// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "data-flow.h" namespace v8 { namespace internal { void FlowGraph::AppendInstruction(AstNode* instruction) { ASSERT(instruction != NULL); if (is_empty() || !exit()->IsBlockNode()) { AppendNode(new BlockNode()); } BlockNode::cast(exit())->AddInstruction(instruction); } void FlowGraph::AppendNode(Node* node) { ASSERT(node != NULL); if (is_empty()) { entry_ = exit_ = node; } else { exit()->AddSuccessor(node); node->AddPredecessor(exit()); exit_ = node; } } void FlowGraph::AppendGraph(FlowGraph* graph) { ASSERT(!graph->is_empty()); if (is_empty()) { entry_ = graph->entry(); exit_ = graph->exit(); } else { exit()->AddSuccessor(graph->entry()); graph->entry()->AddPredecessor(exit()); exit_ = graph->exit(); } } void FlowGraph::Split(BranchNode* branch, FlowGraph* left, FlowGraph* right, JoinNode* merge) { // Graphs are in edge split form. Add empty blocks if necessary. if (left->is_empty()) left->AppendNode(new BlockNode()); if (right->is_empty()) right->AppendNode(new BlockNode()); // Add the branch, left flowgraph and merge. AppendNode(branch); AppendGraph(left); AppendNode(merge); // Splice in the right flowgraph. right->AppendNode(merge); branch->AddSuccessor(right->entry()); right->entry()->AddPredecessor(branch); } void FlowGraph::Loop(JoinNode* merge, FlowGraph* condition, BranchNode* branch, FlowGraph* body) { // Add the merge, condition and branch. Add merge's predecessors in // left-to-right order. AppendNode(merge); body->AppendNode(merge); AppendGraph(condition); AppendNode(branch); // Splice in the body flowgraph. branch->AddSuccessor(body->entry()); body->entry()->AddPredecessor(branch); } void EntryNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor_ != NULL); preorder->Add(this); if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); successor_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void ExitNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { preorder->Add(this); postorder->Add(this); } void BlockNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor_ != NULL); preorder->Add(this); if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); successor_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void BranchNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor0_ != NULL && successor1_ != NULL); preorder->Add(this); if (!successor0_->IsMarkedWith(mark)) { successor0_->MarkWith(mark); successor0_->Traverse(mark, preorder, postorder); } if (!successor1_->IsMarkedWith(mark)) { successor1_->MarkWith(mark); successor1_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void JoinNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor_ != NULL); preorder->Add(this); if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); successor_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void FlowGraphBuilder::Build(FunctionLiteral* lit) { graph_ = FlowGraph::Empty(); graph_.AppendNode(new EntryNode()); global_exit_ = new ExitNode(); VisitStatements(lit->body()); if (HasStackOverflow()) { graph_ = FlowGraph::Empty(); return; } graph_.AppendNode(global_exit_); // Build preorder and postorder traversal orders. All the nodes in // the graph have the same mark flag. For the traversal, use that // flag's negation. Traversal will flip all the flags. bool mark = graph_.entry()->IsMarkedWith(false); graph_.entry()->MarkWith(mark); graph_.entry()->Traverse(mark, &preorder_, &postorder_); } void FlowGraphBuilder::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } void FlowGraphBuilder::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) { Visit(stmt->expression()); } void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { // Nothing to do. } void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) { Visit(stmt->condition()); BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->then_statement()); FlowGraph left = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->else_statement()); JoinNode* join = new JoinNode(); original.Split(branch, &left, &graph_, join); graph_ = original; } void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { Visit(stmt->expression()); graph_.AppendInstruction(stmt); graph_.AppendNode(global_exit()); } void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) { Visit(stmt->expression()); graph_.AppendInstruction(stmt); } void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) { graph_.AppendInstruction(stmt); } void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { JoinNode* join = new JoinNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->body()); FlowGraph body = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->cond()); BranchNode* branch = new BranchNode(); // Add body, condition and branch. original.AppendNode(join); original.AppendGraph(&body); original.AppendGraph(&graph_); // The condition. original.AppendNode(branch); // Tie the knot. branch->AddSuccessor(join); join->AddPredecessor(branch); graph_ = original; } void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { JoinNode* join = new JoinNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->cond()); BranchNode* branch = new BranchNode(); FlowGraph condition = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->body()); original.Loop(join, &condition, branch, &graph_); graph_ = original; } void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) { if (stmt->init() != NULL) Visit(stmt->init()); JoinNode* join = new JoinNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); if (stmt->cond() != NULL) Visit(stmt->cond()); BranchNode* branch = new BranchNode(); FlowGraph condition = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->body()); if (stmt->next() != NULL) Visit(stmt->next()); original.Loop(join, &condition, branch, &graph_); graph_ = original; } void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) { Visit(stmt->enumerable()); JoinNode* join = new JoinNode(); FlowGraph empty; BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(stmt->body()); original.Loop(join, &empty, branch, &graph_); graph_ = original; } void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { graph_.AppendInstruction(stmt); } void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitConditional(Conditional* expr) { Visit(expr->condition()); BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(expr->then_expression()); FlowGraph left = graph_; graph_ = FlowGraph::Empty(); Visit(expr->else_expression()); JoinNode* join = new JoinNode(); original.Split(branch, &left, &graph_, join); graph_ = original; } void FlowGraphBuilder::VisitSlot(Slot* expr) { UNREACHABLE(); } void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitLiteral(Literal* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { ZoneList* properties = expr->properties(); for (int i = 0, len = properties->length(); i < len; i++) { Visit(properties->at(i)->value()); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { ZoneList* values = expr->values(); for (int i = 0, len = values->length(); i < len; i++) { Visit(values->at(i)); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitAssignment(Assignment* expr) { Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); // Left-hand side can be a variable or property (or reference error) but // not both. ASSERT(var == NULL || prop == NULL); if (var != NULL) { Visit(expr->value()); Slot* slot = var->slot(); if (slot != NULL && (slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER)) { definitions_.Add(expr); } } else if (prop != NULL) { Visit(prop->obj()); if (!prop->key()->IsPropertyName()) Visit(prop->key()); Visit(expr->value()); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitThrow(Throw* expr) { Visit(expr->exception()); graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitProperty(Property* expr) { Visit(expr->obj()); if (!expr->key()->IsPropertyName()) Visit(expr->key()); graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCall(Call* expr) { Visit(expr->expression()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { Visit(arguments->at(i)); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCallNew(CallNew* expr) { Visit(expr->expression()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { Visit(arguments->at(i)); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) { ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { Visit(arguments->at(i)); } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { Visit(expr->expression()); graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) { Visit(expr->expression()); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (var != NULL) { Slot* slot = var->slot(); if (slot != NULL && (slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER)) { definitions_.Add(expr); } } graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { Visit(expr->left()); switch (expr->op()) { case Token::COMMA: Visit(expr->right()); break; case Token::OR: { BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(expr->right()); FlowGraph empty; JoinNode* join = new JoinNode(); original.Split(branch, &empty, &graph_, join); graph_ = original; break; } case Token::AND: { BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); Visit(expr->right()); FlowGraph empty; JoinNode* join = new JoinNode(); original.Split(branch, &graph_, &empty, join); graph_ = original; break; } case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SHL: case Token::SAR: case Token::SHR: case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: Visit(expr->right()); graph_.AppendInstruction(expr); break; default: UNREACHABLE(); } } void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) { Visit(expr->left()); Visit(expr->right()); graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) { graph_.AppendInstruction(expr); } void AstLabeler::Label(CompilationInfo* info) { info_ = info; VisitStatements(info_->function()->body()); } void AstLabeler::VisitStatements(ZoneList* stmts) { for (int i = 0, len = stmts->length(); i < len; i++) { Visit(stmts->at(i)); } } void AstLabeler::VisitDeclarations(ZoneList* decls) { UNREACHABLE(); } void AstLabeler::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void AstLabeler::VisitExpressionStatement( ExpressionStatement* stmt) { Visit(stmt->expression()); } void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) { // Do nothing. } void AstLabeler::VisitIfStatement(IfStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitBreakStatement(BreakStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWithEnterStatement( WithEnterStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWhileStatement(WhileStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitForStatement(ForStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitForInStatement(ForInStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitTryFinallyStatement( TryFinallyStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitDebuggerStatement( DebuggerStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitConditional(Conditional* expr) { UNREACHABLE(); } void AstLabeler::VisitSlot(Slot* expr) { UNREACHABLE(); } void AstLabeler::VisitVariableProxy(VariableProxy* expr) { expr->set_num(next_number_++); Variable* var = expr->var(); if (var->is_global() && !var->is_this()) { info_->set_has_globals(true); } } void AstLabeler::VisitLiteral(Literal* expr) { UNREACHABLE(); } void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitCatchExtensionObject( CatchExtensionObject* expr) { UNREACHABLE(); } void AstLabeler::VisitAssignment(Assignment* expr) { Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->IsPropertyName()); VariableProxy* proxy = prop->obj()->AsVariableProxy(); USE(proxy); ASSERT(proxy != NULL && proxy->var()->is_this()); info()->set_has_this_properties(true); prop->obj()->set_num(AstNode::kNoNumber); prop->key()->set_num(AstNode::kNoNumber); Visit(expr->value()); expr->set_num(next_number_++); } void AstLabeler::VisitThrow(Throw* expr) { UNREACHABLE(); } void AstLabeler::VisitProperty(Property* expr) { ASSERT(expr->key()->IsPropertyName()); VariableProxy* proxy = expr->obj()->AsVariableProxy(); USE(proxy); ASSERT(proxy != NULL && proxy->var()->is_this()); info()->set_has_this_properties(true); expr->obj()->set_num(AstNode::kNoNumber); expr->key()->set_num(AstNode::kNoNumber); expr->set_num(next_number_++); } void AstLabeler::VisitCall(Call* expr) { UNREACHABLE(); } void AstLabeler::VisitCallNew(CallNew* expr) { UNREACHABLE(); } void AstLabeler::VisitCallRuntime(CallRuntime* expr) { UNREACHABLE(); } void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitCountOperation(CountOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) { Visit(expr->left()); Visit(expr->right()); expr->set_num(next_number_++); } void AstLabeler::VisitCompareOperation(CompareOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitThisFunction(ThisFunction* expr) { UNREACHABLE(); } void AstLabeler::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } ZoneList* VarUseMap::Lookup(Variable* var) { HashMap::Entry* entry = HashMap::Lookup(var, var->name()->Hash(), true); if (entry->value == NULL) { entry->value = new ZoneList(1); } return reinterpret_cast*>(entry->value); } void LivenessAnalyzer::Analyze(FunctionLiteral* fun) { // Process the function body. VisitStatements(fun->body()); // All variables are implicitly defined at the function start. // Record a definition of all variables live at function entry. for (HashMap::Entry* p = live_vars_.Start(); p != NULL; p = live_vars_.Next(p)) { Variable* var = reinterpret_cast(p->key); RecordDef(var, fun); } } void LivenessAnalyzer::VisitStatements(ZoneList* stmts) { // Visit statements right-to-left. for (int i = stmts->length() - 1; i >= 0; i--) { Visit(stmts->at(i)); } } void LivenessAnalyzer::RecordUse(Variable* var, Expression* expr) { ASSERT(var->is_global() || var->is_this()); ZoneList* uses = live_vars_.Lookup(var); uses->Add(expr); } void LivenessAnalyzer::RecordDef(Variable* var, Expression* expr) { ASSERT(var->is_global() || var->is_this()); // We do not support other expressions that can define variables. ASSERT(expr->AsFunctionLiteral() != NULL); // Add the variable to the list of defined variables. if (expr->defined_vars() == NULL) { expr->set_defined_vars(new ZoneList(1)); } DefinitionInfo* def = new DefinitionInfo(); expr->AsFunctionLiteral()->defined_vars()->Add(def); // Compute the last use of the definition. The variable uses are // inserted in reversed evaluation order. The first element // in the list of live uses is the last use. ZoneList* uses = live_vars_.Lookup(var); while (uses->length() > 0) { Expression* use_site = uses->RemoveLast(); use_site->set_var_def(def); if (uses->length() == 0) { def->set_last_use(use_site); } } } // Visitor functions for live variable analysis. void LivenessAnalyzer::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } void LivenessAnalyzer::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void LivenessAnalyzer::VisitExpressionStatement( ExpressionStatement* stmt) { Visit(stmt->expression()); } void LivenessAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) { // Do nothing. } void LivenessAnalyzer::VisitIfStatement(IfStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitContinueStatement(ContinueStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitBreakStatement(BreakStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitReturnStatement(ReturnStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitWithEnterStatement( WithEnterStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitWithExitStatement(WithExitStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitWhileStatement(WhileStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitForStatement(ForStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitForInStatement(ForInStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitTryCatchStatement(TryCatchStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitTryFinallyStatement( TryFinallyStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitDebuggerStatement( DebuggerStatement* stmt) { UNREACHABLE(); } void LivenessAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitConditional(Conditional* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitSlot(Slot* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitVariableProxy(VariableProxy* expr) { Variable* var = expr->var(); ASSERT(var->is_global()); ASSERT(!var->is_this()); RecordUse(var, expr); } void LivenessAnalyzer::VisitLiteral(Literal* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitCatchExtensionObject( CatchExtensionObject* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitAssignment(Assignment* expr) { Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->IsPropertyName()); VariableProxy* proxy = prop->obj()->AsVariableProxy(); ASSERT(proxy != NULL && proxy->var()->is_this()); // Record use of this at the assignment node. Assignments to // this-properties are treated like unary operations. RecordUse(proxy->var(), expr); // Visit right-hand side. Visit(expr->value()); } void LivenessAnalyzer::VisitThrow(Throw* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitProperty(Property* expr) { ASSERT(expr->key()->IsPropertyName()); VariableProxy* proxy = expr->obj()->AsVariableProxy(); ASSERT(proxy != NULL && proxy->var()->is_this()); RecordUse(proxy->var(), expr); } void LivenessAnalyzer::VisitCall(Call* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitCallNew(CallNew* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitCallRuntime(CallRuntime* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitUnaryOperation(UnaryOperation* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitCountOperation(CountOperation* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { // Visit child nodes in reverse evaluation order. Visit(expr->right()); Visit(expr->left()); } void LivenessAnalyzer::VisitCompareOperation(CompareOperation* expr) { UNREACHABLE(); } void LivenessAnalyzer::VisitThisFunction(ThisFunction* expr) { UNREACHABLE(); } #ifdef DEBUG // Print a textual representation of an instruction in a flow graph. Using // the AstVisitor is overkill because there is no recursion here. It is // only used for printing in debug mode. class TextInstructionPrinter: public AstVisitor { public: TextInstructionPrinter() {} private: // AST node visit functions. #define DECLARE_VISIT(type) virtual void Visit##type(type* node); AST_NODE_LIST(DECLARE_VISIT) #undef DECLARE_VISIT DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter); }; void TextInstructionPrinter::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } void TextInstructionPrinter::VisitBlock(Block* stmt) { PrintF("Block"); } void TextInstructionPrinter::VisitExpressionStatement( ExpressionStatement* stmt) { PrintF("ExpressionStatement"); } void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) { PrintF("EmptyStatement"); } void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) { PrintF("IfStatement"); } void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) { PrintF("return @%d", stmt->expression()->num()); } void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) { PrintF("WithEnterStatement"); } void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) { PrintF("WithExitStatement"); } void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) { PrintF("DoWhileStatement"); } void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) { PrintF("WhileStatement"); } void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) { PrintF("ForStatement"); } void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) { PrintF("ForInStatement"); } void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitTryFinallyStatement( TryFinallyStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) { PrintF("DebuggerStatement"); } void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) { PrintF("FunctionLiteral"); } void TextInstructionPrinter::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* expr) { PrintF("FunctionBoilerplateLiteral"); } void TextInstructionPrinter::VisitConditional(Conditional* expr) { PrintF("Conditional"); } void TextInstructionPrinter::VisitSlot(Slot* expr) { UNREACHABLE(); } void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) { Variable* var = expr->AsVariable(); if (var != NULL) { SmartPointer name = var->name()->ToCString(); PrintF("%s", *name); } else { ASSERT(expr->AsProperty() != NULL); VisitProperty(expr->AsProperty()); } } void TextInstructionPrinter::VisitLiteral(Literal* expr) { expr->handle()->ShortPrint(); } void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) { PrintF("RegExpLiteral"); } void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) { PrintF("ObjectLiteral"); } void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) { PrintF("ArrayLiteral"); } void TextInstructionPrinter::VisitCatchExtensionObject( CatchExtensionObject* expr) { PrintF("CatchExtensionObject"); } void TextInstructionPrinter::VisitAssignment(Assignment* expr) { Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); if (var != NULL) { SmartPointer name = var->name()->ToCString(); PrintF("%s %s @%d", *name, Token::String(expr->op()), expr->value()->num()); } else if (prop != NULL) { if (prop->key()->IsPropertyName()) { PrintF("@%d.", prop->obj()->num()); ASSERT(prop->key()->AsLiteral() != NULL); prop->key()->AsLiteral()->handle()->Print(); PrintF(" %s @%d", Token::String(expr->op()), expr->value()->num()); } else { PrintF("@%d[@%d] %s @%d", prop->obj()->num(), prop->key()->num(), Token::String(expr->op()), expr->value()->num()); } } else { // Throw reference error. Visit(expr->target()); } } void TextInstructionPrinter::VisitThrow(Throw* expr) { PrintF("throw @%d", expr->exception()->num()); } void TextInstructionPrinter::VisitProperty(Property* expr) { if (expr->key()->IsPropertyName()) { PrintF("@%d.", expr->obj()->num()); ASSERT(expr->key()->AsLiteral() != NULL); expr->key()->AsLiteral()->handle()->Print(); } else { PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num()); } } void TextInstructionPrinter::VisitCall(Call* expr) { PrintF("@%d(", expr->expression()->num()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitCallNew(CallNew* expr) { PrintF("new @%d(", expr->expression()->num()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) { SmartPointer name = expr->name()->ToCString(); PrintF("%s(", *name); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) { PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num()); } void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) { if (expr->is_prefix()) { PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num()); } else { PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op())); } } void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) { ASSERT(expr->op() != Token::COMMA); ASSERT(expr->op() != Token::OR); ASSERT(expr->op() != Token::AND); PrintF("@%d %s @%d", expr->left()->num(), Token::String(expr->op()), expr->right()->num()); } void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) { PrintF("@%d %s @%d", expr->left()->num(), Token::String(expr->op()), expr->right()->num()); } void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) { PrintF("ThisFunction"); } static int node_count = 0; static int instruction_count = 0; void Node::AssignNumbers() { set_number(node_count++); } void BlockNode::AssignNumbers() { set_number(node_count++); for (int i = 0, len = instructions_.length(); i < len; i++) { instructions_[i]->set_num(instruction_count++); } } void EntryNode::PrintText() { PrintF("L%d: Entry\n", number()); PrintF("goto L%d\n\n", successor_->number()); } void ExitNode::PrintText() { PrintF("L%d: Exit\n\n", number()); } void BlockNode::PrintText() { // Print the instructions in the block. PrintF("L%d: Block\n", number()); TextInstructionPrinter printer; for (int i = 0, len = instructions_.length(); i < len; i++) { PrintF("%d ", instructions_[i]->num()); printer.Visit(instructions_[i]); PrintF("\n"); } PrintF("goto L%d\n\n", successor_->number()); } void BranchNode::PrintText() { PrintF("L%d: Branch\n", number()); PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number()); } void JoinNode::PrintText() { PrintF("L%d: Join(", number()); for (int i = 0, len = predecessors_.length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("L%d", predecessors_[i]->number()); } PrintF(")\ngoto L%d\n\n", successor_->number()); } void FlowGraph::PrintText(ZoneList* postorder) { PrintF("\n========\n"); // Number nodes and instructions in reverse postorder. node_count = 0; instruction_count = 0; for (int i = postorder->length() - 1; i >= 0; i--) { postorder->at(i)->AssignNumbers(); } // Print basic blocks in reverse postorder. for (int i = postorder->length() - 1; i >= 0; i--) { postorder->at(i)->PrintText(); } } #endif // defined(DEBUG) } } // namespace v8::internal