// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "disassembler.h" #include "factory.h" #include "arm/simulator-arm.h" #include "arm/assembler-arm-inl.h" #include "cctest.h" using namespace v8::internal; // Define these function prototypes to match JSEntryFunction in execution.cc. typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4); static v8::Persistent env; static void InitializeVM() { if (env.IsEmpty()) { env = v8::Context::New(); } } #define __ assm. TEST(0) { InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); __ add(r0, r0, Operand(r1)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F2 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(f, 3, 4, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(7, res); } TEST(1) { InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand(0, RelocInfo::NONE)); __ b(&C); __ bind(&L); __ add(r0, r0, Operand(r1)); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand(0, RelocInfo::NONE)); __ b(ne, &L); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F1 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(f, 100, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(5050, res); } TEST(2) { InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand(1)); __ b(&C); __ bind(&L); __ mul(r0, r1, r0); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand(0, RelocInfo::NONE)); __ b(ne, &L); __ mov(pc, Operand(lr)); // some relocated stuff here, not executed __ RecordComment("dead code, just testing relocations"); __ mov(r0, Operand(Factory::true_value())); __ RecordComment("dead code, just testing immediate operands"); __ mov(r0, Operand(-1)); __ mov(r0, Operand(0xFF000000)); __ mov(r0, Operand(0xF0F0F0F0)); __ mov(r0, Operand(0xFFF0FFFF)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F1 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(f, 10, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(3628800, res); } TEST(3) { InitializeVM(); v8::HandleScope scope; typedef struct { int i; char c; int16_t s; } T; T t; Assembler assm(NULL, 0); Label L, C; __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ ldr(r0, MemOperand(r4, OFFSET_OF(T, i))); __ mov(r2, Operand(r0, ASR, 1)); __ str(r2, MemOperand(r4, OFFSET_OF(T, i))); __ ldrsb(r2, MemOperand(r4, OFFSET_OF(T, c))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, LSL, 2)); __ strb(r2, MemOperand(r4, OFFSET_OF(T, c))); __ ldrsh(r2, MemOperand(r4, OFFSET_OF(T, s))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, ASR, 3)); __ strh(r2, MemOperand(r4, OFFSET_OF(T, s))); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F3 f = FUNCTION_CAST(Code::cast(code)->entry()); t.i = 100000; t.c = 10; t.s = 1000; int res = reinterpret_cast(CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(101010, res); CHECK_EQ(100000/2, t.i); CHECK_EQ(10*4, t.c); CHECK_EQ(1000/8, t.s); } TEST(4) { // Test the VFP floating point instructions. InitializeVM(); v8::HandleScope scope; typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; int i; float x; float y; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(NULL, 0); Label L, C; if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ vldr(d6, r4, OFFSET_OF(T, a)); __ vldr(d7, r4, OFFSET_OF(T, b)); __ vadd(d5, d6, d7); __ vstr(d5, r4, OFFSET_OF(T, c)); __ vmov(r2, r3, d5); __ vmov(d4, r2, r3); __ vstr(d4, r4, OFFSET_OF(T, b)); // Load t.x and t.y, switch values, and store back to the struct. __ vldr(s0, r4, OFFSET_OF(T, x)); __ vldr(s31, r4, OFFSET_OF(T, y)); __ vmov(s16, s0); __ vmov(s0, s31); __ vmov(s31, s16); __ vstr(s0, r4, OFFSET_OF(T, x)); __ vstr(s31, r4, OFFSET_OF(T, y)); // Move a literal into a register that can be encoded in the instruction. __ vmov(d4, 1.0); __ vstr(d4, r4, OFFSET_OF(T, e)); // Move a literal into a register that requires 64 bits to encode. // 0x3ff0000010000000 = 1.000000059604644775390625 __ vmov(d4, 1.000000059604644775390625); __ vstr(d4, r4, OFFSET_OF(T, d)); // Convert from floating point to integer. __ vmov(d4, 2.0); __ vcvt_s32_f64(s31, d4); __ vstr(s31, r4, OFFSET_OF(T, i)); // Convert from integer to floating point. __ mov(lr, Operand(42)); __ vmov(s31, lr); __ vcvt_f64_s32(d4, s31); __ vstr(d4, r4, OFFSET_OF(T, f)); // Test vabs. __ vldr(d1, r4, OFFSET_OF(T, g)); __ vabs(d0, d1); __ vstr(d0, r4, OFFSET_OF(T, g)); __ vldr(d2, r4, OFFSET_OF(T, h)); __ vabs(d0, d2); __ vstr(d0, r4, OFFSET_OF(T, h)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F3 f = FUNCTION_CAST(Code::cast(code)->entry()); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.g = -2718.2818; t.h = 31415926.5; t.i = 0; t.x = 4.5; t.y = 9.0; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(4.5, t.y); CHECK_EQ(9.0, t.x); CHECK_EQ(2, t.i); CHECK_EQ(2718.2818, t.g); CHECK_EQ(31415926.5, t.h); CHECK_EQ(42.0, t.f); CHECK_EQ(1.0, t.e); CHECK_EQ(1.000000059604644775390625, t.d); CHECK_EQ(4.25, t.c); CHECK_EQ(4.25, t.b); CHECK_EQ(1.5, t.a); } } TEST(5) { // Test the ARMv7 bitfield instructions. InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); // On entry, r0 = 0xAAAAAAAA = 0b10..10101010. __ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555 __ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11 __ bfc(r0, 1, 3); // 0b11..111111110001 = -15 __ mov(r1, Operand(7)); __ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7 __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F1 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(f, 0xAAAAAAAA, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(-7, res); } } TEST(6) { // Test saturating instructions. InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); __ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF. __ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F. __ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0. __ add(r0, r1, Operand(r2)); __ add(r0, r0, Operand(r3)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F1 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(f, 0xFFFF, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(382, res); } } static void TestRoundingMode(int32_t mode, double value, int expected) { InitializeVM(); v8::HandleScope scope; Assembler assm(NULL, 0); __ vmrs(r1); // Set custom FPSCR. __ bic(r2, r1, Operand(((mode ^ 3) << 22) | 0xf)); __ orr(r2, r2, Operand(mode << 22)); __ vmsr(r2); // Load value, convert, and move back result to r0. __ vmov(d1, value); __ vcvt_s32_f64(s0, d1, Assembler::FPSCRRounding, al); __ vmov(r0, s0); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle(Heap::undefined_value()))->ToObjectChecked(); CHECK(code->IsCode()); #ifdef DEBUG Code::cast(code)->Print(); #endif F1 f = FUNCTION_CAST(Code::cast(code)->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0)); ::printf("res = %d\n", res); CHECK_EQ(expected, res); } TEST(7) { // Test vfp rounding modes. // See ARM DDI 0406B Page A2-29. enum FPSCRRoungingMode { RN, // Round to Nearest. RP, // Round towards Plus Infinity. RM, // Round towards Minus Infinity. RZ // Round towards zero. }; if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); TestRoundingMode(RZ, 0.5, 0); TestRoundingMode(RZ, -0.5, 0); TestRoundingMode(RZ, 123.7, 123); TestRoundingMode(RZ, -123.7, -123); TestRoundingMode(RZ, 123456.2, 123456); TestRoundingMode(RZ, -123456.2, -123456); TestRoundingMode(RM, 0.5, 0); TestRoundingMode(RM, -0.5, -1); TestRoundingMode(RM, 123.7, 123); TestRoundingMode(RM, -123.7, -124); TestRoundingMode(RM, 123456.2, 123456); TestRoundingMode(RM, -123456.2, -123457); } } #undef __