(false); if (parent->is_prototype_map()) { DCHECK(child->is_prototype_map()); #if TRACE_MAPS Map::TraceTransition("NoTransition", *parent, *child, *name); #endif } else { TransitionArray::Insert(parent, name, child, flag); #if TRACE_MAPS Map::TraceTransition("Transition", *parent, *child, *name); #endif } } Handle Map::CopyReplaceDescriptors( Handle map, Handle descriptors, Handle layout_descriptor, TransitionFlag flag, MaybeHandle maybe_name, const char* reason, SimpleTransitionFlag simple_flag) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle result = CopyDropDescriptors(map); if (!map->is_prototype_map()) { if (flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map)) { result->InitializeDescriptors(*descriptors, *layout_descriptor); Handle name; CHECK(maybe_name.ToHandle(&name)); ConnectTransition(map, result, name, simple_flag); } else { int length = descriptors->number_of_descriptors(); for (int i = 0; i < length; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == DATA) { descriptors->SetValue(i, HeapType::Any()); } } result->InitializeDescriptors(*descriptors, LayoutDescriptor::FastPointerLayout()); } } else { result->InitializeDescriptors(*descriptors, *layout_descriptor); } #if TRACE_MAPS if (FLAG_trace_maps && // Mirror conditions above that did not call ConnectTransition(). (map->is_prototype_map() || !(flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map)))) { PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n", reinterpret_cast(*map), reinterpret_cast(*result), reason); } #endif return result; } // Since this method is used to rewrite an existing transition tree, it can // always insert transitions without checking. Handle Map::CopyInstallDescriptors( Handle map, int new_descriptor, Handle descriptors, Handle full_layout_descriptor) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle result = CopyDropDescriptors(map); result->set_instance_descriptors(*descriptors); result->SetNumberOfOwnDescriptors(new_descriptor + 1); int unused_property_fields = map->unused_property_fields(); PropertyDetails details = descriptors->GetDetails(new_descriptor); if (details.location() == kField) { unused_property_fields = map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } } result->set_unused_property_fields(unused_property_fields); if (FLAG_unbox_double_fields) { Handle layout_descriptor = LayoutDescriptor::AppendIfFastOrUseFull(map, details, full_layout_descriptor); result->set_layout_descriptor(*layout_descriptor); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(result->layout_descriptor()->IsConsistentWithMap(*result)); } #else SLOW_DCHECK(result->layout_descriptor()->IsConsistentWithMap(*result)); #endif result->set_visitor_id(StaticVisitorBase::GetVisitorId(*result)); } Handle name = handle(descriptors->GetKey(new_descriptor)); ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION); return result; } Handle Map::CopyAsElementsKind(Handle map, ElementsKind kind, TransitionFlag flag) { Map* maybe_elements_transition_map = NULL; if (flag == INSERT_TRANSITION) { maybe_elements_transition_map = map->ElementsTransitionMap(); DCHECK(maybe_elements_transition_map == NULL || (maybe_elements_transition_map->elements_kind() == DICTIONARY_ELEMENTS && kind == DICTIONARY_ELEMENTS)); DCHECK(!IsFastElementsKind(kind) || IsMoreGeneralElementsKindTransition(map->elements_kind(), kind)); DCHECK(kind != map->elements_kind()); } bool insert_transition = flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map) && maybe_elements_transition_map == NULL; if (insert_transition) { Handle new_map = CopyForTransition(map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); Isolate* isolate = map->GetIsolate(); Handle name = isolate->factory()->elements_transition_symbol(); ConnectTransition(map, new_map, name, SPECIAL_TRANSITION); return new_map; } // Create a new free-floating map only if we are not allowed to store it. Handle new_map = Copy(map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); return new_map; } Handle Map::CopyForObserved(Handle map) { DCHECK(!map->is_observed()); Isolate* isolate = map->GetIsolate(); bool insert_transition = TransitionArray::CanHaveMoreTransitions(map) && !map->is_prototype_map(); if (insert_transition) { Handle new_map = CopyForTransition(map, "CopyForObserved"); new_map->set_is_observed(); Handle name = isolate->factory()->observed_symbol(); ConnectTransition(map, new_map, name, SPECIAL_TRANSITION); return new_map; } // Create a new free-floating map only if we are not allowed to store it. Handle new_map = Map::Copy(map, "CopyForObserved"); new_map->set_is_observed(); return new_map; } Handle Map::CopyForTransition(Handle map, const char* reason) { DCHECK(!map->is_prototype_map()); Handle new_map = CopyDropDescriptors(map); if (map->owns_descriptors()) { // In case the map owned its own descriptors, share the descriptors and // transfer ownership to the new map. // The properties did not change, so reuse descriptors. new_map->InitializeDescriptors(map->instance_descriptors(), map->GetLayoutDescriptor()); } else { // In case the map did not own its own descriptors, a split is forced by // copying the map; creating a new descriptor array cell. Handle descriptors(map->instance_descriptors()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors); Handle new_layout_descriptor(map->GetLayoutDescriptor(), map->GetIsolate()); new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor); } #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n", reinterpret_cast(*map), reinterpret_cast(*new_map), reason); } #endif return new_map; } Handle Map::Copy(Handle map, const char* reason) { Handle descriptors(map->instance_descriptors()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors); Handle new_layout_descriptor(map->GetLayoutDescriptor(), map->GetIsolate()); return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle(), reason, SPECIAL_TRANSITION); } Handle Map::Create(Isolate* isolate, int inobject_properties) { Handle copy = Copy(handle(isolate->object_function()->initial_map()), "MapCreate"); // Check that we do not overflow the instance size when adding the extra // inobject properties. If the instance size overflows, we allocate as many // properties as we can as inobject properties. int max_extra_properties = (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2; if (inobject_properties > max_extra_properties) { inobject_properties = max_extra_properties; } int new_instance_size = JSObject::kHeaderSize + kPointerSize * inobject_properties; // Adjust the map with the extra inobject properties. copy->SetInObjectProperties(inobject_properties); copy->set_unused_property_fields(inobject_properties); copy->set_instance_size(new_instance_size); copy->set_visitor_id(StaticVisitorBase::GetVisitorId(*copy)); return copy; } Handle Map::CopyForPreventExtensions(Handle map, PropertyAttributes attrs_to_add, Handle transition_marker, const char* reason) { int num_descriptors = map->NumberOfOwnDescriptors(); Isolate* isolate = map->GetIsolate(); Handle new_desc = DescriptorArray::CopyUpToAddAttributes( handle(map->instance_descriptors(), isolate), num_descriptors, attrs_to_add); Handle new_layout_descriptor(map->GetLayoutDescriptor(), isolate); Handle new_map = CopyReplaceDescriptors( map, new_desc, new_layout_descriptor, INSERT_TRANSITION, transition_marker, reason, SPECIAL_TRANSITION); new_map->set_is_extensible(false); new_map->set_elements_kind(DICTIONARY_ELEMENTS); return new_map; } Handle Map::FixProxy(Handle map, InstanceType type, int size) { DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE); DCHECK(map->IsJSProxyMap()); Isolate* isolate = map->GetIsolate(); // Allocate fresh map. // TODO(rossberg): Once we optimize proxies, cache these maps. Handle new_map = isolate->factory()->NewMap(type, size); Handle prototype(map->prototype(), isolate); Map::SetPrototype(new_map, prototype); map->NotifyLeafMapLayoutChange(); return new_map; } bool DescriptorArray::CanHoldValue(int descriptor, Object* value) { PropertyDetails details = GetDetails(descriptor); switch (details.type()) { case DATA: return value->FitsRepresentation(details.representation()) && GetFieldType(descriptor)->NowContains(value); case DATA_CONSTANT: DCHECK(GetConstant(descriptor) != value || value->FitsRepresentation(details.representation())); return GetConstant(descriptor) == value; case ACCESSOR: case ACCESSOR_CONSTANT: return false; } UNREACHABLE(); return false; } // static Handle Map::PrepareForDataProperty(Handle map, int descriptor, Handle value) { // Dictionaries can store any property value. if (map->is_dictionary_map()) return map; // Migrate to the newest map before storing the property. map = Update(map); Handle descriptors(map->instance_descriptors()); if (descriptors->CanHoldValue(descriptor, *value)) return map; Isolate* isolate = map->GetIsolate(); PropertyAttributes attributes = descriptors->GetDetails(descriptor).attributes(); Representation representation = value->OptimalRepresentation(); Handle type = value->OptimalType(isolate, representation); return ReconfigureProperty(map, descriptor, kData, attributes, representation, type, FORCE_FIELD); } Handle Map::TransitionToDataProperty(Handle map, Handle name, Handle value, PropertyAttributes attributes, StoreFromKeyed store_mode) { // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) return map; // Migrate to the newest map before storing the property. map = Update(map); Map* maybe_transition = TransitionArray::SearchTransition(*map, kData, *name, attributes); if (maybe_transition != NULL) { Handle transition(maybe_transition); int descriptor = transition->LastAdded(); DCHECK_EQ(attributes, transition->instance_descriptors() ->GetDetails(descriptor) .attributes()); return Map::PrepareForDataProperty(transition, descriptor, value); } TransitionFlag flag = INSERT_TRANSITION; MaybeHandle maybe_map; if (value->IsJSFunction()) { maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag); } else if (!map->TooManyFastProperties(store_mode)) { Isolate* isolate = name->GetIsolate(); Representation representation = value->OptimalRepresentation(); Handle type = value->OptimalType(isolate, representation); maybe_map = Map::CopyWithField(map, name, type, attributes, representation, flag); } Handle result; if (!maybe_map.ToHandle(&result)) { #if TRACE_MAPS if (FLAG_trace_maps) { Vector name_buffer = Vector::New(100); name->NameShortPrint(name_buffer); Vector buffer = Vector::New(128); SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start()); return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start()); } #endif return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyFastProperties"); } return result; } Handle Map::ReconfigureExistingProperty(Handle map, int descriptor, PropertyKind kind, PropertyAttributes attributes) { // Dictionaries have to be reconfigured in-place. DCHECK(!map->is_dictionary_map()); if (!map->GetBackPointer()->IsMap()) { // There is no benefit from reconstructing transition tree for maps without // back pointers. return CopyGeneralizeAllRepresentations( map, descriptor, FORCE_FIELD, kind, attributes, "GenAll_AttributesMismatchProtoMap"); } if (FLAG_trace_generalization) { map->PrintReconfiguration(stdout, descriptor, kind, attributes); } Isolate* isolate = map->GetIsolate(); Handle new_map = ReconfigureProperty( map, descriptor, kind, attributes, Representation::None(), HeapType::None(isolate), FORCE_FIELD); return new_map; } Handle Map::TransitionToAccessorProperty(Handle map, Handle name, AccessorComponent component, Handle accessor, PropertyAttributes attributes) { Isolate* isolate = name->GetIsolate(); // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) return map; // Migrate to the newest map before transitioning to the new property. map = Update(map); PropertyNormalizationMode mode = map->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; Map* maybe_transition = TransitionArray::SearchTransition(*map, kAccessor, *name, attributes); if (maybe_transition != NULL) { Handle transition(maybe_transition, isolate); DescriptorArray* descriptors = transition->instance_descriptors(); int descriptor = transition->LastAdded(); DCHECK(descriptors->GetKey(descriptor)->Equals(*name)); DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind()); DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes()); Handle maybe_pair(descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair"); } Handle pair = Handle::cast(maybe_pair); if (pair->get(component) != *accessor) { return Map::Normalize(map, mode, "TransitionToDifferentAccessor"); } return transition; } Handle pair; DescriptorArray* old_descriptors = map->instance_descriptors(); int descriptor = old_descriptors->SearchWithCache(*name, *map); if (descriptor != DescriptorArray::kNotFound) { if (descriptor != map->LastAdded()) { return Map::Normalize(map, mode, "AccessorsOverwritingNonLast"); } PropertyDetails old_details = old_descriptors->GetDetails(descriptor); if (old_details.type() != ACCESSOR_CONSTANT) { return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors"); } if (old_details.attributes() != attributes) { return Map::Normalize(map, mode, "AccessorsWithAttributes"); } Handle maybe_pair(old_descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode, "AccessorsOverwritingNonPair"); } Object* current = Handle::cast(maybe_pair)->get(component); if (current == *accessor) return map; if (!current->IsTheHole()) { return Map::Normalize(map, mode, "AccessorsOverwritingAccessors"); } pair = AccessorPair::Copy(Handle::cast(maybe_pair)); } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors || map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) { return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors"); } else { pair = isolate->factory()->NewAccessorPair(); } pair->set(component, *accessor); TransitionFlag flag = INSERT_TRANSITION; AccessorConstantDescriptor new_desc(name, pair, attributes); return Map::CopyInsertDescriptor(map, &new_desc, flag); } Handle Map::CopyAddDescriptor(Handle map, Descriptor* descriptor, TransitionFlag flag) { Handle descriptors(map->instance_descriptors()); // Ensure the key is unique. descriptor->KeyToUniqueName(); if (flag == INSERT_TRANSITION && map->owns_descriptors() && TransitionArray::CanHaveMoreTransitions(map)) { return ShareDescriptor(map, descriptors, descriptor); } int nof = map->NumberOfOwnDescriptors(); Handle new_descriptors = DescriptorArray::CopyUpTo(descriptors, nof, 1); new_descriptors->Append(descriptor); Handle new_layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::New(map, new_descriptors, nof + 1) : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate()); return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, flag, descriptor->GetKey(), "CopyAddDescriptor", SIMPLE_PROPERTY_TRANSITION); } Handle Map::CopyInsertDescriptor(Handle map, Descriptor* descriptor, TransitionFlag flag) { Handle old_descriptors(map->instance_descriptors()); // Ensure the key is unique. descriptor->KeyToUniqueName(); // We replace the key if it is already present. int index = old_descriptors->SearchWithCache(*descriptor->GetKey(), *map); if (index != DescriptorArray::kNotFound) { return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag); } return CopyAddDescriptor(map, descriptor, flag); } Handle DescriptorArray::CopyUpTo( Handle desc, int enumeration_index, int slack) { return DescriptorArray::CopyUpToAddAttributes( desc, enumeration_index, NONE, slack); } Handle DescriptorArray::CopyUpToAddAttributes( Handle desc, int enumeration_index, PropertyAttributes attributes, int slack) { if (enumeration_index + slack == 0) { return desc->GetIsolate()->factory()->empty_descriptor_array(); } int size = enumeration_index; Handle descriptors = DescriptorArray::Allocate(desc->GetIsolate(), size, slack); DescriptorArray::WhitenessWitness witness(*descriptors); if (attributes != NONE) { for (int i = 0; i < size; ++i) { Object* value = desc->GetValue(i); Name* key = desc->GetKey(i); PropertyDetails details = desc->GetDetails(i); // Bulk attribute changes never affect private properties. if (!key->IsSymbol() || !Symbol::cast(key)->is_private()) { int mask = DONT_DELETE | DONT_ENUM; // READ_ONLY is an invalid attribute for JS setters/getters. if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) { mask |= READ_ONLY; } details = details.CopyAddAttributes( static_cast(attributes & mask)); } Descriptor inner_desc( handle(key), handle(value, desc->GetIsolate()), details); descriptors->Set(i, &inner_desc, witness); } } else { for (int i = 0; i < size; ++i) { descriptors->CopyFrom(i, *desc, witness); } } if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort(); return descriptors; } Handle Map::CopyReplaceDescriptor(Handle map, Handle descriptors, Descriptor* descriptor, int insertion_index, TransitionFlag flag) { // Ensure the key is unique. descriptor->KeyToUniqueName(); Handle key = descriptor->GetKey(); DCHECK(*key == descriptors->GetKey(insertion_index)); Handle new_descriptors = DescriptorArray::CopyUpTo( descriptors, map->NumberOfOwnDescriptors()); new_descriptors->Replace(insertion_index, descriptor); Handle new_layout_descriptor = LayoutDescriptor::New( map, new_descriptors, new_descriptors->number_of_descriptors()); SimpleTransitionFlag simple_flag = (insertion_index == descriptors->number_of_descriptors() - 1) ? SIMPLE_PROPERTY_TRANSITION : PROPERTY_TRANSITION; return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, flag, key, "CopyReplaceDescriptor", simple_flag); } void Map::UpdateCodeCache(Handle map, Handle name, Handle code) { Isolate* isolate = map->GetIsolate(); HandleScope scope(isolate); // Allocate the code cache if not present. if (map->code_cache()->IsFixedArray()) { Handle result = isolate->factory()->NewCodeCache(); map->set_code_cache(*result); } // Update the code cache. Handle code_cache(CodeCache::cast(map->code_cache()), isolate); CodeCache::Update(code_cache, name, code); } Object* Map::FindInCodeCache(Name* name, Code::Flags flags) { // Do a lookup if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int Map::IndexInCodeCache(Object* name, Code* code) { // Get the internal index if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->GetIndex(name, code); } return -1; } void Map::RemoveFromCodeCache(Name* name, Code* code, int index) { // No GC is supposed to happen between a call to IndexInCodeCache and // RemoveFromCodeCache so the code cache must be there. DCHECK(!code_cache()->IsFixedArray()); CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); } void CodeCache::Update( Handle code_cache, Handle name, Handle code) { // The number of monomorphic stubs for normal load/store/call IC's can grow to // a large number and therefore they need to go into a hash table. They are // used to load global properties from cells. if (code->type() == Code::NORMAL) { // Make sure that a hash table is allocated for the normal load code cache. if (code_cache->normal_type_cache()->IsUndefined()) { Handle result = CodeCacheHashTable::New(code_cache->GetIsolate(), CodeCacheHashTable::kInitialSize); code_cache->set_normal_type_cache(*result); } UpdateNormalTypeCache(code_cache, name, code); } else { DCHECK(code_cache->default_cache()->IsFixedArray()); UpdateDefaultCache(code_cache, name, code); } } void CodeCache::UpdateDefaultCache( Handle code_cache, Handle name, Handle code) { // When updating the default code cache we disregard the type encoded in the // flags. This allows call constant stubs to overwrite call field // stubs, etc. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // First check whether we can update existing code cache without // extending it. Handle cache = handle(code_cache->default_cache()); int length = cache->length(); { DisallowHeapAllocation no_alloc; int deleted_index = -1; for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i); if (key->IsNull()) { if (deleted_index < 0) deleted_index = i; continue; } if (key->IsUndefined()) { if (deleted_index >= 0) i = deleted_index; cache->set(i + kCodeCacheEntryNameOffset, *name); cache->set(i + kCodeCacheEntryCodeOffset, *code); return; } if (name->Equals(Name::cast(key))) { Code::Flags found = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); if (Code::RemoveTypeFromFlags(found) == flags) { cache->set(i + kCodeCacheEntryCodeOffset, *code); return; } } } // Reached the end of the code cache. If there were deleted // elements, reuse the space for the first of them. if (deleted_index >= 0) { cache->set(deleted_index + kCodeCacheEntryNameOffset, *name); cache->set(deleted_index + kCodeCacheEntryCodeOffset, *code); return; } } // Extend the code cache with some new entries (at least one). Must be a // multiple of the entry size. Isolate* isolate = cache->GetIsolate(); int new_length = length + (length >> 1) + kCodeCacheEntrySize; new_length = new_length - new_length % kCodeCacheEntrySize; DCHECK((new_length % kCodeCacheEntrySize) == 0); cache = isolate->factory()->CopyFixedArrayAndGrow(cache, new_length - length); // Add the (name, code) pair to the new cache. cache->set(length + kCodeCacheEntryNameOffset, *name); cache->set(length + kCodeCacheEntryCodeOffset, *code); code_cache->set_default_cache(*cache); } void CodeCache::UpdateNormalTypeCache( Handle code_cache, Handle name, Handle code) { // Adding a new entry can cause a new cache to be allocated. Handle cache( CodeCacheHashTable::cast(code_cache->normal_type_cache())); Handle new_cache = CodeCacheHashTable::Put(cache, name, code); code_cache->set_normal_type_cache(*new_cache); } Object* CodeCache::Lookup(Name* name, Code::Flags flags) { Object* result = LookupDefaultCache(name, Code::RemoveTypeFromFlags(flags)); if (result->IsCode()) { if (Code::cast(result)->flags() == flags) return result; return GetHeap()->undefined_value(); } return LookupNormalTypeCache(name, flags); } Object* CodeCache::LookupDefaultCache(Name* name, Code::Flags flags) { FixedArray* cache = default_cache(); int length = cache->length(); for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i + kCodeCacheEntryNameOffset); // Skip deleted elements. if (key->IsNull()) continue; if (key->IsUndefined()) return key; if (name->Equals(Name::cast(key))) { Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); if (Code::RemoveTypeFromFlags(code->flags()) == flags) { return code; } } } return GetHeap()->undefined_value(); } Object* CodeCache::LookupNormalTypeCache(Name* name, Code::Flags flags) { if (!normal_type_cache()->IsUndefined()) { CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int CodeCache::GetIndex(Object* name, Code* code) { if (code->type() == Code::NORMAL) { if (normal_type_cache()->IsUndefined()) return -1; CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->GetIndex(Name::cast(name), code->flags()); } FixedArray* array = default_cache(); int len = array->length(); for (int i = 0; i < len; i += kCodeCacheEntrySize) { if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; } return -1; } void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { if (code->type() == Code::NORMAL) { DCHECK(!normal_type_cache()->IsUndefined()); CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); DCHECK(cache->GetIndex(Name::cast(name), code->flags()) == index); cache->RemoveByIndex(index); } else { FixedArray* array = default_cache(); DCHECK(array->length() >= index && array->get(index)->IsCode()); // Use null instead of undefined for deleted elements to distinguish // deleted elements from unused elements. This distinction is used // when looking up in the cache and when updating the cache. DCHECK_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); array->set_null(index - 1); // Name. array->set_null(index); // Code. } } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(Handle name, Code::Flags flags) : name_(name), flags_(flags), code_() { } CodeCacheHashTableKey(Handle name, Handle code) : name_(name), flags_(code->flags()), code_(code) { } bool IsMatch(Object* other) override { if (!other->IsFixedArray()) return false; FixedArray* pair = FixedArray::cast(other); Name* name = Name::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) { return false; } return name_->Equals(name); } static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); } uint32_t HashForObject(Object* obj) override { FixedArray* pair = FixedArray::cast(obj); Name* name = Name::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT Handle AsHandle(Isolate* isolate) override { Handle code = code_.ToHandleChecked(); Handle pair = isolate->factory()->NewFixedArray(2); pair->set(0, *name_); pair->set(1, *code); return pair; } private: Handle name_; Code::Flags flags_; // TODO(jkummerow): We should be able to get by without this. MaybeHandle code_; }; Object* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) { DisallowHeapAllocation no_alloc; CodeCacheHashTableKey key(handle(name), flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Handle CodeCacheHashTable::Put( Handle cache, Handle name, Handle code) { CodeCacheHashTableKey key(name, code); Handle new_cache = EnsureCapacity(cache, 1, &key); int entry = new_cache->FindInsertionEntry(key.Hash()); Handle k = key.AsHandle(cache->GetIsolate()); new_cache->set(EntryToIndex(entry), *k); new_cache->set(EntryToIndex(entry) + 1, *code); new_cache->ElementAdded(); return new_cache; } int CodeCacheHashTable::GetIndex(Name* name, Code::Flags flags) { DisallowHeapAllocation no_alloc; CodeCacheHashTableKey key(handle(name), flags); int entry = FindEntry(&key); return (entry == kNotFound) ? -1 : entry; } void CodeCacheHashTable::RemoveByIndex(int index) { DCHECK(index >= 0); Heap* heap = GetHeap(); set(EntryToIndex(index), heap->the_hole_value()); set(EntryToIndex(index) + 1, heap->the_hole_value()); ElementRemoved(); } void PolymorphicCodeCache::Update(Handle code_cache, MapHandleList* maps, Code::Flags flags, Handle code) { Isolate* isolate = code_cache->GetIsolate(); if (code_cache->cache()->IsUndefined()) { Handle result = PolymorphicCodeCacheHashTable::New( isolate, PolymorphicCodeCacheHashTable::kInitialSize); code_cache->set_cache(*result); } else { // This entry shouldn't be contained in the cache yet. DCHECK(PolymorphicCodeCacheHashTable::cast(code_cache->cache()) ->Lookup(maps, flags)->IsUndefined()); } Handle hash_table = handle(PolymorphicCodeCacheHashTable::cast(code_cache->cache())); Handle new_cache = PolymorphicCodeCacheHashTable::Put(hash_table, maps, flags, code); code_cache->set_cache(*new_cache); } Handle PolymorphicCodeCache::Lookup(MapHandleList* maps, Code::Flags flags) { if (!cache()->IsUndefined()) { PolymorphicCodeCacheHashTable* hash_table = PolymorphicCodeCacheHashTable::cast(cache()); return Handle(hash_table->Lookup(maps, flags), GetIsolate()); } else { return GetIsolate()->factory()->undefined_value(); } } // Despite their name, object of this class are not stored in the actual // hash table; instead they're temporarily used for lookups. It is therefore // safe to have a weak (non-owning) pointer to a MapList as a member field. class PolymorphicCodeCacheHashTableKey : public HashTableKey { public: // Callers must ensure that |maps| outlives the newly constructed object. PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags) : maps_(maps), code_flags_(code_flags) {} bool IsMatch(Object* other) override { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(other, &other_flags, &other_maps); if (code_flags_ != other_flags) return false; if (maps_->length() != other_maps.length()) return false; // Compare just the hashes first because it's faster. int this_hash = MapsHashHelper(maps_, code_flags_); int other_hash = MapsHashHelper(&other_maps, other_flags); if (this_hash != other_hash) return false; // Full comparison: for each map in maps_, look for an equivalent map in // other_maps. This implementation is slow, but probably good enough for // now because the lists are short (<= 4 elements currently). for (int i = 0; i < maps_->length(); ++i) { bool match_found = false; for (int j = 0; j < other_maps.length(); ++j) { if (*(maps_->at(i)) == *(other_maps.at(j))) { match_found = true; break; } } if (!match_found) return false; } return true; } static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) { uint32_t hash = code_flags; for (int i = 0; i < maps->length(); ++i) { hash ^= maps->at(i)->Hash(); } return hash; } uint32_t Hash() override { return MapsHashHelper(maps_, code_flags_); } uint32_t HashForObject(Object* obj) override { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(obj, &other_flags, &other_maps); return MapsHashHelper(&other_maps, other_flags); } MUST_USE_RESULT Handle AsHandle(Isolate* isolate) override { // The maps in |maps_| must be copied to a newly allocated FixedArray, // both because the referenced MapList is short-lived, and because C++ // objects can't be stored in the heap anyway. Handle list = isolate->factory()->NewUninitializedFixedArray(maps_->length() + 1); list->set(0, Smi::FromInt(code_flags_)); for (int i = 0; i < maps_->length(); ++i) { list->set(i + 1, *maps_->at(i)); } return list; } private: static MapHandleList* FromObject(Object* obj, int* code_flags, MapHandleList* maps) { FixedArray* list = FixedArray::cast(obj); maps->Rewind(0); *code_flags = Smi::cast(list->get(0))->value(); for (int i = 1; i < list->length(); ++i) { maps->Add(Handle(Map::cast(list->get(i)))); } return maps; } MapHandleList* maps_; // weak. int code_flags_; static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1; }; Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps, int code_kind) { DisallowHeapAllocation no_alloc; PolymorphicCodeCacheHashTableKey key(maps, code_kind); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Handle PolymorphicCodeCacheHashTable::Put( Handle hash_table, MapHandleList* maps, int code_kind, Handle code) { PolymorphicCodeCacheHashTableKey key(maps, code_kind); Handle cache = EnsureCapacity(hash_table, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); Handle obj = key.AsHandle(hash_table->GetIsolate()); cache->set(EntryToIndex(entry), *obj); cache->set(EntryToIndex(entry) + 1, *code); cache->ElementAdded(); return cache; } void FixedArray::Shrink(int new_length) { DCHECK(0 <= new_length && new_length <= length()); if (new_length < length()) { GetHeap()->RightTrimFixedArray( this, length() - new_length); } } MaybeHandle FixedArray::AddKeysFromArrayLike( Handle content, Handle array, KeyFilter filter) { DCHECK(array->IsJSArray() || array->HasSloppyArgumentsElements()); ElementsAccessor* accessor = array->GetElementsAccessor(); Handle result = accessor->AddElementsToFixedArray(array, content, filter); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { DisallowHeapAllocation no_allocation; for (int i = 0; i < result->length(); i++) { Object* current = result->get(i); DCHECK(current->IsNumber() || current->IsName()); } } #endif return result; } MaybeHandle FixedArray::UnionOfKeys(Handle first, Handle second) { if (second->length() == 0) return first; if (first->length() == 0) return second; Isolate* isolate = first->GetIsolate(); Handle result = isolate->factory()->NewFixedArray(first->length() + second->length()); for (int i = 0; i < first->length(); i++) { result->set(i, first->get(i)); } int pos = first->length(); for (int j = 0; j < second->length(); j++) { Object* current = second->get(j); int i; for (i = 0; i < first->length(); i++) { if (current->KeyEquals(first->get(i))) break; } if (i == first->length()) { result->set(pos++, current); } } result->Shrink(pos); return result; } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { DisallowHeapAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif // static void WeakFixedArray::Set(Handle array, int index, Handle value) { DCHECK(array->IsEmptySlot(index)); // Don't overwrite anything. Handle cell = value->IsMap() ? Map::WeakCellForMap(Handle::cast(value)) : array->GetIsolate()->factory()->NewWeakCell(value); Handle::cast(array)->set(index + kFirstIndex, *cell); if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: storing at index %d ]\n", index); } array->set_last_used_index(index); } // static Handle WeakFixedArray::Add(Handle maybe_array, Handle value, int* assigned_index) { Handle array = (maybe_array.is_null() || !maybe_array->IsWeakFixedArray()) ? Allocate(value->GetIsolate(), 1, Handle::null()) : Handle::cast(maybe_array); // Try to store the new entry if there's room. Optimize for consecutive // accesses. int first_index = array->last_used_index(); int length = array->Length(); if (length > 0) { for (int i = first_index;;) { if (array->IsEmptySlot((i))) { WeakFixedArray::Set(array, i, value); if (assigned_index != NULL) *assigned_index = i; return array; } if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: searching for free slot]\n"); } i = (i + 1) % length; if (i == first_index) break; } } // No usable slot found, grow the array. int new_length = length == 0 ? 1 : length + (length >> 1) + 4; Handle new_array = Allocate(array->GetIsolate(), new_length, array); if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: growing to size %d ]\n", new_length); } WeakFixedArray::Set(new_array, length, value); if (assigned_index != NULL) *assigned_index = length; return new_array; } template void WeakFixedArray::Compact() { FixedArray* array = FixedArray::cast(this); int new_length = kFirstIndex; for (int i = kFirstIndex; i < array->length(); i++) { Object* element = array->get(i); if (element->IsSmi()) continue; if (WeakCell::cast(element)->cleared()) continue; Object* value = WeakCell::cast(element)->value(); CompactionCallback::Callback(value, i - kFirstIndex, new_length - kFirstIndex); array->set(new_length++, element); } array->Shrink(new_length); set_last_used_index(0); } void WeakFixedArray::Iterator::Reset(Object* maybe_array) { if (maybe_array->IsWeakFixedArray()) { list_ = WeakFixedArray::cast(maybe_array); index_ = 0; #ifdef DEBUG last_used_index_ = list_->last_used_index(); #endif // DEBUG } } void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value, int old_index, int new_index) { DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map()); Map* map = Map::cast(value); DCHECK(map->prototype_info()->IsPrototypeInfo()); PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info()); DCHECK_EQ(old_index, proto_info->registry_slot()); proto_info->set_registry_slot(new_index); } template void WeakFixedArray::Compact(); template void WeakFixedArray::Compact(); bool WeakFixedArray::Remove(Handle value) { if (Length() == 0) return false; // Optimize for the most recently added element to be removed again. int first_index = last_used_index(); for (int i = first_index;;) { if (Get(i) == *value) { Clear(i); // Users of WeakFixedArray should make sure that there are no duplicates. return true; } i = (i + 1) % Length(); if (i == first_index) return false; } UNREACHABLE(); } // static Handle WeakFixedArray::Allocate( Isolate* isolate, int size, Handle initialize_from) { DCHECK(0 <= size); Handle result = isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex); int index = 0; if (!initialize_from.is_null()) { DCHECK(initialize_from->Length() <= size); Handle raw_source = Handle::cast(initialize_from); // Copy the entries without compacting, since the PrototypeInfo relies on // the index of the entries not to change. while (index < raw_source->length()) { result->set(index, raw_source->get(index)); index++; } } while (index < result->length()) { result->set(index, Smi::FromInt(0)); index++; } return Handle::cast(result); } Handle ArrayList::Add(Handle array, Handle obj, AddMode mode) { int length = array->Length(); array = EnsureSpace(array, length + 1); if (mode == kReloadLengthAfterAllocation) { DCHECK(array->Length() <= length); length = array->Length(); } array->Set(length, *obj); array->SetLength(length + 1); return array; } Handle ArrayList::Add(Handle array, Handle obj1, Handle obj2, AddMode mode) { int length = array->Length(); array = EnsureSpace(array, length + 2); if (mode == kReloadLengthAfterAllocation) { length = array->Length(); } array->Set(length, *obj1); array->Set(length + 1, *obj2); array->SetLength(length + 2); return array; } Handle ArrayList::EnsureSpace(Handle array, int length) { int capacity = array->length(); bool empty = (capacity == 0); if (capacity < kFirstIndex + length) { Isolate* isolate = array->GetIsolate(); int new_capacity = kFirstIndex + length; new_capacity = new_capacity + Max(new_capacity / 2, 2); int grow_by = new_capacity - capacity; array = Handle::cast( isolate->factory()->CopyFixedArrayAndGrow(array, grow_by)); if (empty) array->SetLength(0); } return array; } Handle DescriptorArray::Allocate(Isolate* isolate, int number_of_descriptors, int slack) { DCHECK(0 <= number_of_descriptors); Factory* factory = isolate->factory(); // Do not use DescriptorArray::cast on incomplete object. int size = number_of_descriptors + slack; if (size == 0) return factory->empty_descriptor_array(); // Allocate the array of keys. Handle result = factory->NewFixedArray(LengthFor(size)); result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors)); result->set(kEnumCacheIndex, Smi::FromInt(0)); return Handle::cast(result); } void DescriptorArray::ClearEnumCache() { set(kEnumCacheIndex, Smi::FromInt(0)); } void DescriptorArray::Replace(int index, Descriptor* descriptor) { descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index)); Set(index, descriptor); } void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache, Object* new_index_cache) { DCHECK(bridge_storage->length() >= kEnumCacheBridgeLength); DCHECK(new_index_cache->IsSmi() || new_index_cache->IsFixedArray()); DCHECK(!IsEmpty()); DCHECK(!HasEnumCache() || new_cache->length() > GetEnumCache()->length()); FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeCacheIndex, new_cache); FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache); set(kEnumCacheIndex, bridge_storage); } void DescriptorArray::CopyFrom(int index, DescriptorArray* src, const WhitenessWitness& witness) { Object* value = src->GetValue(index); PropertyDetails details = src->GetDetails(index); Descriptor desc(handle(src->GetKey(index)), handle(value, src->GetIsolate()), details); Set(index, &desc, witness); } // We need the whiteness witness since sort will reshuffle the entries in the // descriptor array. If the descriptor array were to be black, the shuffling // would move a slot that was already recorded as pointing into an evacuation // candidate. This would result in missing updates upon evacuation. void DescriptorArray::Sort() { // In-place heap sort. int len = number_of_descriptors(); // Reset sorting since the descriptor array might contain invalid pointers. for (int i = 0; i < len; ++i) SetSortedKey(i, i); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetSortedKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. SwapSortedKeys(0, i); // Shift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetSortedKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); parent_index = child_index; } } DCHECK(IsSortedNoDuplicates()); } Handle AccessorPair::Copy(Handle pair) { Handle copy = pair->GetIsolate()->factory()->NewAccessorPair(); copy->set_getter(pair->getter()); copy->set_setter(pair->setter()); return copy; } Object* AccessorPair::GetComponent(AccessorComponent component) { Object* accessor = get(component); return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor; } Handle DeoptimizationInputData::New( Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) { return Handle::cast( isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count), pretenure)); } Handle DeoptimizationOutputData::New( Isolate* isolate, int number_of_deopt_points, PretenureFlag pretenure) { Handle result; if (number_of_deopt_points == 0) { result = isolate->factory()->empty_fixed_array(); } else { result = isolate->factory()->NewFixedArray( LengthOfFixedArray(number_of_deopt_points), pretenure); } return Handle::cast(result); } int HandlerTable::LookupRange(int pc_offset, int* stack_depth_out, CatchPrediction* prediction_out) { int innermost_handler = -1, innermost_start = -1; for (int i = 0; i < length(); i += kRangeEntrySize) { int start_offset = Smi::cast(get(i + kRangeStartIndex))->value(); int end_offset = Smi::cast(get(i + kRangeEndIndex))->value(); int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value(); int handler_offset = HandlerOffsetField::decode(handler_field); CatchPrediction prediction = HandlerPredictionField::decode(handler_field); int stack_depth = Smi::cast(get(i + kRangeDepthIndex))->value(); if (pc_offset > start_offset && pc_offset <= end_offset) { DCHECK_NE(start_offset, innermost_start); if (start_offset < innermost_start) continue; innermost_handler = handler_offset; innermost_start = start_offset; *stack_depth_out = stack_depth; if (prediction_out) *prediction_out = prediction; } } return innermost_handler; } // TODO(turbofan): Make sure table is sorted and use binary search. int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) { for (int i = 0; i < length(); i += kReturnEntrySize) { int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value(); int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value(); if (pc_offset == return_offset) { if (prediction_out) { *prediction_out = HandlerPredictionField::decode(handler_field); } return HandlerOffsetField::decode(handler_field); } } return -1; } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif bool String::LooksValid() { if (!GetIsolate()->heap()->Contains(this)) return false; return true; } // static MaybeHandle Name::ToFunctionName(Handle name) { if (name->IsString()) return Handle::cast(name); // ES6 section 9.2.11 SetFunctionName, step 4. Isolate* const isolate = name->GetIsolate(); Handle description(Handle::cast(name)->name(), isolate); if (description->IsUndefined()) return isolate->factory()->empty_string(); IncrementalStringBuilder builder(isolate); builder.AppendCharacter('['); builder.AppendString(Handle::cast(description)); builder.AppendCharacter(']'); return builder.Finish(); } namespace { bool AreDigits(const uint8_t* s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } int ParseDecimalInteger(const uint8_t* s, int from, int to) { DCHECK(to - from < 10); // Overflow is not possible. DCHECK(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } } // namespace // static Handle String::ToNumber(Handle subject) { Isolate* const isolate = subject->GetIsolate(); // Flatten {subject} string first. subject = String::Flatten(subject); // Fast array index case. uint32_t index; if (subject->AsArrayIndex(&index)) { return isolate->factory()->NewNumberFromUint(index); } // Fast case: short integer or some sorts of junk values. if (subject->IsSeqOneByteString()) { int len = subject->length(); if (len == 0) return handle(Smi::FromInt(0), isolate); DisallowHeapAllocation no_gc; uint8_t const* data = Handle::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->factory()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit // or the 'I' character ('Infinity'). All of that have codes not greater // than '9' except 'I' and  . if (data[start_pos] != 'I' && data[start_pos] != 0xa0) { return isolate->factory()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits // we know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->factory()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. DCHECK_EQ(static_cast(subject->hash_field()), static_cast(hash)); #endif subject->set_hash_field(hash); } return handle(Smi::FromInt(d), isolate); } } // Slower case. int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY; return isolate->factory()->NewNumber( StringToDouble(isolate->unicode_cache(), subject, flags)); } String::FlatContent String::GetFlatContent() { DCHECK(!AllowHeapAllocation::IsAllowed()); int length = this->length(); StringShape shape(this); String* string = this; int offset = 0; if (shape.representation_tag() == kConsStringTag) { ConsString* cons = ConsString::cast(string); if (cons->second()->length() != 0) { return FlatContent(); } string = cons->first(); shape = StringShape(string); } if (shape.representation_tag() == kSlicedStringTag) { SlicedString* slice = SlicedString::cast(string); offset = slice->offset(); string = slice->parent(); shape = StringShape(string); DCHECK(shape.representation_tag() != kConsStringTag && shape.representation_tag() != kSlicedStringTag); } if (shape.encoding_tag() == kOneByteStringTag) { const uint8_t* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqOneByteString::cast(string)->GetChars(); } else { start = ExternalOneByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } else { DCHECK(shape.encoding_tag() == kTwoByteStringTag); const uc16* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqTwoByteString::cast(string)->GetChars(); } else { start = ExternalTwoByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } } base::SmartArrayPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return base::SmartArrayPointer(NULL); } // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. StringCharacterStream stream(this, offset); int character_position = offset; int utf8_bytes = 0; int last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); utf8_bytes += unibrow::Utf8::Length(character, last); last = character; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. stream.Reset(this, offset); character_position = offset; int utf8_byte_position = 0; last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character, last); last = character; } result[utf8_byte_position] = 0; return base::SmartArrayPointer(result); } base::SmartArrayPointer String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData(unsigned start) { DCHECK(!IsOneByteRepresentationUnderneath()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kSlicedStringTag: { SlicedString* slice = SlicedString::cast(this); return slice->parent()->GetTwoByteData(start + slice->offset()); } case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } base::SmartArrayPointer String::ToWideCString( RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return base::SmartArrayPointer(); } StringCharacterStream stream(this); uc16* result = NewArray(length() + 1); int i = 0; while (stream.HasMore()) { uint16_t character = stream.GetNext(); result[i++] = character; } result[i] = 0; return base::SmartArrayPointer(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast( reinterpret_cast(this) - kHeapObjectTag + kHeaderSize) + start; } void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) { Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Relocatable*); // NOLINT } // Archive statics that are thread-local. char* Relocatable::ArchiveState(Isolate* isolate, char* to) { *reinterpret_cast(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread-local. char* Relocatable::RestoreState(Isolate* isolate, char* from) { isolate->set_relocatable_top(*reinterpret_cast(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) { Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector input) : Relocatable(isolate), str_(0), is_one_byte_(true), length_(input.length()), start_(input.start()) {} void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle str(str_); DCHECK(str->IsFlat()); DisallowHeapAllocation no_gc; // This does not actually prevent the vector from being relocated later. String::FlatContent content = str->GetFlatContent(); DCHECK(content.IsFlat()); is_one_byte_ = content.IsOneByte(); if (is_one_byte_) { start_ = content.ToOneByteVector().start(); } else { start_ = content.ToUC16Vector().start(); } } void ConsStringIterator::Initialize(ConsString* cons_string, int offset) { DCHECK(cons_string != NULL); root_ = cons_string; consumed_ = offset; // Force stack blown condition to trigger restart. depth_ = 1; maximum_depth_ = kStackSize + depth_; DCHECK(StackBlown()); } String* ConsStringIterator::Continue(int* offset_out) { DCHECK(depth_ != 0); DCHECK_EQ(0, *offset_out); bool blew_stack = StackBlown(); String* string = NULL; // Get the next leaf if there is one. if (!blew_stack) string = NextLeaf(&blew_stack); // Restart search from root. if (blew_stack) { DCHECK(string == NULL); string = Search(offset_out); } // Ensure future calls return null immediately. if (string == NULL) Reset(NULL); return string; } String* ConsStringIterator::Search(int* offset_out) { ConsString* cons_string = root_; // Reset the stack, pushing the root string. depth_ = 1; maximum_depth_ = 1; frames_[0] = cons_string; const int consumed = consumed_; int offset = 0; while (true) { // Loop until the string is found which contains the target offset. String* string = cons_string->first(); int length = string->length(); int32_t type; if (consumed < offset + length) { // Target offset is in the left branch. // Keep going if we're still in a ConString. type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushLeft(cons_string); continue; } // Tell the stack we're done descending. AdjustMaximumDepth(); } else { // Descend right. // Update progress through the string. offset += length; // Keep going if we're still in a ConString. string = cons_string->second(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushRight(cons_string); continue; } // Need this to be updated for the current string. length = string->length(); // Account for the possibility of an empty right leaf. // This happens only if we have asked for an offset outside the string. if (length == 0) { // Reset so future operations will return null immediately. Reset(NULL); return NULL; } // Tell the stack we're done descending. AdjustMaximumDepth(); // Pop stack so next iteration is in correct place. Pop(); } DCHECK(length != 0); // Adjust return values and exit. consumed_ = offset + length; *offset_out = consumed - offset; return string; } UNREACHABLE(); return NULL; } String* ConsStringIterator::NextLeaf(bool* blew_stack) { while (true) { // Tree traversal complete. if (depth_ == 0) { *blew_stack = false; return NULL; } // We've lost track of higher nodes. if (StackBlown()) { *blew_stack = true; return NULL; } // Go right. ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)]; String* string = cons_string->second(); int32_t type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { // Pop stack so next iteration is in correct place. Pop(); int length = string->length(); // Could be a flattened ConsString. if (length == 0) continue; consumed_ += length; return string; } cons_string = ConsString::cast(string); PushRight(cons_string); // Need to traverse all the way left. while (true) { // Continue left. string = cons_string->first(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { AdjustMaximumDepth(); int length = string->length(); DCHECK(length != 0); consumed_ += length; return string; } cons_string = ConsString::cast(string); PushLeft(cons_string); } } UNREACHABLE(); return NULL; } uint16_t ConsString::ConsStringGet(int index) { DCHECK(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } uint16_t SlicedString::SlicedStringGet(int index) { return parent()->Get(offset() + index); } template void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { DCHECK(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kOneByteStringTag | kExternalStringTag: { CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->GetChars(); CopyChars(sink, data + from, to - from); return; } case kOneByteStringTag | kSeqStringTag: { CopyChars(sink, SeqOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kOneByteStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); // When repeatedly appending to a string, we get a cons string that // is unbalanced to the left, a list, essentially. We inline the // common case of sequential one-byte right child. if (to - boundary == 1) { sink[boundary - from] = static_cast(second->Get(0)); } else if (second->IsSeqOneByteString()) { CopyChars(sink + boundary - from, SeqOneByteString::cast(second)->GetChars(), to - boundary); } else { WriteToFlat(second, sink + boundary - from, 0, to - boundary); } to = boundary; } source = first; } break; } case kOneByteStringTag | kSlicedStringTag: case kTwoByteStringTag | kSlicedStringTag: { SlicedString* slice = SlicedString::cast(source); unsigned offset = slice->offset(); WriteToFlat(slice->parent(), sink, from + offset, to + offset); return; } } } } template static void CalculateLineEndsImpl(Isolate* isolate, List* line_ends, Vector src, bool include_ending_line) { const int src_len = src.length(); UnicodeCache* cache = isolate->unicode_cache(); for (int i = 0; i < src_len - 1; i++) { SourceChar current = src[i]; SourceChar next = src[i + 1]; if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i); } if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) { line_ends->Add(src_len - 1); } else if (include_ending_line) { // Even if the last line misses a line end, it is counted. line_ends->Add(src_len); } } Handle String::CalculateLineEnds(Handle src, bool include_ending_line) { src = Flatten(src); // Rough estimate of line count based on a roughly estimated average // length of (unpacked) code. int line_count_estimate = src->length() >> 4; List line_ends(line_count_estimate); Isolate* isolate = src->GetIsolate(); { DisallowHeapAllocation no_allocation; // ensure vectors stay valid. // Dispatch on type of strings. String::FlatContent content = src->GetFlatContent(); DCHECK(content.IsFlat()); if (content.IsOneByte()) { CalculateLineEndsImpl(isolate, &line_ends, content.ToOneByteVector(), include_ending_line); } else { CalculateLineEndsImpl(isolate, &line_ends, content.ToUC16Vector(), include_ending_line); } } int line_count = line_ends.length(); Handle array = isolate->factory()->NewFixedArray(line_count); for (int i = 0; i < line_count; i++) { array->set(i, Smi::FromInt(line_ends[i])); } return array; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template static inline bool CompareRawStringContents(const Char* const a, const Char* const b, int length) { return CompareChars(a, b, length) == 0; } template class RawStringComparator : public AllStatic { public: static inline bool compare(const Chars1* a, const Chars2* b, int len) { DCHECK(sizeof(Chars1) != sizeof(Chars2)); for (int i = 0; i < len; i++) { if (a[i] != b[i]) { return false; } } return true; } }; template<> class RawStringComparator { public: static inline bool compare(const uint16_t* a, const uint16_t* b, int len) { return CompareRawStringContents(a, b, len); } }; template<> class RawStringComparator { public: static inline bool compare(const uint8_t* a, const uint8_t* b, int len) { return CompareRawStringContents(a, b, len); } }; class StringComparator { class State { public: State() : is_one_byte_(true), length_(0), buffer8_(NULL) {} void Init(String* string) { ConsString* cons_string = String::VisitFlat(this, string); iter_.Reset(cons_string); if (cons_string != NULL) { int offset; string = iter_.Next(&offset); String::VisitFlat(this, string, offset); } } inline void VisitOneByteString(const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; length_ = length; } inline void VisitTwoByteString(const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; length_ = length; } void Advance(int consumed) { DCHECK(consumed <= length_); // Still in buffer. if (length_ != consumed) { if (is_one_byte_) { buffer8_ += consumed; } else { buffer16_ += consumed; } length_ -= consumed; return; } // Advance state. int offset; String* next = iter_.Next(&offset); DCHECK_EQ(0, offset); DCHECK(next != NULL); String::VisitFlat(this, next); } ConsStringIterator iter_; bool is_one_byte_; int length_; union { const uint8_t* buffer8_; const uint16_t* buffer16_; }; private: DISALLOW_COPY_AND_ASSIGN(State); }; public: inline StringComparator() {} template static inline bool Equals(State* state_1, State* state_2, int to_check) { const Chars1* a = reinterpret_cast(state_1->buffer8_); const Chars2* b = reinterpret_cast(state_2->buffer8_); return RawStringComparator::compare(a, b, to_check); } bool Equals(String* string_1, String* string_2) { int length = string_1->length(); state_1_.Init(string_1); state_2_.Init(string_2); while (true) { int to_check = Min(state_1_.length_, state_2_.length_); DCHECK(to_check > 0 && to_check <= length); bool is_equal; if (state_1_.is_one_byte_) { if (state_2_.is_one_byte_) { is_equal = Equals(&state_1_, &state_2_, to_check); } else { is_equal = Equals(&state_1_, &state_2_, to_check); } } else { if (state_2_.is_one_byte_) { is_equal = Equals(&state_1_, &state_2_, to_check); } else { is_equal = Equals(&state_1_, &state_2_, to_check); } } // Looping done. if (!is_equal) return false; length -= to_check; // Exit condition. Strings are equal. if (length == 0) return true; state_1_.Advance(to_check); state_2_.Advance(to_check); } } private: State state_1_; State state_2_; DISALLOW_COPY_AND_ASSIGN(StringComparator); }; bool String::SlowEquals(String* other) { DisallowHeapAllocation no_gc; // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (Hash() != other->Hash()) { bool found_difference = false; for (int i = 0; i < len; i++) { if (Get(i) != other->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; if (IsSeqOneByteString() && other->IsSeqOneByteString()) { const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars(); const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars(); return CompareRawStringContents(str1, str2, len); } StringComparator comparator; return comparator.Equals(this, other); } bool String::SlowEquals(Handle one, Handle two) { // Fast check: negative check with lengths. int one_length = one->length(); if (one_length != two->length()) return false; if (one_length == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (one->HasHashCode() && two->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (one->Hash() != two->Hash()) { bool found_difference = false; for (int i = 0; i < one_length; i++) { if (one->Get(i) != two->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (one->Hash() != two->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (one->Get(0) != two->Get(0)) return false; one = String::Flatten(one); two = String::Flatten(two); DisallowHeapAllocation no_gc; String::FlatContent flat1 = one->GetFlatContent(); String::FlatContent flat2 = two->GetFlatContent(); if (flat1.IsOneByte() && flat2.IsOneByte()) { return CompareRawStringContents(flat1.ToOneByteVector().start(), flat2.ToOneByteVector().start(), one_length); } else { for (int i = 0; i < one_length; i++) { if (flat1.Get(i) != flat2.Get(i)) return false; } return true; } } bool String::IsUtf8EqualTo(Vector str, bool allow_prefix_match) { int slen = length(); // Can't check exact length equality, but we can check bounds. int str_len = str.length(); if (!allow_prefix_match && (str_len < slen || str_len > slen*static_cast(unibrow::Utf8::kMaxEncodedSize))) { return false; } int i; size_t remaining_in_str = static_cast(str_len); const uint8_t* utf8_data = reinterpret_cast(str.start()); for (i = 0; i < slen && remaining_in_str > 0; i++) { size_t cursor = 0; uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor); DCHECK(cursor > 0 && cursor <= remaining_in_str); if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) { if (i > slen - 1) return false; if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false; if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false; } else { if (Get(i) != r) return false; } utf8_data += cursor; remaining_in_str -= cursor; } return (allow_prefix_match || i == slen) && remaining_in_str == 0; } bool String::IsOneByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsOneByte()) { return CompareChars(content.ToOneByteVector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != static_cast(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsTwoByte()) { return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. DCHECK(!HasHashCode()); // Store the hash code in the object. uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed()); set_hash_field(field); // Check the hash code is there. DCHECK(HasHashCode()); uint32_t result = field >> kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(uint32_t* index) { int length = this->length(); if (length == 0 || length > kMaxArrayIndexSize) return false; StringCharacterStream stream(this); return StringToArrayIndex(&stream, index); } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = ArrayIndexValueBits::decode(field); return true; } else { return ComputeArrayIndex(index); } } Handle SeqString::Truncate(Handle string, int new_length) { int new_size, old_size; int old_length = string->length(); if (old_length <= new_length) return string; if (string->IsSeqOneByteString()) { old_size = SeqOneByteString::SizeFor(old_length); new_size = SeqOneByteString::SizeFor(new_length); } else { DCHECK(string->IsSeqTwoByteString()); old_size = SeqTwoByteString::SizeFor(old_length); new_size = SeqTwoByteString::SizeFor(new_length); } int delta = old_size - new_size; Address start_of_string = string->address(); DCHECK_OBJECT_ALIGNED(start_of_string); DCHECK_OBJECT_ALIGNED(start_of_string + new_size); Heap* heap = string->GetHeap(); NewSpace* newspace = heap->new_space(); if (newspace->Contains(start_of_string) && newspace->top() == start_of_string + old_size) { // Last allocated object in new space. Simply lower allocation top. newspace->set_top(start_of_string + new_size); } else { // Sizes are pointer size aligned, so that we can use filler objects // that are a multiple of pointer size. heap->CreateFillerObjectAt(start_of_string + new_size, delta); } heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER); // We are storing the new length using release store after creating a filler // for the left-over space to avoid races with the sweeper thread. string->synchronized_set_length(new_length); if (new_length == 0) return heap->isolate()->factory()->empty_string(); return string; } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. DCHECK(length > 0); DCHECK(length <= String::kMaxArrayIndexSize); DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::ArrayIndexValueBits::kShift; value |= length << String::ArrayIndexLengthBits::kShift; DCHECK((value & String::kIsNotArrayIndexMask) == 0); DCHECK((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } uint32_t StringHasher::GetHashField() { if (length_ <= String::kMaxHashCalcLength) { if (is_array_index_) { return MakeArrayIndexHash(array_index_, length_); } return (GetHashCore(raw_running_hash_) << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t StringHasher::ComputeUtf8Hash(Vector chars, uint32_t seed, int* utf16_length_out) { int vector_length = chars.length(); // Handle some edge cases if (vector_length <= 1) { DCHECK(vector_length == 0 || static_cast(chars.start()[0]) <= unibrow::Utf8::kMaxOneByteChar); *utf16_length_out = vector_length; return HashSequentialString(chars.start(), vector_length, seed); } // Start with a fake length which won't affect computation. // It will be updated later. StringHasher hasher(String::kMaxArrayIndexSize, seed); size_t remaining = static_cast(vector_length); const uint8_t* stream = reinterpret_cast(chars.start()); int utf16_length = 0; bool is_index = true; DCHECK(hasher.is_array_index_); while (remaining > 0) { size_t consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed); DCHECK(consumed > 0 && consumed <= remaining); stream += consumed; remaining -= consumed; bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode; utf16_length += is_two_characters ? 2 : 1; // No need to keep hashing. But we do need to calculate utf16_length. if (utf16_length > String::kMaxHashCalcLength) continue; if (is_two_characters) { uint16_t c1 = unibrow::Utf16::LeadSurrogate(c); uint16_t c2 = unibrow::Utf16::TrailSurrogate(c); hasher.AddCharacter(c1); hasher.AddCharacter(c2); if (is_index) is_index = hasher.UpdateIndex(c1); if (is_index) is_index = hasher.UpdateIndex(c2); } else { hasher.AddCharacter(c); if (is_index) is_index = hasher.UpdateIndex(c); } } *utf16_length_out = static_cast(utf16_length); // Must set length here so that hash computation is correct. hasher.length_ = utf16_length; return hasher.GetHashField(); } void IteratingStringHasher::VisitConsString(ConsString* cons_string) { // Run small ConsStrings through ConsStringIterator. if (cons_string->length() < 64) { ConsStringIterator iter(cons_string); int offset; String* string; while (nullptr != (string = iter.Next(&offset))) { DCHECK_EQ(0, offset); String::VisitFlat(this, string, 0); } return; } // Slow case. const int max_length = String::kMaxHashCalcLength; int length = std::min(cons_string->length(), max_length); if (cons_string->HasOnlyOneByteChars()) { uint8_t* buffer = new uint8_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } else { uint16_t* buffer = new uint16_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { PrintF(file, "%c", Get(i)); } } inline static uint32_t ObjectAddressForHashing(Object* object) { uint32_t value = static_cast(reinterpret_cast(object)); return value & MemoryChunk::kAlignmentMask; } int Map::Hash() { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. For predictability reasons we // use objects' offsets in respective pages for hashing instead of raw // addresses. // Shift away the tag. int hash = ObjectAddressForHashing(GetConstructor()) >> 2; // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype bits relatively to the constructor. hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits); return hash ^ (hash >> 16) ^ bit_field2(); } namespace { bool CheckEquivalent(Map* first, Map* second) { return first->GetConstructor() == second->GetConstructor() && first->prototype() == second->prototype() && first->instance_type() == second->instance_type() && first->bit_field() == second->bit_field() && first->is_extensible() == second->is_extensible() && first->is_strong() == second->is_strong() && first->is_hidden_prototype() == second->is_hidden_prototype(); } } // namespace bool Map::EquivalentToForTransition(Map* other) { return CheckEquivalent(this, other); } bool Map::EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode) { int properties = mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties(); return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() && GetInObjectProperties() == properties; } void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { // Iterate over all fields in the body but take care in dealing with // the code entry. IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); v->VisitCodeEntry(this->address() + kCodeEntryOffset); IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); } bool JSFunction::Inlines(SharedFunctionInfo* candidate) { DisallowHeapAllocation no_gc; if (shared() == candidate) return true; if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false; DeoptimizationInputData* const data = DeoptimizationInputData::cast(code()->deoptimization_data()); if (data->length() == 0) return false; FixedArray* const literals = data->LiteralArray(); int const inlined_count = data->InlinedFunctionCount()->value(); for (int i = 0; i < inlined_count; ++i) { if (SharedFunctionInfo::cast(literals->get(i)) == candidate) { return true; } } return false; } void JSFunction::MarkForOptimization() { Isolate* isolate = GetIsolate(); // Do not optimize if function contains break points. if (shared()->HasDebugInfo()) return; DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || !shared()->optimization_disabled()); DCHECK(!shared()->HasDebugInfo()); set_code_no_write_barrier( isolate->builtins()->builtin(Builtins::kCompileOptimized)); // No write barrier required, since the builtin is part of the root set. } void JSFunction::AttemptConcurrentOptimization() { Isolate* isolate = GetIsolate(); if (!isolate->concurrent_recompilation_enabled() || isolate->bootstrapper()->IsActive()) { MarkForOptimization(); return; } if (isolate->concurrent_osr_enabled() && isolate->optimizing_compile_dispatcher()->IsQueuedForOSR(this)) { // Do not attempt regular recompilation if we already queued this for OSR. // TODO(yangguo): This is necessary so that we don't install optimized // code on a function that is already optimized, since OSR and regular // recompilation race. This goes away as soon as OSR becomes one-shot. return; } DCHECK(!IsInOptimizationQueue()); DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || !shared()->optimization_disabled()); DCHECK(isolate->concurrent_recompilation_enabled()); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Marking "); ShortPrint(); PrintF(" for concurrent recompilation.\n"); } set_code_no_write_barrier( isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent)); // No write barrier required, since the builtin is part of the root set. } Handle JSFunction::CloneClosure(Handle function) { Isolate* isolate = function->GetIsolate(); Handle map(function->map()); Handle shared(function->shared()); Handle context(function->context()); Handle clone = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context); if (shared->bound()) { clone->set_function_bindings(function->function_bindings()); } // In typical case, __proto__ of ``function`` is the default Function // prototype, which means that SetPrototype below is a no-op. // In rare cases when that is not true, we mutate the clone's __proto__. Handle original_prototype(map->prototype(), isolate); if (*original_prototype != clone->map()->prototype()) { JSObject::SetPrototype(clone, original_prototype, false).Assert(); } return clone; } void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap( Handle shared, Handle code) { Isolate* isolate = shared->GetIsolate(); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); Handle value(shared->optimized_code_map(), isolate); if (value->IsSmi()) return; // Empty code maps are unsupported. Handle code_map = Handle::cast(value); code_map->set(kSharedCodeIndex, *code); } void SharedFunctionInfo::AddToOptimizedCodeMap( Handle shared, Handle native_context, Handle code, Handle literals, BailoutId osr_ast_id) { Isolate* isolate = shared->GetIsolate(); DCHECK(!shared->SearchOptimizedCodeMap(*native_context, osr_ast_id).code); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(native_context->IsNativeContext()); STATIC_ASSERT(kEntryLength == 4); Handle new_code_map; Handle value(shared->optimized_code_map(), isolate); int old_length; if (value->IsSmi()) { // No optimized code map. DCHECK_EQ(0, Smi::cast(*value)->value()); new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED); old_length = kEntriesStart; } else { // Copy old optimized code map and append one new entry. Handle old_code_map = Handle::cast(value); new_code_map = isolate->factory()->CopyFixedArrayAndGrow( old_code_map, kEntryLength, TENURED); old_length = old_code_map->length(); // Zap the old map to avoid any stale entries. Note that this is required // for correctness because entries are being treated weakly by the GC. MemsetPointer(old_code_map->data_start(), isolate->heap()->the_hole_value(), old_length); } new_code_map->set(old_length + kContextOffset, *native_context); new_code_map->set(old_length + kCachedCodeOffset, *code); new_code_map->set(old_length + kLiteralsOffset, *literals); new_code_map->set(old_length + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt())); #ifdef DEBUG for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) { DCHECK(new_code_map->get(i + kContextOffset)->IsNativeContext()); DCHECK(new_code_map->get(i + kCachedCodeOffset)->IsCode()); DCHECK(Code::cast(new_code_map->get(i + kCachedCodeOffset))->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(new_code_map->get(i + kLiteralsOffset)->IsFixedArray()); DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi()); } #endif shared->set_optimized_code_map(*new_code_map); } void SharedFunctionInfo::ClearOptimizedCodeMap() { FixedArray* code_map = FixedArray::cast(optimized_code_map()); // If the next map link slot is already used then the function was // enqueued with code flushing and we remove it now. if (!code_map->get(kNextMapIndex)->IsUndefined()) { CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher(); flusher->EvictOptimizedCodeMap(this); } DCHECK(code_map->get(kNextMapIndex)->IsUndefined()); set_optimized_code_map(Smi::FromInt(0)); } void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason) { DisallowHeapAllocation no_gc; if (optimized_code_map()->IsSmi()) return; FixedArray* code_map = FixedArray::cast(optimized_code_map()); int dst = kEntriesStart; int length = code_map->length(); for (int src = kEntriesStart; src < length; src += kEntryLength) { DCHECK(code_map->get(src)->IsNativeContext()); if (Code::cast(code_map->get(src + kCachedCodeOffset)) == optimized_code) { // Evict the src entry by not copying it to the dst entry. if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code map (%s) for ", reason); ShortPrint(); BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value()); if (osr.IsNone()) { PrintF("]\n"); } else { PrintF(" (osr ast id %d)]\n", osr.ToInt()); } } } else { // Keep the src entry by copying it to the dst entry. if (dst != src) { code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset)); code_map->set(dst + kCachedCodeOffset, code_map->get(src + kCachedCodeOffset)); code_map->set(dst + kLiteralsOffset, code_map->get(src + kLiteralsOffset)); code_map->set(dst + kOsrAstIdOffset, code_map->get(src + kOsrAstIdOffset)); } dst += kEntryLength; } } if (code_map->get(kSharedCodeIndex) == optimized_code) { // Evict context-independent code as well. code_map->set_undefined(kSharedCodeIndex); if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code map (%s) for ", reason); ShortPrint(); PrintF(" (context-independent code)]\n"); } } if (dst != length) { // Always trim even when array is cleared because of heap verifier. GetHeap()->RightTrimFixedArray(code_map, length - dst); if (code_map->length() == kEntriesStart && code_map->get(kSharedCodeIndex)->IsUndefined()) { ClearOptimizedCodeMap(); } } } void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) { FixedArray* code_map = FixedArray::cast(optimized_code_map()); DCHECK(shrink_by % kEntryLength == 0); DCHECK(shrink_by <= code_map->length() - kEntriesStart); // Always trim even when array is cleared because of heap verifier. GetHeap()->RightTrimFixedArray(code_map, shrink_by); if (code_map->length() == kEntriesStart && code_map->get(kSharedCodeIndex)->IsUndefined()) { ClearOptimizedCodeMap(); } } static void GetMinInobjectSlack(Map* map, void* data) { int slack = map->unused_property_fields(); if (*reinterpret_cast(data) > slack) { *reinterpret_cast(data) = slack; } } static void ShrinkInstanceSize(Map* map, void* data) { int slack = *reinterpret_cast(data); map->SetInObjectProperties(map->GetInObjectProperties() - slack); map->set_unused_property_fields(map->unused_property_fields() - slack); map->set_instance_size(map->instance_size() - slack * kPointerSize); // Visitor id might depend on the instance size, recalculate it. map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); } void JSFunction::CompleteInobjectSlackTracking() { DCHECK(has_initial_map()); Map* map = initial_map(); DCHECK(map->counter() >= Map::kSlackTrackingCounterEnd - 1); map->set_counter(Map::kRetainingCounterStart); int slack = map->unused_property_fields(); TransitionArray::TraverseTransitionTree(map, &GetMinInobjectSlack, &slack); if (slack != 0) { // Resize the initial map and all maps in its transition tree. TransitionArray::TraverseTransitionTree(map, &ShrinkInstanceSize, &slack); } } static bool PrototypeBenefitsFromNormalization(Handle object) { DisallowHeapAllocation no_gc; if (!object->HasFastProperties()) return false; Map* map = object->map(); if (map->is_prototype_map()) return false; DescriptorArray* descriptors = map->instance_descriptors(); for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.location() == kDescriptor) continue; if (details.representation().IsHeapObject() || details.representation().IsTagged()) { FieldIndex index = FieldIndex::ForDescriptor(map, i); if (object->RawFastPropertyAt(index)->IsJSFunction()) return true; } } return false; } // static void JSObject::OptimizeAsPrototype(Handle object, PrototypeOptimizationMode mode) { if (object->IsGlobalObject()) return; if (object->IsJSGlobalProxy()) return; if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) { // First normalize to ensure all JSFunctions are DATA_CONSTANT. JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0, "NormalizeAsPrototype"); } Handle previous_map(object->map()); if (!object->HasFastProperties()) { JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype"); } if (!object->map()->is_prototype_map()) { if (object->map() == *previous_map) { Handle new_map = Map::Copy(handle(object->map()), "CopyAsPrototype"); JSObject::MigrateToMap(object, new_map); } object->map()->set_is_prototype_map(true); // Replace the pointer to the exact constructor with the Object function // from the same context if undetectable from JS. This is to avoid keeping // memory alive unnecessarily. Object* maybe_constructor = object->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); Isolate* isolate = object->GetIsolate(); if (!constructor->shared()->IsApiFunction() && object->class_name() == isolate->heap()->Object_string()) { Handle constructor_name(object->constructor_name(), isolate); Context* context = constructor->context()->native_context(); JSFunction* object_function = context->object_function(); object->map()->SetConstructor(object_function); Handle proto_info = Map::GetOrCreatePrototypeInfo(object, isolate); proto_info->set_constructor_name(*constructor_name); } } } } // static void JSObject::ReoptimizeIfPrototype(Handle object) { if (!object->map()->is_prototype_map()) return; OptimizeAsPrototype(object, FAST_PROTOTYPE); } // static void JSObject::LazyRegisterPrototypeUser(Handle user, Isolate* isolate) { DCHECK(FLAG_track_prototype_users); // Contract: In line with InvalidatePrototypeChains()'s requirements, // leaf maps don't need to register as users, only prototypes do. DCHECK(user->is_prototype_map()); Handle current_user = user; Handle current_user_info = Map::GetOrCreatePrototypeInfo(user, isolate); for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) { // Walk up the prototype chain as far as links haven't been registered yet. if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) { break; } Handle maybe_proto = PrototypeIterator::GetCurrent(iter); if (maybe_proto->IsJSGlobalProxy()) continue; // Proxies on the prototype chain are not supported. if (maybe_proto->IsJSProxy()) return; Handle proto = Handle::cast(maybe_proto); Handle proto_info = Map::GetOrCreatePrototypeInfo(proto, isolate); Handle maybe_registry(proto_info->prototype_users(), isolate); int slot = 0; Handle new_array = WeakFixedArray::Add(maybe_registry, current_user, &slot); current_user_info->set_registry_slot(slot); if (!maybe_registry.is_identical_to(new_array)) { proto_info->set_prototype_users(*new_array); } if (FLAG_trace_prototype_users) { PrintF("Registering %p as a user of prototype %p (map=%p).\n", reinterpret_cast(*current_user), reinterpret_cast(*proto), reinterpret_cast(proto->map())); } current_user = handle(proto->map(), isolate); current_user_info = proto_info; } } // Can be called regardless of whether |user| was actually registered with // |prototype|. Returns true when there was a registration. // static bool JSObject::UnregisterPrototypeUser(Handle user, Isolate* isolate) { DCHECK(user->is_prototype_map()); // If it doesn't have a PrototypeInfo, it was never registered. if (!user->prototype_info()->IsPrototypeInfo()) return false; // If it doesn't have a prototype, it can't be registered. if (!user->prototype()->IsJSObject()) return false; Handle prototype(JSObject::cast(user->prototype()), isolate); Handle user_info = Map::GetOrCreatePrototypeInfo(user, isolate); int slot = user_info->registry_slot(); if (slot == PrototypeInfo::UNREGISTERED) return false; if (prototype->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, prototype); prototype = PrototypeIterator::GetCurrent(iter); } DCHECK(prototype->map()->is_prototype_map()); Object* maybe_proto_info = prototype->map()->prototype_info(); // User knows its registry slot, prototype info and user registry must exist. DCHECK(maybe_proto_info->IsPrototypeInfo()); Handle proto_info(PrototypeInfo::cast(maybe_proto_info), isolate); Object* maybe_registry = proto_info->prototype_users(); DCHECK(maybe_registry->IsWeakFixedArray()); DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user); WeakFixedArray::cast(maybe_registry)->Clear(slot); if (FLAG_trace_prototype_users) { PrintF("Unregistering %p as a user of prototype %p.\n", reinterpret_cast(*user), reinterpret_cast(*prototype)); } return true; } static void InvalidatePrototypeChainsInternal(Map* map) { if (!map->is_prototype_map()) return; if (FLAG_trace_prototype_users) { PrintF("Invalidating prototype map %p 's cell\n", reinterpret_cast(map)); } Object* maybe_proto_info = map->prototype_info(); if (!maybe_proto_info->IsPrototypeInfo()) return; PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info); Object* maybe_cell = proto_info->validity_cell(); if (maybe_cell->IsCell()) { // Just set the value; the cell will be replaced lazily. Cell* cell = Cell::cast(maybe_cell); cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid)); } WeakFixedArray::Iterator iterator(proto_info->prototype_users()); // For now, only maps register themselves as users. Map* user; while ((user = iterator.Next())) { // Walk the prototype chain (backwards, towards leaf objects) if necessary. InvalidatePrototypeChainsInternal(user); } } // static void JSObject::InvalidatePrototypeChains(Map* map) { if (!FLAG_eliminate_prototype_chain_checks) return; DisallowHeapAllocation no_gc; if (map->IsJSGlobalProxyMap()) { PrototypeIterator iter(map); map = iter.GetCurrent()->map(); } InvalidatePrototypeChainsInternal(map); } // static Handle Map::GetOrCreatePrototypeInfo(Handle prototype, Isolate* isolate) { Object* maybe_proto_info = prototype->map()->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle proto_info = isolate->factory()->NewPrototypeInfo(); prototype->map()->set_prototype_info(*proto_info); return proto_info; } // static Handle Map::GetOrCreatePrototypeInfo(Handle prototype_map, Isolate* isolate) { Object* maybe_proto_info = prototype_map->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle proto_info = isolate->factory()->NewPrototypeInfo(); prototype_map->set_prototype_info(*proto_info); return proto_info; } // static Handle Map::GetOrCreatePrototypeChainValidityCell(Handle map, Isolate* isolate) { Handle maybe_prototype(map->prototype(), isolate); if (!maybe_prototype->IsJSObject()) return Handle::null(); Handle prototype = Handle::cast(maybe_prototype); if (prototype->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, prototype); prototype = PrototypeIterator::GetCurrent(iter); } // Ensure the prototype is registered with its own prototypes so its cell // will be invalidated when necessary. JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate), isolate); Handle proto_info = GetOrCreatePrototypeInfo(prototype, isolate); Object* maybe_cell = proto_info->validity_cell(); // Return existing cell if it's still valid. if (maybe_cell->IsCell()) { Handle cell(Cell::cast(maybe_cell), isolate); if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) { return cell; } } // Otherwise create a new cell. Handle cell = isolate->factory()->NewCell( handle(Smi::FromInt(Map::kPrototypeChainValid), isolate)); proto_info->set_validity_cell(*cell); return cell; } // static void Map::SetPrototype(Handle map, Handle prototype, PrototypeOptimizationMode proto_mode) { if (prototype->IsJSObject()) { Handle prototype_jsobj = Handle::cast(prototype); JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode); } WriteBarrierMode wb_mode = prototype->IsNull() ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; map->set_prototype(*prototype, wb_mode); } Handle CacheInitialJSArrayMaps( Handle native_context, Handle initial_map) { // Replace all of the cached initial array maps in the native context with // the appropriate transitioned elements kind maps. Factory* factory = native_context->GetIsolate()->factory(); Handle maps = factory->NewFixedArrayWithHoles( kElementsKindCount, TENURED); Handle current_map = initial_map; ElementsKind kind = current_map->elements_kind(); DCHECK(kind == GetInitialFastElementsKind()); maps->set(kind, *current_map); for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1; i < kFastElementsKindCount; ++i) { Handle new_map; ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i); Map* maybe_elements_transition = current_map->ElementsTransitionMap(); if (maybe_elements_transition != NULL) { new_map = handle(maybe_elements_transition); DCHECK(new_map->elements_kind() == next_kind); } else { new_map = Map::CopyAsElementsKind( current_map, next_kind, INSERT_TRANSITION); } maps->set(next_kind, *new_map); current_map = new_map; } if (initial_map->is_strong()) native_context->set_js_array_strong_maps(*maps); else native_context->set_js_array_maps(*maps); return initial_map; } void JSFunction::SetInstancePrototype(Handle function, Handle value) { Isolate* isolate = function->GetIsolate(); DCHECK(value->IsJSReceiver()); // Now some logic for the maps of the objects that are created by using this // function as a constructor. if (function->has_initial_map()) { // If the function has allocated the initial map replace it with a // copy containing the new prototype. Also complete any in-object // slack tracking that is in progress at this point because it is // still tracking the old copy. if (function->IsInobjectSlackTrackingInProgress()) { function->CompleteInobjectSlackTracking(); } Handle initial_map(function->initial_map(), isolate); if (!initial_map->GetIsolate()->bootstrapper()->IsActive() && initial_map->instance_type() == JS_OBJECT_TYPE) { // Put the value in the initial map field until an initial map is needed. // At that point, a new initial map is created and the prototype is put // into the initial map where it belongs. function->set_prototype_or_initial_map(*value); } else { Handle new_map = Map::Copy(initial_map, "SetInstancePrototype"); JSFunction::SetInitialMap(function, new_map, value); // If the function is used as the global Array function, cache the // updated initial maps (and transitioned versions) in the native context. Handle native_context(function->context()->native_context(), isolate); Handle array_function( native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate); if (array_function->IsJSFunction() && *function == JSFunction::cast(*array_function)) { CacheInitialJSArrayMaps(native_context, new_map); Handle new_strong_map = Map::Copy(new_map, "SetInstancePrototype"); new_strong_map->set_is_strong(); CacheInitialJSArrayMaps(native_context, new_strong_map); } } // Deoptimize all code that embeds the previous initial map. initial_map->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kInitialMapChangedGroup); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. function->set_prototype_or_initial_map(*value); if (value->IsJSObject()) { // Optimize as prototype to detach it from its transition tree. JSObject::OptimizeAsPrototype(Handle::cast(value), FAST_PROTOTYPE); } } isolate->heap()->ClearInstanceofCache(); } void JSFunction::SetPrototype(Handle function, Handle value) { DCHECK(function->should_have_prototype()); Handle construct_prototype = value; // If the value is not a JSReceiver, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSReceiver()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Handle new_map = Map::Copy(handle(function->map()), "SetPrototype"); JSObject::MigrateToMap(function, new_map); new_map->SetConstructor(*value); new_map->set_non_instance_prototype(true); Isolate* isolate = new_map->GetIsolate(); construct_prototype = handle( isolate->context()->native_context()->initial_object_prototype(), isolate); } else { function->map()->set_non_instance_prototype(false); } return SetInstancePrototype(function, construct_prototype); } bool JSFunction::RemovePrototype() { Context* native_context = context()->native_context(); Map* no_prototype_map = is_strict(shared()->language_mode()) ? native_context->strict_function_without_prototype_map() : native_context->sloppy_function_without_prototype_map(); if (map() == no_prototype_map) return true; #ifdef DEBUG if (map() != (is_strict(shared()->language_mode()) ? native_context->strict_function_map() : native_context->sloppy_function_map())) { return false; } #endif set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value()); return true; } void JSFunction::SetInitialMap(Handle function, Handle map, Handle prototype) { if (map->prototype() != *prototype) { Map::SetPrototype(map, prototype, FAST_PROTOTYPE); } function->set_prototype_or_initial_map(*map); map->SetConstructor(*function); #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n", reinterpret_cast(*map), function->shared()->unique_id(), function->shared()->DebugName()->ToCString().get()); } #endif } void JSFunction::EnsureHasInitialMap(Handle function) { if (function->has_initial_map()) return; Isolate* isolate = function->GetIsolate(); // First create a new map with the size and number of in-object properties // suggested by the function. InstanceType instance_type; int instance_size; int in_object_properties; if (function->shared()->is_generator()) { instance_type = JS_GENERATOR_OBJECT_TYPE; instance_size = JSGeneratorObject::kSize; in_object_properties = 0; } else { instance_type = JS_OBJECT_TYPE; instance_size = function->shared()->CalculateInstanceSize(); in_object_properties = function->shared()->CalculateInObjectProperties(); } Handle map = isolate->factory()->NewMap(instance_type, instance_size); // Fetch or allocate prototype. Handle prototype; if (function->has_instance_prototype()) { prototype = handle(function->instance_prototype(), isolate); } else { prototype = isolate->factory()->NewFunctionPrototype(function); } map->SetInObjectProperties(in_object_properties); map->set_unused_property_fields(in_object_properties); DCHECK(map->has_fast_object_elements()); // Finally link initial map and constructor function. JSFunction::SetInitialMap(function, map, Handle::cast(prototype)); if (!function->shared()->is_generator()) { function->StartInobjectSlackTracking(); } } void JSFunction::SetInstanceClassName(String* name) { shared()->set_instance_class_name(name); } void JSFunction::PrintName(FILE* out) { base::SmartArrayPointer name = shared()->DebugName()->ToCString(); PrintF(out, "%s", name.get()); } // The filter is a pattern that matches function names in this way: // "*" all; the default // "-" all but the top-level function // "-name" all but the function "name" // "" only the top-level function // "name" only the function "name" // "name*" only functions starting with "name" // "~" none; the tilde is not an identifier bool JSFunction::PassesFilter(const char* raw_filter) { if (*raw_filter == '*') return true; String* name = shared()->DebugName(); Vector filter = CStrVector(raw_filter); if (filter.length() == 0) return name->length() == 0; if (filter[0] == '-') { // Negative filter. if (filter.length() == 1) { return (name->length() != 0); } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) { return false; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) { return false; } return true; } else if (name->IsUtf8EqualTo(filter)) { return true; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) { return true; } return false; } Handle JSFunction::GetDebugName(Handle function) { Isolate* isolate = function->GetIsolate(); Handle name = JSReceiver::GetDataProperty(function, isolate->factory()->name_string()); if (name->IsString()) return Handle::cast(name); return handle(function->shared()->DebugName(), isolate); } void Oddball::Initialize(Isolate* isolate, Handle oddball, const char* to_string, Handle to_number, const char* type_of, byte kind) { Handle internalized_to_string = isolate->factory()->InternalizeUtf8String(to_string); Handle internalized_type_of = isolate->factory()->InternalizeUtf8String(type_of); oddball->set_to_number(*to_number); oddball->set_to_string(*internalized_to_string); oddball->set_type_of(*internalized_type_of); oddball->set_kind(kind); } void Script::InitLineEnds(Handle