// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "arm/lithium-arm.h" #include "arm/lithium-codegen-arm.h" namespace v8 { namespace internal { #define DEFINE_COMPILE(type) \ void L##type::CompileToNative(LCodeGen* generator) { \ generator->Do##type(this); \ } LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) #undef DEFINE_COMPILE LOsrEntry::LOsrEntry() { for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) { register_spills_[i] = NULL; } for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) { double_register_spills_[i] = NULL; } } void LOsrEntry::MarkSpilledRegister(int allocation_index, LOperand* spill_operand) { ASSERT(spill_operand->IsStackSlot()); ASSERT(register_spills_[allocation_index] == NULL); register_spills_[allocation_index] = spill_operand; } void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index, LOperand* spill_operand) { ASSERT(spill_operand->IsDoubleStackSlot()); ASSERT(double_register_spills_[allocation_index] == NULL); double_register_spills_[allocation_index] = spill_operand; } void LInstruction::PrintTo(StringStream* stream) const { stream->Add("%s ", this->Mnemonic()); if (HasResult()) { result()->PrintTo(stream); stream->Add(" "); } PrintDataTo(stream); if (HasEnvironment()) { stream->Add(" "); environment()->PrintTo(stream); } if (HasPointerMap()) { stream->Add(" "); pointer_map()->PrintTo(stream); } } void LLabel::PrintDataTo(StringStream* stream) const { LGap::PrintDataTo(stream); LLabel* rep = replacement(); if (rep != NULL) { stream->Add(" Dead block replaced with B%d", rep->block_id()); } } bool LParallelMove::IsRedundant() const { for (int i = 0; i < move_operands_.length(); ++i) { if (!move_operands_[i].IsRedundant()) return false; } return true; } void LParallelMove::PrintDataTo(StringStream* stream) const { for (int i = move_operands_.length() - 1; i >= 0; --i) { if (!move_operands_[i].IsEliminated()) { LOperand* from = move_operands_[i].from(); LOperand* to = move_operands_[i].to(); if (from->Equals(to)) { to->PrintTo(stream); } else { to->PrintTo(stream); stream->Add(" = "); from->PrintTo(stream); } stream->Add("; "); } } } bool LGap::IsRedundant() const { for (int i = 0; i < 4; i++) { if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) { return false; } } return true; } void LGap::PrintDataTo(StringStream* stream) const { for (int i = 0; i < 4; i++) { stream->Add("("); if (parallel_moves_[i] != NULL) { parallel_moves_[i]->PrintDataTo(stream); } stream->Add(") "); } } const char* LArithmeticD::Mnemonic() const { switch (op()) { case Token::ADD: return "add-d"; case Token::SUB: return "sub-d"; case Token::MUL: return "mul-d"; case Token::DIV: return "div-d"; case Token::MOD: return "mod-d"; default: UNREACHABLE(); return NULL; } } const char* LArithmeticT::Mnemonic() const { switch (op()) { case Token::ADD: return "add-t"; case Token::SUB: return "sub-t"; case Token::MUL: return "mul-t"; case Token::MOD: return "mod-t"; case Token::DIV: return "div-t"; default: UNREACHABLE(); return NULL; } } void LBinaryOperation::PrintDataTo(StringStream* stream) const { stream->Add("= "); left()->PrintTo(stream); stream->Add(" "); right()->PrintTo(stream); } void LGoto::PrintDataTo(StringStream* stream) const { stream->Add("B%d", block_id()); } void LBranch::PrintDataTo(StringStream* stream) const { stream->Add("B%d | B%d on ", true_block_id(), false_block_id()); input()->PrintTo(stream); } void LCmpIDAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if "); left()->PrintTo(stream); stream->Add(" %s ", Token::String(op())); right()->PrintTo(stream); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsNullAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if "); input()->PrintTo(stream); stream->Add(is_strict() ? " === null" : " == null"); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsObjectAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if is_object("); input()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsSmiAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if is_smi("); input()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if has_instance_type("); input()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if has_cached_array_index("); input()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if class_of_test("); input()->PrintTo(stream); stream->Add(", \"%o\") then B%d else B%d", *hydrogen()->class_name(), true_block_id(), false_block_id()); } void LTypeofIs::PrintDataTo(StringStream* stream) const { input()->PrintTo(stream); stream->Add(" == \"%s\"", *hydrogen()->type_literal()->ToCString()); } void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) const { stream->Add("if typeof "); input()->PrintTo(stream); stream->Add(" == \"%s\" then B%d else B%d", *hydrogen()->type_literal()->ToCString(), true_block_id(), false_block_id()); } void LCallConstantFunction::PrintDataTo(StringStream* stream) const { stream->Add("#%d / ", arity()); } void LUnaryMathOperation::PrintDataTo(StringStream* stream) const { stream->Add("/%s ", hydrogen()->OpName()); input()->PrintTo(stream); } void LCallKeyed::PrintDataTo(StringStream* stream) const { stream->Add("[r2] #%d / ", arity()); } void LCallNamed::PrintDataTo(StringStream* stream) const { SmartPointer name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallGlobal::PrintDataTo(StringStream* stream) const { SmartPointer name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallKnownGlobal::PrintDataTo(StringStream* stream) const { stream->Add("#%d / ", arity()); } void LCallNew::PrintDataTo(StringStream* stream) const { LUnaryOperation::PrintDataTo(stream); stream->Add(" #%d / ", arity()); } void LClassOfTest::PrintDataTo(StringStream* stream) const { stream->Add("= class_of_test("); input()->PrintTo(stream); stream->Add(", \"%o\")", *hydrogen()->class_name()); } void LUnaryOperation::PrintDataTo(StringStream* stream) const { stream->Add("= "); input()->PrintTo(stream); } void LAccessArgumentsAt::PrintDataTo(StringStream* stream) const { arguments()->PrintTo(stream); stream->Add(" length "); length()->PrintTo(stream); stream->Add(" index "); index()->PrintTo(stream); } LChunk::LChunk(HGraph* graph) : spill_slot_count_(0), graph_(graph), instructions_(32), pointer_maps_(8), inlined_closures_(1) { } void LChunk::Verify() const { // TODO(twuerthinger): Implement verification for chunk. } int LChunk::GetNextSpillIndex(bool is_double) { // Skip a slot if for a double-width slot. if (is_double) spill_slot_count_++; return spill_slot_count_++; } LOperand* LChunk::GetNextSpillSlot(bool is_double) { int index = GetNextSpillIndex(is_double); if (is_double) { return LDoubleStackSlot::Create(index); } else { return LStackSlot::Create(index); } } void LChunk::MarkEmptyBlocks() { HPhase phase("Mark empty blocks", this); for (int i = 0; i < graph()->blocks()->length(); ++i) { HBasicBlock* block = graph()->blocks()->at(i); int first = block->first_instruction_index(); int last = block->last_instruction_index(); LInstruction* first_instr = instructions()->at(first); LInstruction* last_instr = instructions()->at(last); LLabel* label = LLabel::cast(first_instr); if (last_instr->IsGoto()) { LGoto* goto_instr = LGoto::cast(last_instr); if (!goto_instr->include_stack_check() && label->IsRedundant() && !label->is_loop_header()) { bool can_eliminate = true; for (int i = first + 1; i < last && can_eliminate; ++i) { LInstruction* cur = instructions()->at(i); if (cur->IsGap()) { LGap* gap = LGap::cast(cur); if (!gap->IsRedundant()) { can_eliminate = false; } } else { can_eliminate = false; } } if (can_eliminate) { label->set_replacement(GetLabel(goto_instr->block_id())); } } } } } void LStoreNamed::PrintDataTo(StringStream* stream) const { object()->PrintTo(stream); stream->Add("."); stream->Add(*String::cast(*name())->ToCString()); stream->Add(" <- "); value()->PrintTo(stream); } void LStoreKeyed::PrintDataTo(StringStream* stream) const { object()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); stream->Add("] <- "); value()->PrintTo(stream); } int LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) { LGap* gap = new LGap(block); int index = -1; if (instr->IsControl()) { instructions_.Add(gap); index = instructions_.length(); instructions_.Add(instr); } else { index = instructions_.length(); instructions_.Add(instr); instructions_.Add(gap); } if (instr->HasPointerMap()) { pointer_maps_.Add(instr->pointer_map()); instr->pointer_map()->set_lithium_position(index); } return index; } LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) { return LConstantOperand::Create(constant->id()); } int LChunk::GetParameterStackSlot(int index) const { // The receiver is at index 0, the first parameter at index 1, so we // shift all parameter indexes down by the number of parameters, and // make sure they end up negative so they are distinguishable from // spill slots. int result = index - graph()->info()->scope()->num_parameters() - 1; ASSERT(result < 0); return result; } // A parameter relative to ebp in the arguments stub. int LChunk::ParameterAt(int index) { ASSERT(-1 <= index); // -1 is the receiver. return (1 + graph()->info()->scope()->num_parameters() - index) * kPointerSize; } LGap* LChunk::GetGapAt(int index) const { return LGap::cast(instructions_[index]); } bool LChunk::IsGapAt(int index) const { return instructions_[index]->IsGap(); } int LChunk::NearestGapPos(int index) const { while (!IsGapAt(index)) index--; return index; } void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) { GetGapAt(index)->GetOrCreateParallelMove(LGap::START)->AddMove(from, to); } class LGapNode: public ZoneObject { public: explicit LGapNode(LOperand* operand) : operand_(operand), resolved_(false), visited_id_(-1) { } LOperand* operand() const { return operand_; } bool IsResolved() const { return !IsAssigned() || resolved_; } void MarkResolved() { ASSERT(!IsResolved()); resolved_ = true; } int visited_id() const { return visited_id_; } void set_visited_id(int id) { ASSERT(id > visited_id_); visited_id_ = id; } bool IsAssigned() const { return assigned_from_.is_set(); } LGapNode* assigned_from() const { return assigned_from_.get(); } void set_assigned_from(LGapNode* n) { assigned_from_.set(n); } private: LOperand* operand_; SetOncePointer assigned_from_; bool resolved_; int visited_id_; }; LGapResolver::LGapResolver(const ZoneList* moves, LOperand* marker_operand) : nodes_(4), identified_cycles_(4), result_(4), marker_operand_(marker_operand), next_visited_id_(0) { for (int i = 0; i < moves->length(); ++i) { LMoveOperands move = moves->at(i); if (!move.IsRedundant()) RegisterMove(move); } } const ZoneList* LGapResolver::ResolveInReverseOrder() { for (int i = 0; i < identified_cycles_.length(); ++i) { ResolveCycle(identified_cycles_[i]); } int unresolved_nodes; do { unresolved_nodes = 0; for (int j = 0; j < nodes_.length(); j++) { LGapNode* node = nodes_[j]; if (!node->IsResolved() && node->assigned_from()->IsResolved()) { AddResultMove(node->assigned_from(), node); node->MarkResolved(); } if (!node->IsResolved()) ++unresolved_nodes; } } while (unresolved_nodes > 0); return &result_; } void LGapResolver::AddResultMove(LGapNode* from, LGapNode* to) { AddResultMove(from->operand(), to->operand()); } void LGapResolver::AddResultMove(LOperand* from, LOperand* to) { result_.Add(LMoveOperands(from, to)); } void LGapResolver::ResolveCycle(LGapNode* start) { ZoneList circle_operands(8); circle_operands.Add(marker_operand_); LGapNode* cur = start; do { cur->MarkResolved(); circle_operands.Add(cur->operand()); cur = cur->assigned_from(); } while (cur != start); circle_operands.Add(marker_operand_); for (int i = circle_operands.length() - 1; i > 0; --i) { LOperand* from = circle_operands[i]; LOperand* to = circle_operands[i - 1]; AddResultMove(from, to); } } bool LGapResolver::CanReach(LGapNode* a, LGapNode* b, int visited_id) { ASSERT(a != b); LGapNode* cur = a; while (cur != b && cur->visited_id() != visited_id && cur->IsAssigned()) { cur->set_visited_id(visited_id); cur = cur->assigned_from(); } return cur == b; } bool LGapResolver::CanReach(LGapNode* a, LGapNode* b) { ASSERT(a != b); return CanReach(a, b, next_visited_id_++); } void LGapResolver::RegisterMove(LMoveOperands move) { if (move.from()->IsConstantOperand()) { // Constant moves should be last in the machine code. Therefore add them // first to the result set. AddResultMove(move.from(), move.to()); } else { LGapNode* from = LookupNode(move.from()); LGapNode* to = LookupNode(move.to()); if (to->IsAssigned() && to->assigned_from() == from) { move.Eliminate(); return; } ASSERT(!to->IsAssigned()); if (CanReach(from, to)) { // This introduces a circle. Save. identified_cycles_.Add(from); } to->set_assigned_from(from); } } LGapNode* LGapResolver::LookupNode(LOperand* operand) { for (int i = 0; i < nodes_.length(); ++i) { if (nodes_[i]->operand()->Equals(operand)) return nodes_[i]; } // No node found => create a new one. LGapNode* result = new LGapNode(operand); nodes_.Add(result); return result; } Handle LChunk::LookupLiteral(LConstantOperand* operand) const { return HConstant::cast(graph_->LookupValue(operand->index()))->handle(); } Representation LChunk::LookupLiteralRepresentation( LConstantOperand* operand) const { return graph_->LookupValue(operand->index())->representation(); } LChunk* LChunkBuilder::Build() { ASSERT(is_unused()); chunk_ = new LChunk(graph()); HPhase phase("Building chunk", chunk_); status_ = BUILDING; const ZoneList* blocks = graph()->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* next = NULL; if (i < blocks->length() - 1) next = blocks->at(i + 1); DoBasicBlock(blocks->at(i), next); if (is_aborted()) return NULL; } status_ = DONE; return chunk_; } void LChunkBuilder::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartPointer debug_name = graph()->debug_name()->ToCString(); PrintF("Aborting LChunk building in @\"%s\": ", *debug_name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } LRegister* LChunkBuilder::ToOperand(Register reg) { return LRegister::Create(Register::ToAllocationIndex(reg)); } LUnallocated* LChunkBuilder::ToUnallocated(Register reg) { return new LUnallocated(LUnallocated::FIXED_REGISTER, Register::ToAllocationIndex(reg)); } LUnallocated* LChunkBuilder::ToUnallocated(DoubleRegister reg) { return new LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, DoubleRegister::ToAllocationIndex(reg)); } LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) { return Use(value, ToUnallocated(fixed_register)); } LOperand* LChunkBuilder::UseFixedDouble(HValue* value, DoubleRegister reg) { return Use(value, ToUnallocated(reg)); } LOperand* LChunkBuilder::UseRegister(HValue* value) { return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) { return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseTempRegister(HValue* value) { return Use(value, new LUnallocated(LUnallocated::WRITABLE_REGISTER)); } LOperand* LChunkBuilder::Use(HValue* value) { return Use(value, new LUnallocated(LUnallocated::NONE)); } LOperand* LChunkBuilder::UseAtStart(HValue* value) { return Use(value, new LUnallocated(LUnallocated::NONE, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value); } LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseAtStart(value); } LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegister(value); } LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegisterAtStart(value); } LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) { if (value->EmitAtUses()) { HInstruction* instr = HInstruction::cast(value); VisitInstruction(instr); } allocator_->RecordUse(value, operand); return operand; } LInstruction* LChunkBuilder::Define(LInstruction* instr) { return Define(instr, new LUnallocated(LUnallocated::NONE)); } LInstruction* LChunkBuilder::DefineAsRegister(LInstruction* instr) { return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LInstruction* LChunkBuilder::DefineAsSpilled(LInstruction* instr, int index) { return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index)); } LInstruction* LChunkBuilder::DefineSameAsAny(LInstruction* instr) { return Define(instr, new LUnallocated(LUnallocated::SAME_AS_ANY_INPUT)); } LInstruction* LChunkBuilder::DefineSameAsFirst(LInstruction* instr) { return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT)); } LInstruction* LChunkBuilder::DefineFixed(LInstruction* instr, Register reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::DefineFixedDouble(LInstruction* instr, DoubleRegister reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) { HEnvironment* hydrogen_env = current_block_->last_environment(); instr->set_environment(CreateEnvironment(hydrogen_env)); return instr; } LInstruction* LChunkBuilder::SetInstructionPendingDeoptimizationEnvironment( LInstruction* instr, int ast_id) { ASSERT(instructions_pending_deoptimization_environment_ == NULL); ASSERT(pending_deoptimization_ast_id_ == AstNode::kNoNumber); instructions_pending_deoptimization_environment_ = instr; pending_deoptimization_ast_id_ = ast_id; return instr; } void LChunkBuilder::ClearInstructionPendingDeoptimizationEnvironment() { instructions_pending_deoptimization_environment_ = NULL; pending_deoptimization_ast_id_ = AstNode::kNoNumber; } LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize) { allocator_->MarkAsCall(); instr = AssignPointerMap(instr); if (hinstr->HasSideEffects()) { ASSERT(hinstr->next()->IsSimulate()); HSimulate* sim = HSimulate::cast(hinstr->next()); instr = SetInstructionPendingDeoptimizationEnvironment( instr, sim->ast_id()); } // If instruction does not have side-effects lazy deoptimization // after the call will try to deoptimize to the point before the call. // Thus we still need to attach environment to this call even if // call sequence can not deoptimize eagerly. bool needs_environment = (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasSideEffects(); if (needs_environment && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } return instr; } LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) { ASSERT(!instr->HasPointerMap()); instr->set_pointer_map(new LPointerMap(position_)); return instr; } LInstruction* LChunkBuilder::Define(LInstruction* instr, LUnallocated* result) { allocator_->RecordDefinition(current_instruction_, result); instr->set_result(result); return instr; } LOperand* LChunkBuilder::Temp() { LUnallocated* operand = new LUnallocated(LUnallocated::NONE); allocator_->RecordTemporary(operand); return operand; } LUnallocated* LChunkBuilder::TempRegister() { LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER); allocator_->RecordTemporary(operand); return operand; } LOperand* LChunkBuilder::FixedTemp(Register reg) { LUnallocated* operand = ToUnallocated(reg); allocator_->RecordTemporary(operand); return operand; } LOperand* LChunkBuilder::FixedTemp(DoubleRegister reg) { LUnallocated* operand = ToUnallocated(reg); allocator_->RecordTemporary(operand); return operand; } LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) { return new LLabel(instr->block()); } LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) { return AssignEnvironment(new LDeoptimize); } LInstruction* LChunkBuilder::DoBit(Token::Value op, HBitwiseBinaryOperation* instr) { ASSERT(instr->representation().IsInteger32()); ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand()); return DefineSameAsFirst(new LBitI(op, left, right)); } LInstruction* LChunkBuilder::DoShift(Token::Value op, HBitwiseBinaryOperation* instr) { ASSERT(instr->representation().IsInteger32()); ASSERT(instr->OperandAt(0)->representation().IsInteger32()); ASSERT(instr->OperandAt(1)->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->OperandAt(0)); HValue* right_value = instr->OperandAt(1); LOperand* right = NULL; int constant_value = 0; if (right_value->IsConstant()) { HConstant* constant = HConstant::cast(right_value); right = chunk_->DefineConstantOperand(constant); constant_value = constant->Integer32Value() & 0x1f; } else { right = UseRegister(right_value); } // Shift operations can only deoptimize if we do a logical shift // by 0 and the result cannot be truncated to int32. bool can_deopt = (op == Token::SHR && constant_value == 0); if (can_deopt) { bool can_truncate = true; for (int i = 0; i < instr->uses()->length(); i++) { if (!instr->uses()->at(i)->CheckFlag(HValue::kTruncatingToInt32)) { can_truncate = false; break; } } can_deopt = !can_truncate; } LInstruction* result = DefineSameAsFirst(new LShiftI(op, left, right, can_deopt)); if (can_deopt) AssignEnvironment(result); return result; } LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr) { ASSERT(instr->representation().IsDouble()); ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LArithmeticD* result = new LArithmeticD(op, left, right); return DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op, HArithmeticBinaryOperation* instr) { ASSERT(op == Token::ADD || op == Token::DIV || op == Token::MOD || op == Token::MUL || op == Token::SUB); HValue* left = instr->left(); HValue* right = instr->right(); ASSERT(left->representation().IsTagged()); ASSERT(right->representation().IsTagged()); LOperand* left_operand = UseFixed(left, r1); LOperand* right_operand = UseFixed(right, r0); LInstruction* result = new LArithmeticT(op, left_operand, right_operand); return MarkAsCall(DefineFixed(result, r0), instr); } void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) { ASSERT(is_building()); current_block_ = block; next_block_ = next_block; if (block->IsStartBlock()) { block->UpdateEnvironment(graph_->start_environment()); argument_count_ = 0; } else if (block->predecessors()->length() == 1) { // We have a single predecessor => copy environment and outgoing // argument count from the predecessor. ASSERT(block->phis()->length() == 0); HBasicBlock* pred = block->predecessors()->at(0); HEnvironment* last_environment = pred->last_environment(); ASSERT(last_environment != NULL); // Only copy the environment, if it is later used again. if (pred->end()->SecondSuccessor() == NULL) { ASSERT(pred->end()->FirstSuccessor() == block); } else { if (pred->end()->FirstSuccessor()->block_id() > block->block_id() || pred->end()->SecondSuccessor()->block_id() > block->block_id()) { last_environment = last_environment->Copy(); } } block->UpdateEnvironment(last_environment); ASSERT(pred->argument_count() >= 0); argument_count_ = pred->argument_count(); } else { // We are at a state join => process phis. HBasicBlock* pred = block->predecessors()->at(0); // No need to copy the environment, it cannot be used later. HEnvironment* last_environment = pred->last_environment(); for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); last_environment->SetValueAt(phi->merged_index(), phi); } for (int i = 0; i < block->deleted_phis()->length(); ++i) { last_environment->SetValueAt(block->deleted_phis()->at(i), graph_->GetConstantUndefined()); } block->UpdateEnvironment(last_environment); // Pick up the outgoing argument count of one of the predecessors. argument_count_ = pred->argument_count(); } HInstruction* current = block->first(); int start = chunk_->instructions()->length(); while (current != NULL && !is_aborted()) { if (FLAG_trace_environment) { PrintF("Process instruction %d\n", current->id()); } // Code for constants in registers is generated lazily. if (!current->EmitAtUses()) { VisitInstruction(current); } current = current->next(); } int end = chunk_->instructions()->length() - 1; if (end >= start) { block->set_first_instruction_index(start); block->set_last_instruction_index(end); } block->set_argument_count(argument_count_); next_block_ = NULL; current_block_ = NULL; } void LChunkBuilder::VisitInstruction(HInstruction* current) { HInstruction* old_current = current_instruction_; current_instruction_ = current; allocator_->BeginInstruction(); if (current->has_position()) position_ = current->position(); LInstruction* instr = current->CompileToLithium(this); if (instr != NULL) { if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) { instr = AssignPointerMap(instr); } if (FLAG_stress_environments && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } if (current->IsBranch()) { instr->set_hydrogen_value(HBranch::cast(current)->value()); } else { instr->set_hydrogen_value(current); } int index = chunk_->AddInstruction(instr, current_block_); allocator_->SummarizeInstruction(index); } else { // This instruction should be omitted. allocator_->OmitInstruction(); } current_instruction_ = old_current; } void LEnvironment::WriteTranslation(LCodeGen* cgen, Translation* translation) const { if (this == NULL) return; // The translation includes one command per value in the environment. int translation_size = values()->length(); // The output frame height does not include the parameters. int height = translation_size - parameter_count(); outer()->WriteTranslation(cgen, translation); int closure_id = cgen->DefineDeoptimizationLiteral(closure()); translation->BeginFrame(ast_id(), closure_id, height); for (int i = 0; i < translation_size; ++i) { LOperand* value = values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (spilled_registers_ != NULL && value != NULL) { if (value->IsRegister() && spilled_registers_[value->index()] != NULL) { translation->MarkDuplicate(); cgen->AddToTranslation(translation, spilled_registers_[value->index()], HasTaggedValueAt(i)); } else if (value->IsDoubleRegister() && spilled_double_registers_[value->index()] != NULL) { translation->MarkDuplicate(); cgen->AddToTranslation(translation, spilled_double_registers_[value->index()], false); } } cgen->AddToTranslation(translation, value, HasTaggedValueAt(i)); } } void LEnvironment::PrintTo(StringStream* stream) const { stream->Add("[id=%d|", ast_id()); stream->Add("[parameters=%d|", parameter_count()); stream->Add("[arguments_stack_height=%d|", arguments_stack_height()); for (int i = 0; i < values_.length(); ++i) { if (i != 0) stream->Add(";"); if (values_[i] == NULL) { stream->Add("[hole]"); } else { values_[i]->PrintTo(stream); } } stream->Add("]"); } LEnvironment* LChunkBuilder::CreateEnvironment(HEnvironment* hydrogen_env) { if (hydrogen_env == NULL) return NULL; LEnvironment* outer = CreateEnvironment(hydrogen_env->outer()); int ast_id = hydrogen_env->ast_id(); ASSERT(ast_id != AstNode::kNoNumber); int value_count = hydrogen_env->values()->length(); LEnvironment* result = new LEnvironment(hydrogen_env->closure(), ast_id, hydrogen_env->parameter_count(), argument_count_, value_count, outer); int argument_index = 0; for (int i = 0; i < value_count; ++i) { HValue* value = hydrogen_env->values()->at(i); LOperand* op = NULL; if (value->IsArgumentsObject()) { op = NULL; } else if (value->IsPushArgument()) { op = new LArgument(argument_index++); } else { op = UseOrConstant(value); if (op->IsUnallocated()) { LUnallocated* unalloc = LUnallocated::cast(op); unalloc->set_policy(LUnallocated::ANY); } } result->AddValue(op, value->representation()); } return result; } LInstruction* LChunkBuilder::DoGoto(HGoto* instr) { LInstruction* result = new LGoto(instr->FirstSuccessor()->block_id(), instr->include_stack_check()); if (instr->include_stack_check()) result = AssignPointerMap(result); return result; } LInstruction* LChunkBuilder::DoBranch(HBranch* instr) { HValue* v = instr->value(); HBasicBlock* first = instr->FirstSuccessor(); HBasicBlock* second = instr->SecondSuccessor(); ASSERT(first != NULL && second != NULL); int first_id = first->block_id(); int second_id = second->block_id(); if (v->EmitAtUses()) { if (v->IsClassOfTest()) { HClassOfTest* compare = HClassOfTest::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LClassOfTestAndBranch(UseTempRegister(compare->value()), TempRegister(), TempRegister(), first_id, second_id); } else if (v->IsCompare()) { HCompare* compare = HCompare::cast(v); Token::Value op = compare->token(); HValue* left = compare->left(); HValue* right = compare->right(); if (left->representation().IsInteger32()) { ASSERT(right->representation().IsInteger32()); return new LCmpIDAndBranch(op, UseRegisterAtStart(left), UseOrConstantAtStart(right), first_id, second_id, false); } else if (left->representation().IsDouble()) { ASSERT(right->representation().IsDouble()); return new LCmpIDAndBranch(op, UseRegisterAtStart(left), UseRegisterAtStart(right), first_id, second_id, true); } else { ASSERT(left->representation().IsTagged()); ASSERT(right->representation().IsTagged()); bool reversed = op == Token::GT || op == Token::LTE; LOperand* left_operand = UseFixed(left, reversed ? r0 : r1); LOperand* right_operand = UseFixed(right, reversed ? r1 : r0); LInstruction* result = new LCmpTAndBranch(left_operand, right_operand, first_id, second_id); return MarkAsCall(result, instr); } } else if (v->IsIsSmi()) { HIsSmi* compare = HIsSmi::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LIsSmiAndBranch(Use(compare->value()), first_id, second_id); } else if (v->IsHasInstanceType()) { HHasInstanceType* compare = HHasInstanceType::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LHasInstanceTypeAndBranch(UseRegisterAtStart(compare->value()), TempRegister(), first_id, second_id); } else if (v->IsHasCachedArrayIndex()) { HHasCachedArrayIndex* compare = HHasCachedArrayIndex::cast(v); ASSERT(compare->value()->representation().IsTagged()); return new LHasCachedArrayIndexAndBranch( UseRegisterAtStart(compare->value()), first_id, second_id); } else if (v->IsIsNull()) { HIsNull* compare = HIsNull::cast(v); ASSERT(compare->value()->representation().IsTagged()); // We only need a temp register for non-strict compare. LOperand* temp = compare->is_strict() ? NULL : TempRegister(); return new LIsNullAndBranch(UseRegisterAtStart(compare->value()), compare->is_strict(), temp, first_id, second_id); } else if (v->IsIsObject()) { HIsObject* compare = HIsObject::cast(v); ASSERT(compare->value()->representation().IsTagged()); LOperand* temp1 = TempRegister(); LOperand* temp2 = TempRegister(); return new LIsObjectAndBranch(UseRegisterAtStart(compare->value()), temp1, temp2, first_id, second_id); } else if (v->IsCompareJSObjectEq()) { HCompareJSObjectEq* compare = HCompareJSObjectEq::cast(v); return new LCmpJSObjectEqAndBranch(UseRegisterAtStart(compare->left()), UseRegisterAtStart(compare->right()), first_id, second_id); } else if (v->IsInstanceOf()) { HInstanceOf* instance_of = HInstanceOf::cast(v); LInstruction* result = new LInstanceOfAndBranch(Use(instance_of->left()), Use(instance_of->right()), first_id, second_id); return MarkAsCall(result, instr); } else if (v->IsTypeofIs()) { HTypeofIs* typeof_is = HTypeofIs::cast(v); return new LTypeofIsAndBranch(UseTempRegister(typeof_is->value()), first_id, second_id); } else { if (v->IsConstant()) { if (HConstant::cast(v)->handle()->IsTrue()) { return new LGoto(first_id); } else if (HConstant::cast(v)->handle()->IsFalse()) { return new LGoto(second_id); } } Abort("Undefined compare before branch"); return NULL; } } return new LBranch(UseRegisterAtStart(v), first_id, second_id); } LInstruction* LChunkBuilder::DoCompareMapAndBranch( HCompareMapAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); HBasicBlock* first = instr->FirstSuccessor(); HBasicBlock* second = instr->SecondSuccessor(); return new LCmpMapAndBranch(value, instr->map(), first->block_id(), second->block_id()); } LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) { return DefineAsRegister(new LArgumentsLength(Use(length->value()))); } LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) { return DefineAsRegister(new LArgumentsElements); } LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) { LInstruction* result = new LInstanceOf(UseFixed(instr->left(), r0), UseFixed(instr->right(), r1)); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) { LOperand* function = UseFixed(instr->function(), r1); LOperand* receiver = UseFixed(instr->receiver(), r0); LOperand* length = UseRegisterAtStart(instr->length()); LOperand* elements = UseRegisterAtStart(instr->elements()); LInstruction* result = new LApplyArguments(function, receiver, length, elements); return MarkAsCall(DefineFixed(result, r0), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) { ++argument_count_; LOperand* argument = Use(instr->argument()); return new LPushArgument(argument); } LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) { return DefineAsRegister(new LGlobalObject); } LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) { return DefineAsRegister(new LGlobalReceiver); } LInstruction* LChunkBuilder::DoCallConstantFunction( HCallConstantFunction* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallConstantFunction, r0), instr); } LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) { BuiltinFunctionId op = instr->op(); LOperand* input = UseRegisterAtStart(instr->value()); LInstruction* result = new LUnaryMathOperation(input); switch (op) { case kMathAbs: return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result))); case kMathFloor: return AssignEnvironment(DefineAsRegister(result)); case kMathSqrt: return DefineSameAsFirst(result); case kMathPowHalf: Abort("MathPowHalf LUnaryMathOperation not implemented"); return NULL; case kMathLog: Abort("MathLog LUnaryMathOperation not implemented"); return NULL; case kMathCos: Abort("MathCos LUnaryMathOperation not implemented"); return NULL; case kMathSin: Abort("MathSin LUnaryMathOperation not implemented"); return NULL; default: UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) { ASSERT(instr->key()->representation().IsTagged()); argument_count_ -= instr->argument_count(); UseFixed(instr->key(), r2); return MarkAsCall(DefineFixed(new LCallKeyed, r0), instr); } LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallNamed, r0), instr); } LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallGlobal, r0), instr); } LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallKnownGlobal, r0), instr); } LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) { LOperand* constructor = UseFixed(instr->constructor(), r1); argument_count_ -= instr->argument_count(); LInstruction* result = new LCallNew(constructor); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallFunction, r0), instr); } LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallRuntime, r0), instr); } LInstruction* LChunkBuilder::DoShr(HShr* instr) { return DoShift(Token::SHR, instr); } LInstruction* LChunkBuilder::DoSar(HSar* instr) { return DoShift(Token::SAR, instr); } LInstruction* LChunkBuilder::DoShl(HShl* instr) { return DoShift(Token::SHL, instr); } LInstruction* LChunkBuilder::DoBitAnd(HBitAnd* instr) { return DoBit(Token::BIT_AND, instr); } LInstruction* LChunkBuilder::DoBitNot(HBitNot* instr) { ASSERT(instr->value()->representation().IsInteger32()); ASSERT(instr->representation().IsInteger32()); return DefineSameAsFirst(new LBitNotI(UseRegisterAtStart(instr->value()))); } LInstruction* LChunkBuilder::DoBitOr(HBitOr* instr) { return DoBit(Token::BIT_OR, instr); } LInstruction* LChunkBuilder::DoBitXor(HBitXor* instr) { return DoBit(Token::BIT_XOR, instr); } LInstruction* LChunkBuilder::DoDiv(HDiv* instr) { if (instr->representation().IsDouble()) { return DoArithmeticD(Token::DIV, instr); } else if (instr->representation().IsInteger32()) { // The temporary operand is necessary to ensure that right is not allocated // into edx. FixedTemp(r1); LOperand* value = UseFixed(instr->left(), r0); LOperand* divisor = UseRegister(instr->right()); return AssignEnvironment(DefineFixed(new LDivI(value, divisor), r0)); } else { return DoArithmeticT(Token::DIV, instr); } } LInstruction* LChunkBuilder::DoMod(HMod* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); // The temporary operand is necessary to ensure that right is not allocated // into edx. FixedTemp(r1); LOperand* value = UseFixed(instr->left(), r0); LOperand* divisor = UseRegister(instr->right()); LInstruction* result = DefineFixed(new LModI(value, divisor), r1); if (instr->CheckFlag(HValue::kBailoutOnMinusZero) || instr->CheckFlag(HValue::kCanBeDivByZero)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsTagged()) { return DoArithmeticT(Token::MOD, instr); } else { ASSERT(instr->representation().IsDouble()); // We call a C function for double modulo. It can't trigger a GC. // We need to use fixed result register for the call. // TODO(fschneider): Allow any register as input registers. LOperand* left = UseFixedDouble(instr->left(), d1); LOperand* right = UseFixedDouble(instr->right(), d2); LArithmeticD* result = new LArithmeticD(Token::MOD, left, right); return MarkAsCall(DefineFixedDouble(result, d1), instr); } } LInstruction* LChunkBuilder::DoMul(HMul* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstant(instr->MostConstantOperand()); LOperand* temp = NULL; if (instr->CheckFlag(HValue::kBailoutOnMinusZero)) { temp = TempRegister(); } LMulI* mul = new LMulI(left, right, temp); return AssignEnvironment(DefineSameAsFirst(mul)); } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::MUL, instr); } else { return DoArithmeticT(Token::MUL, instr); } } LInstruction* LChunkBuilder::DoSub(HSub* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand()); LSubI* sub = new LSubI(left, right); LInstruction* result = DefineSameAsFirst(sub); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::SUB, instr); } else { return DoArithmeticT(Token::SUB, instr); } } LInstruction* LChunkBuilder::DoAdd(HAdd* instr) { if (instr->representation().IsInteger32()) { ASSERT(instr->left()->representation().IsInteger32()); ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand()); LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand()); LAddI* add = new LAddI(left, right); LInstruction* result = DefineSameAsFirst(add); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::ADD, instr); } else { ASSERT(instr->representation().IsTagged()); return DoArithmeticT(Token::ADD, instr); } } LInstruction* LChunkBuilder::DoPower(HPower* instr) { Abort("LPower instruction not implemented on ARM"); return NULL; } LInstruction* LChunkBuilder::DoCompare(HCompare* instr) { Token::Value op = instr->token(); if (instr->left()->representation().IsInteger32()) { ASSERT(instr->right()->representation().IsInteger32()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); return DefineAsRegister(new LCmpID(op, left, right, false)); } else if (instr->left()->representation().IsDouble()) { ASSERT(instr->right()->representation().IsDouble()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); return DefineAsRegister(new LCmpID(op, left, right, true)); } else { bool reversed = (op == Token::GT || op == Token::LTE); LOperand* left = UseFixed(instr->left(), reversed ? r0 : r1); LOperand* right = UseFixed(instr->right(), reversed ? r1 : r0); LInstruction* result = new LCmpT(left, right); return MarkAsCall(DefineFixed(result, r0), instr); } } LInstruction* LChunkBuilder::DoCompareJSObjectEq( HCompareJSObjectEq* instr) { LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LInstruction* result = new LCmpJSObjectEq(left, right); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoIsNull(HIsNull* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LIsNull(value, instr->is_strict())); } LInstruction* LChunkBuilder::DoIsObject(HIsObject* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LIsObject(value, TempRegister())); } LInstruction* LChunkBuilder::DoIsSmi(HIsSmi* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseAtStart(instr->value()); return DefineAsRegister(new LIsSmi(value)); } LInstruction* LChunkBuilder::DoHasInstanceType(HHasInstanceType* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LHasInstanceType(value)); } LInstruction* LChunkBuilder::DoHasCachedArrayIndex( HHasCachedArrayIndex* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegister(instr->value()); return DefineAsRegister(new LHasCachedArrayIndex(value)); } LInstruction* LChunkBuilder::DoClassOfTest(HClassOfTest* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseTempRegister(instr->value()); return DefineSameAsFirst(new LClassOfTest(value, TempRegister())); } LInstruction* LChunkBuilder::DoJSArrayLength(HJSArrayLength* instr) { LOperand* array = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LJSArrayLength(array)); } LInstruction* LChunkBuilder::DoFixedArrayLength(HFixedArrayLength* instr) { LOperand* array = UseRegisterAtStart(instr->value()); return DefineAsRegister(new LFixedArrayLength(array)); } LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) { LOperand* object = UseRegister(instr->value()); LInstruction* result = new LValueOf(object, TempRegister()); return AssignEnvironment(DefineSameAsFirst(result)); } LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) { return AssignEnvironment(new LBoundsCheck(UseRegisterAtStart(instr->index()), Use(instr->length()))); } LInstruction* LChunkBuilder::DoThrow(HThrow* instr) { LOperand* value = UseFixed(instr->value(), r0); return MarkAsCall(new LThrow(value), instr); } LInstruction* LChunkBuilder::DoChange(HChange* instr) { Representation from = instr->from(); Representation to = instr->to(); if (from.IsTagged()) { if (to.IsDouble()) { LOperand* value = UseRegister(instr->value()); LInstruction* res = new LNumberUntagD(value); return AssignEnvironment(DefineAsRegister(res)); } else { ASSERT(to.IsInteger32()); LOperand* value = UseRegister(instr->value()); bool needs_check = !instr->value()->type().IsSmi(); LInstruction* res = NULL; if (needs_check) { res = DefineSameAsFirst(new LTaggedToI(value, FixedTemp(d1))); } else { res = DefineSameAsFirst(new LSmiUntag(value, needs_check)); } if (needs_check) { res = AssignEnvironment(res); } return res; } } else if (from.IsDouble()) { if (to.IsTagged()) { LOperand* value = UseRegister(instr->value()); LOperand* temp1 = TempRegister(); LOperand* temp2 = TempRegister(); // Make sure that the temp and result_temp registers are // different. LUnallocated* result_temp = TempRegister(); LInstruction* result = new LNumberTagD(value, temp1, temp2); Define(result, result_temp); return AssignPointerMap(result); } else { ASSERT(to.IsInteger32()); LOperand* value = UseRegister(instr->value()); LInstruction* res = new LDoubleToI(value); return AssignEnvironment(DefineAsRegister(res)); } } else if (from.IsInteger32()) { if (to.IsTagged()) { HValue* val = instr->value(); LOperand* value = UseRegister(val); if (val->HasRange() && val->range()->IsInSmiRange()) { return DefineSameAsFirst(new LSmiTag(value)); } else { LInstruction* result = new LNumberTagI(value); return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result))); } } else { ASSERT(to.IsDouble()); LOperand* value = Use(instr->value()); return DefineAsRegister(new LInteger32ToDouble(value)); } } UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoCheckNonSmi(HCheckNonSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckSmi(value, eq)); } LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LOperand* temp = TempRegister(); LInstruction* result = new LCheckInstanceType(value, temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckPrototypeMaps(HCheckPrototypeMaps* instr) { LOperand* temp = TempRegister(); LInstruction* result = new LCheckPrototypeMaps(temp, instr->holder(), instr->receiver_map()); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckSmi(value, ne)); } LInstruction* LChunkBuilder::DoCheckFunction(HCheckFunction* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new LCheckFunction(value)); } LInstruction* LChunkBuilder::DoCheckMap(HCheckMap* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LInstruction* result = new LCheckMap(value); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoReturn(HReturn* instr) { return new LReturn(UseFixed(instr->value(), r0)); } LInstruction* LChunkBuilder::DoConstant(HConstant* instr) { Representation r = instr->representation(); if (r.IsInteger32()) { int32_t value = instr->Integer32Value(); return DefineAsRegister(new LConstantI(value)); } else if (r.IsDouble()) { double value = instr->DoubleValue(); return DefineAsRegister(new LConstantD(value)); } else if (r.IsTagged()) { return DefineAsRegister(new LConstantT(instr->handle())); } else { Abort("unsupported constant of type double"); return NULL; } } LInstruction* LChunkBuilder::DoLoadGlobal(HLoadGlobal* instr) { LInstruction* result = new LLoadGlobal(); return instr->check_hole_value() ? AssignEnvironment(DefineAsRegister(result)) : DefineAsRegister(result); } LInstruction* LChunkBuilder::DoStoreGlobal(HStoreGlobal* instr) { return new LStoreGlobal(UseRegisterAtStart(instr->value())); } LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) { return DefineAsRegister( new LLoadNamedField(UseRegisterAtStart(instr->object()))); } LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) { LOperand* object = UseFixed(instr->object(), r0); LInstruction* result = DefineFixed(new LLoadNamedGeneric(object), r0); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoLoadFunctionPrototype( HLoadFunctionPrototype* instr) { return AssignEnvironment(DefineAsRegister( new LLoadFunctionPrototype(UseRegister(instr->function()), TempRegister()))); } LInstruction* LChunkBuilder::DoLoadElements(HLoadElements* instr) { LOperand* input = UseRegisterAtStart(instr->value()); return DefineSameAsFirst(new LLoadElements(input)); } LInstruction* LChunkBuilder::DoLoadKeyedFastElement( HLoadKeyedFastElement* instr) { Representation r = instr->representation(); LOperand* obj = UseRegisterAtStart(instr->object()); ASSERT(instr->key()->representation().IsInteger32()); LOperand* key = UseRegisterAtStart(instr->key()); LOperand* load_result = NULL; // Double needs an extra temp, because the result is converted from heap // number to a double register. if (r.IsDouble()) load_result = TempRegister(); LInstruction* result = new LLoadKeyedFastElement(obj, key, load_result); if (r.IsDouble()) { result = DefineAsRegister(result); } else { result = DefineSameAsFirst(result); } return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) { LOperand* object = UseFixed(instr->object(), r1); LOperand* key = UseFixed(instr->key(), r0); LInstruction* result = DefineFixed(new LLoadKeyedGeneric(object, key), r0); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoStoreKeyedFastElement( HStoreKeyedFastElement* instr) { bool needs_write_barrier = instr->NeedsWriteBarrier(); ASSERT(instr->value()->representation().IsTagged()); ASSERT(instr->object()->representation().IsTagged()); ASSERT(instr->key()->representation().IsInteger32()); LOperand* obj = UseTempRegister(instr->object()); LOperand* val = needs_write_barrier ? UseTempRegister(instr->value()) : UseRegisterAtStart(instr->value()); LOperand* key = needs_write_barrier ? UseTempRegister(instr->key()) : UseRegisterOrConstantAtStart(instr->key()); return AssignEnvironment(new LStoreKeyedFastElement(obj, key, val)); } LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) { LOperand* obj = UseFixed(instr->object(), r2); LOperand* key = UseFixed(instr->key(), r1); LOperand* val = UseFixed(instr->value(), r0); ASSERT(instr->object()->representation().IsTagged()); ASSERT(instr->key()->representation().IsTagged()); ASSERT(instr->value()->representation().IsTagged()); return MarkAsCall(new LStoreKeyedGeneric(obj, key, val), instr); } LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) { bool needs_write_barrier = !instr->value()->type().IsSmi(); LOperand* obj = needs_write_barrier ? UseTempRegister(instr->object()) : UseRegisterAtStart(instr->object()); LOperand* val = needs_write_barrier ? UseTempRegister(instr->value()) : UseRegister(instr->value()); // We only need a scratch register if we have a write barrier or we // have a store into the properties array (not in-object-property). LOperand* temp = (!instr->is_in_object() || needs_write_barrier) ? TempRegister() : NULL; return new LStoreNamedField(obj, instr->name(), val, instr->is_in_object(), instr->offset(), temp, needs_write_barrier, instr->transition()); } LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) { LOperand* obj = UseFixed(instr->object(), r1); LOperand* val = UseFixed(instr->value(), r0); LInstruction* result = new LStoreNamedGeneric(obj, instr->name(), val); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoArrayLiteral(HArrayLiteral* instr) { return MarkAsCall(DefineFixed(new LArrayLiteral, r0), instr); } LInstruction* LChunkBuilder::DoObjectLiteral(HObjectLiteral* instr) { return MarkAsCall(DefineFixed(new LObjectLiteral, r0), instr); } LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) { return MarkAsCall(DefineFixed(new LRegExpLiteral, r0), instr); } LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) { return MarkAsCall(DefineFixed(new LFunctionLiteral, r0), instr); } LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) { LInstruction* result = new LDeleteProperty(Use(instr->object()), UseOrConstant(instr->key())); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) { allocator_->MarkAsOsrEntry(); current_block_->last_environment()->set_ast_id(instr->ast_id()); return AssignEnvironment(new LOsrEntry); } LInstruction* LChunkBuilder::DoParameter(HParameter* instr) { int spill_index = chunk()->GetParameterStackSlot(instr->index()); return DefineAsSpilled(new LParameter, spill_index); } LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) { int spill_index = chunk()->GetNextSpillIndex(false); // Not double-width. return DefineAsSpilled(new LUnknownOSRValue, spill_index); } LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) { argument_count_ -= instr->argument_count(); return MarkAsCall(DefineFixed(new LCallStub, r0), instr); } LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) { // There are no real uses of the arguments object (we bail out in all other // cases). return NULL; } LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) { LOperand* arguments = UseRegister(instr->arguments()); LOperand* length = UseTempRegister(instr->length()); LOperand* index = Use(instr->index()); LInstruction* result = new LAccessArgumentsAt(arguments, length, index); return DefineAsRegister(AssignEnvironment(result)); } LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) { LInstruction* result = new LTypeof(Use(instr->value())); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoTypeofIs(HTypeofIs* instr) { return DefineSameAsFirst(new LTypeofIs(UseRegister(instr->value()))); } LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) { HEnvironment* env = current_block_->last_environment(); ASSERT(env != NULL); env->set_ast_id(instr->ast_id()); env->Drop(instr->pop_count()); for (int i = 0; i < instr->values()->length(); ++i) { HValue* value = instr->values()->at(i); if (instr->HasAssignedIndexAt(i)) { env->Bind(instr->GetAssignedIndexAt(i), value); } else { env->Push(value); } } if (FLAG_trace_environment) { PrintF("Reconstructed environment ast_id=%d, instr_id=%d\n", instr->ast_id(), instr->id()); env->PrintToStd(); } ASSERT(env->values()->length() == instr->environment_height()); // If there is an instruction pending deoptimization environment create a // lazy bailout instruction to capture the environment. if (pending_deoptimization_ast_id_ == instr->ast_id()) { LInstruction* result = new LLazyBailout; result = AssignEnvironment(result); instructions_pending_deoptimization_environment_-> set_deoptimization_environment(result->environment()); ClearInstructionPendingDeoptimizationEnvironment(); return result; } return NULL; } LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) { return MarkAsCall(new LStackCheck, instr); } LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) { HEnvironment* outer = current_block_->last_environment(); HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner = outer->CopyForInlining(instr->closure(), instr->function(), false, undefined); current_block_->UpdateEnvironment(inner); chunk_->AddInlinedClosure(instr->closure()); return NULL; } LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) { HEnvironment* outer = current_block_->last_environment()->outer(); current_block_->UpdateEnvironment(outer); return NULL; } void LPointerMap::RecordPointer(LOperand* op) { // Do not record arguments as pointers. if (op->IsStackSlot() && op->index() < 0) return; ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot()); pointer_operands_.Add(op); } void LPointerMap::PrintTo(StringStream* stream) const { stream->Add("{"); for (int i = 0; i < pointer_operands_.length(); ++i) { if (i != 0) stream->Add(";"); pointer_operands_[i]->PrintTo(stream); } stream->Add("} @%d", position()); } } } // namespace v8::internal