// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "arm/lithium-codegen-arm.h" #include "arm/lithium-gap-resolver-arm.h" #include "code-stubs.h" #include "stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const { } virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateDeoptJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle code) { ASSERT(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); if (FLAG_weak_embedded_maps_in_optimized_code) { RegisterDependentCodeForEmbeddedMaps(code); } PopulateDeoptimizationData(code); info()->CommitDependencies(code); } void LCodeGen::Abort(const char* reason) { info()->set_bailout_reason(reason); status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. size_t length = builder.position(); Vector copy = Vector::New(length + 1); OS::MemCopy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop_at"); } #endif // r1: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. // Strict mode functions and builtins need to replace the receiver // with undefined when called as functions (without an explicit // receiver object). r5 is zero for method calls and non-zero for // function calls. if (!info_->is_classic_mode() || info_->is_native()) { Label ok; __ cmp(r5, Operand::Zero()); __ b(eq, &ok); int receiver_offset = scope()->num_parameters() * kPointerSize; __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ str(r2, MemOperand(sp, receiver_offset)); __ bind(&ok); } } info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { if (info()->IsStub()) { __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); __ Push(Smi::FromInt(StackFrame::STUB)); // Adjust FP to point to saved FP. __ add(fp, sp, Operand(2 * kPointerSize)); } else { PredictableCodeSizeScope predictible_code_size_scope( masm_, kNoCodeAgeSequenceLength * Assembler::kInstrSize); // The following three instructions must remain together and unmodified // for code aging to work properly. __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); __ nop(ip.code()); // Adjust FP to point to saved FP. __ add(fp, sp, Operand(2 * kPointerSize)); } frame_is_built_ = true; info_->AddNoFrameRange(0, masm_->pc_offset()); } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ sub(sp, sp, Operand(slots * kPointerSize)); __ push(r0); __ push(r1); __ add(r0, sp, Operand(slots * kPointerSize)); __ mov(r1, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ sub(r0, r0, Operand(kPointerSize)); __ str(r1, MemOperand(r0, 2 * kPointerSize)); __ cmp(r0, sp); __ b(ne, &loop); __ pop(r1); __ pop(r0); } else { __ sub(sp, sp, Operand(slots * kPointerSize)); } } if (info()->saves_caller_doubles()) { Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } // Possibly allocate a local context. int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is in r1. __ push(r1); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } RecordSafepoint(Safepoint::kNoLazyDeopt); // Context is returned in both r0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ ldr(r0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextOperand(cp, var->index()); __ str(r0, target); // Update the write barrier. This clobbers r3 and r0. __ RecordWriteContextSlot( cp, target.offset(), r0, r3, GetLinkRegisterState(), kSaveFPRegs); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace && info()->IsOptimizing()) { __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); // Don't emit code for basic blocks with a replacement. if (instr->IsLabel()) { emit_instructions = !LLabel::cast(instr)->HasReplacement(); } if (!emit_instructions) continue; if (FLAG_code_comments && instr->HasInterestingComment(this)) { Comment(";;; <@%d,#%d> %s", current_instruction_, instr->hydrogen_value()->id(), instr->Mnemonic()); } instr->CompileToNative(this); } EnsureSpaceForLazyDeopt(); last_lazy_deopt_pc_ = masm()->pc_offset(); return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); ASSERT(!frame_is_built_); ASSERT(info()->IsStub()); frame_is_built_ = true; __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); __ push(scratch0()); __ add(fp, sp, Operand(2 * kPointerSize)); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { Comment(";;; Destroy frame"); ASSERT(frame_is_built_); __ pop(ip); __ ldm(ia_w, sp, cp.bit() | fp.bit() | lr.bit()); frame_is_built_ = false; } __ jmp(code->exit()); } } // Force constant pool emission at the end of the deferred code to make // sure that no constant pools are emitted after. masm()->CheckConstPool(true, false); return !is_aborted(); } bool LCodeGen::GenerateDeoptJumpTable() { // Check that the jump table is accessible from everywhere in the function // code, i.e. that offsets to the table can be encoded in the 24bit signed // immediate of a branch instruction. // To simplify we consider the code size from the first instruction to the // end of the jump table. We also don't consider the pc load delta. // Each entry in the jump table generates one instruction and inlines one // 32bit data after it. if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) + deopt_jump_table_.length() * 7)) { Abort("Generated code is too large"); } if (deopt_jump_table_.length() > 0) { Comment(";;; -------------------- Jump table --------------------"); } Label table_start; __ bind(&table_start); Label needs_frame; for (int i = 0; i < deopt_jump_table_.length(); i++) { __ bind(&deopt_jump_table_[i].label); Address entry = deopt_jump_table_[i].address; Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type; int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type); if (id == Deoptimizer::kNotDeoptimizationEntry) { Comment(";;; jump table entry %d.", i); } else { Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id); } if (deopt_jump_table_[i].needs_frame) { __ mov(ip, Operand(ExternalReference::ForDeoptEntry(entry))); if (needs_frame.is_bound()) { __ b(&needs_frame); } else { __ bind(&needs_frame); __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. ASSERT(info()->IsStub()); __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); __ push(scratch0()); __ add(fp, sp, Operand(2 * kPointerSize)); __ mov(lr, Operand(pc), LeaveCC, al); __ mov(pc, ip); } } else { __ mov(lr, Operand(pc), LeaveCC, al); __ mov(pc, Operand(ExternalReference::ForDeoptEntry(entry))); } masm()->CheckConstPool(false, false); } // Force constant pool emission at the end of the deopt jump table to make // sure that no constant pools are emitted after. masm()->CheckConstPool(true, false); // The deoptimization jump table is the last part of the instruction // sequence. Mark the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } DwVfpRegister LCodeGen::ToDoubleRegister(int index) const { return DwVfpRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle literal = constant->handle(); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); __ mov(scratch, Operand(static_cast(literal->Number()))); } else if (r.IsDouble()) { Abort("EmitLoadRegister: Unsupported double immediate."); } else { ASSERT(r.IsTagged()); __ LoadObject(scratch, literal); } return scratch; } else if (op->IsStackSlot() || op->IsArgument()) { __ ldr(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, SwVfpRegister flt_scratch, DwVfpRegister dbl_scratch) { if (op->IsDoubleRegister()) { return ToDoubleRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle literal = constant->handle(); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); __ mov(ip, Operand(static_cast(literal->Number()))); __ vmov(flt_scratch, ip); __ vcvt_f64_s32(dbl_scratch, flt_scratch); return dbl_scratch; } else if (r.IsDouble()) { Abort("unsupported double immediate"); } else if (r.IsTagged()) { Abort("unsupported tagged immediate"); } } else if (op->IsStackSlot() || op->IsArgument()) { // TODO(regis): Why is vldr not taking a MemOperand? // __ vldr(dbl_scratch, ToMemOperand(op)); MemOperand mem_op = ToMemOperand(op); __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset()); return dbl_scratch; } UNREACHABLE(); return dbl_scratch; } Handle LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(); } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { return ToRepresentation(op, Representation::Integer32()); } int32_t LCodeGen::ToRepresentation(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; ASSERT(r.IsSmiOrTagged()); return reinterpret_cast(Smi::FromInt(value)); } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); ASSERT(constant->HasDoubleValue()); return constant->DoubleValue(); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsSmi()) { ASSERT(constant->HasSmiValue()); return Operand(Smi::FromInt(constant->Integer32Value())); } else if (r.IsInteger32()) { ASSERT(constant->HasInteger32Value()); return Operand(constant->Integer32Value()); } else if (r.IsDouble()) { Abort("ToOperand Unsupported double immediate."); } ASSERT(r.IsTagged()); return Operand(constant->handle()); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort("ToOperand IsDoubleRegister unimplemented"); return Operand::Zero(); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand::Zero(); } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { ASSERT(!op->IsRegister()); ASSERT(!op->IsDoubleRegister()); ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); return MemOperand(fp, StackSlotOffset(op->index())); } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { ASSERT(op->IsDoubleStackSlot()); return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize); } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); bool has_closure_id = !info()->closure().is_null() && !info()->closure().is_identical_to(environment->closure()); int closure_id = has_closure_id ? DefineDeoptimizationLiteral(environment->closure()) : Translation::kSelfLiteralId; switch (environment->frame_type()) { case JS_FUNCTION: translation->BeginJSFrame(environment->ast_id(), closure_id, height); break; case JS_CONSTRUCT: translation->BeginConstructStubFrame(closure_id, translation_size); break; case JS_GETTER: ASSERT(translation_size == 1); ASSERT(height == 0); translation->BeginGetterStubFrame(closure_id); break; case JS_SETTER: ASSERT(translation_size == 2); ASSERT(height == 0); translation->BeginSetterStubFrame(closure_id); break; case STUB: translation->BeginCompiledStubFrame(); break; case ARGUMENTS_ADAPTOR: translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); break; } for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // TODO(mstarzinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. if (value == NULL) { int arguments_count = environment->values()->length() - translation_size; translation->BeginArgumentsObject(arguments_count); for (int i = 0; i < arguments_count; ++i) { LOperand* value = environment->values()->at(translation_size + i); AddToTranslation(translation, value, environment->HasTaggedValueAt(translation_size + i), environment->HasUint32ValueAt(translation_size + i)); } continue; } AddToTranslation(translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i)); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged, bool is_uint32) { if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else if (is_uint32) { translation->StoreUint32StackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = GetStackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle()); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr, TargetAddressStorageMode storage_mode) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode); } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode, TargetAddressStorageMode storage_mode) { EnsureSpaceForLazyDeopt(); ASSERT(instr != NULL); // Block literal pool emission to ensure nop indicating no inlined smi code // is in the correct position. Assembler::BlockConstPoolScope block_const_pool(masm()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); ASSERT(pointers != NULL); RecordPosition(pointers->position()); __ CallRuntime(function, num_arguments); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr) { __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment, Deoptimizer::BailoutType bailout_type) { RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); ASSERT(info()->IsOptimizing() || info()->IsStub()); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort("bailout was not prepared"); return; } ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM. if (FLAG_deopt_every_n_times == 1 && !info()->IsStub() && info()->opt_count() == id) { ASSERT(frame_is_built_); __ Call(entry, RelocInfo::RUNTIME_ENTRY); return; } if (FLAG_trap_on_deopt && info()->IsOptimizing()) { __ stop("trap_on_deopt", cc); } ASSERT(info()->IsStub() || frame_is_built_); if (cc == al && frame_is_built_) { __ Call(entry, RelocInfo::RUNTIME_ENTRY); } else { // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (deopt_jump_table_.is_empty() || (deopt_jump_table_.last().address != entry) || (deopt_jump_table_.last().bailout_type != bailout_type) || (deopt_jump_table_.last().needs_frame != !frame_is_built_)) { Deoptimizer::JumpTableEntry table_entry(entry, bailout_type, !frame_is_built_); deopt_jump_table_.Add(table_entry, zone()); } __ b(cc, &deopt_jump_table_.last().label); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(cc, environment, bailout_type); } void LCodeGen::RegisterDependentCodeForEmbeddedMaps(Handle code) { ZoneList > maps(1, zone()); int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT && it.rinfo()->target_object()->IsMap()) { Handle map(Map::cast(it.rinfo()->target_object())); if (map->CanTransition()) { maps.Add(map, zone()); } } } #ifdef VERIFY_HEAP // This disables verification of weak embedded maps after full GC. // AddDependentCode can cause a GC, which would observe the state where // this code is not yet in the depended code lists of the embedded maps. NoWeakEmbeddedMapsVerificationScope disable_verification_of_embedded_maps; #endif for (int i = 0; i < maps.length(); i++) { maps.at(i)->AddDependentCode(DependentCode::kWeaklyEmbeddedGroup, code); } } void LCodeGen::PopulateDeoptimizationData(Handle code) { int length = deoptimizations_.length(); if (length == 0) return; Handle data = factory()->NewDeoptimizationInputData(length, TENURED); Handle translations = translations_.CreateByteArray(isolate()->factory()); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); { AllowDeferredHandleDereference copy_handles; for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); } data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, env->ast_id()); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); data->SetPc(i, Smi::FromInt(env->pc_offset())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal, zone()); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { ASSERT(expected_safepoint_kind_ == kind); const ZoneList* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } if (kind & Safepoint::kWithRegisters) { // Register cp always contains a pointer to the context. safepoint.DefinePointerRegister(cp, zone()); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(RelocInfo::kNoPosition, zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } void LCodeGen::RecordSafepointWithRegistersAndDoubles( LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); } void LCodeGen::RecordPosition(int position) { if (position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->result()).is(r0)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { __ ldr(r0, MemOperand(sp, 0)); TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Record the address of the first unknown OSR value as the place to enter. if (osr_pc_offset_ == -1) osr_pc_offset_ = masm()->pc_offset(); } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); HValue* left = hmod->left(); HValue* right = hmod->right(); if (hmod->HasPowerOf2Divisor()) { // TODO(svenpanne) We should really do the strength reduction on the // Hydrogen level. Register left_reg = ToRegister(instr->left()); Register result_reg = ToRegister(instr->result()); // Note: The code below even works when right contains kMinInt. int32_t divisor = Abs(right->GetInteger32Constant()); Label left_is_not_negative, done; if (left->CanBeNegative()) { __ cmp(left_reg, Operand::Zero()); __ b(pl, &left_is_not_negative); __ rsb(result_reg, left_reg, Operand::Zero()); __ and_(result_reg, result_reg, Operand(divisor - 1)); __ rsb(result_reg, result_reg, Operand::Zero(), SetCC); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr->environment()); } __ b(&done); } __ bind(&left_is_not_negative); __ and_(result_reg, left_reg, Operand(divisor - 1)); __ bind(&done); } else if (hmod->fixed_right_arg().has_value) { Register left_reg = ToRegister(instr->left()); Register right_reg = ToRegister(instr->right()); Register result_reg = ToRegister(instr->result()); int32_t divisor = hmod->fixed_right_arg().value; ASSERT(IsPowerOf2(divisor)); // Check if our assumption of a fixed right operand still holds. __ cmp(right_reg, Operand(divisor)); DeoptimizeIf(ne, instr->environment()); Label left_is_not_negative, done; if (left->CanBeNegative()) { __ cmp(left_reg, Operand::Zero()); __ b(pl, &left_is_not_negative); __ rsb(result_reg, left_reg, Operand::Zero()); __ and_(result_reg, result_reg, Operand(divisor - 1)); __ rsb(result_reg, result_reg, Operand::Zero(), SetCC); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr->environment()); } __ b(&done); } __ bind(&left_is_not_negative); __ and_(result_reg, left_reg, Operand(divisor - 1)); __ bind(&done); } else if (CpuFeatures::IsSupported(SUDIV)) { CpuFeatureScope scope(masm(), SUDIV); Register left_reg = ToRegister(instr->left()); Register right_reg = ToRegister(instr->right()); Register result_reg = ToRegister(instr->result()); Label done; // Check for x % 0, sdiv might signal an exception. We have to deopt in this // case because we can't return a NaN. if (right->CanBeZero()) { __ cmp(right_reg, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); } // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we // want. We have to deopt if we care about -0, because we can't return that. if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) { Label no_overflow_possible; __ cmp(left_reg, Operand(kMinInt)); __ b(ne, &no_overflow_possible); __ cmp(right_reg, Operand(-1)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr->environment()); } else { __ b(ne, &no_overflow_possible); __ mov(result_reg, Operand::Zero()); __ jmp(&done); } __ bind(&no_overflow_possible); } // For 'r3 = r1 % r2' we can have the following ARM code: // sdiv r3, r1, r2 // mls r3, r3, r2, r1 __ sdiv(result_reg, left_reg, right_reg); __ mls(result_reg, result_reg, right_reg, left_reg); // If we care about -0, test if the dividend is <0 and the result is 0. if (left->CanBeNegative() && hmod->CanBeZero() && hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { __ cmp(result_reg, Operand::Zero()); __ b(ne, &done); __ cmp(left_reg, Operand::Zero()); DeoptimizeIf(lt, instr->environment()); } __ bind(&done); } else { // General case, without any SDIV support. Register left_reg = ToRegister(instr->left()); Register right_reg = ToRegister(instr->right()); Register result_reg = ToRegister(instr->result()); Register scratch = scratch0(); ASSERT(!scratch.is(left_reg)); ASSERT(!scratch.is(right_reg)); ASSERT(!scratch.is(result_reg)); DwVfpRegister dividend = ToDoubleRegister(instr->temp()); DwVfpRegister divisor = ToDoubleRegister(instr->temp2()); ASSERT(!divisor.is(dividend)); LowDwVfpRegister quotient = double_scratch0(); ASSERT(!quotient.is(dividend)); ASSERT(!quotient.is(divisor)); Label done; // Check for x % 0, we have to deopt in this case because we can't return a // NaN. if (right->CanBeZero()) { __ cmp(right_reg, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); } __ Move(result_reg, left_reg); // Load the arguments in VFP registers. The divisor value is preloaded // before. Be careful that 'right_reg' is only live on entry. // TODO(svenpanne) The last comments seems to be wrong nowadays. __ vmov(double_scratch0().low(), left_reg); __ vcvt_f64_s32(dividend, double_scratch0().low()); __ vmov(double_scratch0().low(), right_reg); __ vcvt_f64_s32(divisor, double_scratch0().low()); // We do not care about the sign of the divisor. Note that we still handle // the kMinInt % -1 case correctly, though. __ vabs(divisor, divisor); // Compute the quotient and round it to a 32bit integer. __ vdiv(quotient, dividend, divisor); __ vcvt_s32_f64(quotient.low(), quotient); __ vcvt_f64_s32(quotient, quotient.low()); // Compute the remainder in result. __ vmul(double_scratch0(), divisor, quotient); __ vcvt_s32_f64(double_scratch0().low(), double_scratch0()); __ vmov(scratch, double_scratch0().low()); __ sub(result_reg, left_reg, scratch, SetCC); // If we care about -0, test if the dividend is <0 and the result is 0. if (left->CanBeNegative() && hmod->CanBeZero() && hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { __ b(ne, &done); __ cmp(left_reg, Operand::Zero()); DeoptimizeIf(mi, instr->environment()); } __ bind(&done); } } void LCodeGen::EmitSignedIntegerDivisionByConstant( Register result, Register dividend, int32_t divisor, Register remainder, Register scratch, LEnvironment* environment) { ASSERT(!AreAliased(dividend, scratch, ip)); ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor)); uint32_t divisor_abs = abs(divisor); int32_t power_of_2_factor = CompilerIntrinsics::CountTrailingZeros(divisor_abs); switch (divisor_abs) { case 0: DeoptimizeIf(al, environment); return; case 1: if (divisor > 0) { __ Move(result, dividend); } else { __ rsb(result, dividend, Operand::Zero(), SetCC); DeoptimizeIf(vs, environment); } // Compute the remainder. __ mov(remainder, Operand::Zero()); return; default: if (IsPowerOf2(divisor_abs)) { // Branch and condition free code for integer division by a power // of two. int32_t power = WhichPowerOf2(divisor_abs); if (power > 1) { __ mov(scratch, Operand(dividend, ASR, power - 1)); } __ add(scratch, dividend, Operand(scratch, LSR, 32 - power)); __ mov(result, Operand(scratch, ASR, power)); // Negate if necessary. // We don't need to check for overflow because the case '-1' is // handled separately. if (divisor < 0) { ASSERT(divisor != -1); __ rsb(result, result, Operand::Zero()); } // Compute the remainder. if (divisor > 0) { __ sub(remainder, dividend, Operand(result, LSL, power)); } else { __ add(remainder, dividend, Operand(result, LSL, power)); } return; } else { // Use magic numbers for a few specific divisors. // Details and proofs can be found in: // - Hacker's Delight, Henry S. Warren, Jr. // - The PowerPC Compiler Writer’s Guide // and probably many others. // // We handle // * // but not // * DivMagicNumbers magic_numbers = DivMagicNumberFor(divisor_abs >> power_of_2_factor); // Branch and condition free code for integer division by a power // of two. const int32_t M = magic_numbers.M; const int32_t s = magic_numbers.s + power_of_2_factor; __ mov(ip, Operand(M)); __ smull(ip, scratch, dividend, ip); if (M < 0) { __ add(scratch, scratch, Operand(dividend)); } if (s > 0) { __ mov(scratch, Operand(scratch, ASR, s)); } __ add(result, scratch, Operand(dividend, LSR, 31)); if (divisor < 0) __ rsb(result, result, Operand::Zero()); // Compute the remainder. __ mov(ip, Operand(divisor)); // This sequence could be replaced with 'mls' when // it gets implemented. __ mul(scratch, result, ip); __ sub(remainder, dividend, scratch); } } } void LCodeGen::DoDivI(LDivI* instr) { if (instr->hydrogen()->HasPowerOf2Divisor()) { Register dividend = ToRegister(instr->left()); int32_t divisor = instr->hydrogen()->right()->GetInteger32Constant(); int32_t test_value = 0; int32_t power = 0; if (divisor > 0) { test_value = divisor - 1; power = WhichPowerOf2(divisor); } else { // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ tst(dividend, Operand(dividend)); DeoptimizeIf(eq, instr->environment()); } // Check for (kMinInt / -1). if (divisor == -1 && instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { __ cmp(dividend, Operand(kMinInt)); DeoptimizeIf(eq, instr->environment()); } test_value = - divisor - 1; power = WhichPowerOf2(-divisor); } if (test_value != 0) { if (instr->hydrogen()->CheckFlag( HInstruction::kAllUsesTruncatingToInt32)) { __ cmp(dividend, Operand(0)); __ rsb(dividend, dividend, Operand(0), LeaveCC, lt); __ mov(dividend, Operand(dividend, ASR, power)); if (divisor > 0) __ rsb(dividend, dividend, Operand(0), LeaveCC, lt); return; // Don't fall through to "__ rsb" below. } else { // Deoptimize if remainder is not 0. __ tst(dividend, Operand(test_value)); DeoptimizeIf(ne, instr->environment()); __ mov(dividend, Operand(dividend, ASR, power)); } } if (divisor < 0) __ rsb(dividend, dividend, Operand(0)); return; } const Register left = ToRegister(instr->left()); const Register right = ToRegister(instr->right()); const Register result = ToRegister(instr->result()); // Check for x / 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ cmp(right, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ cmp(left, Operand::Zero()); __ b(ne, &left_not_zero); __ cmp(right, Operand::Zero()); DeoptimizeIf(mi, instr->environment()); __ bind(&left_not_zero); } // Check for (kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmp(left, Operand(kMinInt)); __ b(ne, &left_not_min_int); __ cmp(right, Operand(-1)); DeoptimizeIf(eq, instr->environment()); __ bind(&left_not_min_int); } if (CpuFeatures::IsSupported(SUDIV)) { CpuFeatureScope scope(masm(), SUDIV); __ sdiv(result, left, right); if (!instr->hydrogen()->CheckFlag( HInstruction::kAllUsesTruncatingToInt32)) { // Compute remainder and deopt if it's not zero. const Register remainder = scratch0(); __ mls(remainder, result, right, left); __ cmp(remainder, Operand::Zero()); DeoptimizeIf(ne, instr->environment()); } } else { const DoubleRegister vleft = ToDoubleRegister(instr->temp()); const DoubleRegister vright = double_scratch0(); __ vmov(double_scratch0().low(), left); __ vcvt_f64_s32(vleft, double_scratch0().low()); __ vmov(double_scratch0().low(), right); __ vcvt_f64_s32(vright, double_scratch0().low()); __ vdiv(vleft, vleft, vright); // vleft now contains the result. __ vcvt_s32_f64(double_scratch0().low(), vleft); __ vmov(result, double_scratch0().low()); if (!instr->hydrogen()->CheckFlag( HInstruction::kAllUsesTruncatingToInt32)) { // Deopt if exact conversion to integer was not possible. // Use vright as scratch register. __ vcvt_f64_s32(double_scratch0(), double_scratch0().low()); __ VFPCompareAndSetFlags(vleft, double_scratch0()); DeoptimizeIf(ne, instr->environment()); } } } void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { DwVfpRegister addend = ToDoubleRegister(instr->addend()); DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); // This is computed in-place. ASSERT(addend.is(ToDoubleRegister(instr->result()))); __ vmla(addend, multiplier, multiplicand); } void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) { DwVfpRegister minuend = ToDoubleRegister(instr->minuend()); DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); // This is computed in-place. ASSERT(minuend.is(ToDoubleRegister(instr->result()))); __ vmls(minuend, multiplier, multiplicand); } void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) { const Register result = ToRegister(instr->result()); const Register left = ToRegister(instr->left()); const Register remainder = ToRegister(instr->temp()); const Register scratch = scratch0(); if (!CpuFeatures::IsSupported(SUDIV)) { // If the CPU doesn't support sdiv instruction, we only optimize when we // have magic numbers for the divisor. The standard integer division routine // is usually slower than transitionning to VFP. ASSERT(instr->right()->IsConstantOperand()); int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right())); ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor)); if (divisor < 0) { __ cmp(left, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); } EmitSignedIntegerDivisionByConstant(result, left, divisor, remainder, scratch, instr->environment()); // We performed a truncating division. Correct the result if necessary. __ cmp(remainder, Operand::Zero()); __ teq(remainder, Operand(divisor), ne); __ sub(result, result, Operand(1), LeaveCC, mi); } else { CpuFeatureScope scope(masm(), SUDIV); const Register right = ToRegister(instr->right()); // Check for x / 0. __ cmp(right, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); // Check for (kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmp(left, Operand(kMinInt)); __ b(ne, &left_not_min_int); __ cmp(right, Operand(-1)); DeoptimizeIf(eq, instr->environment()); __ bind(&left_not_min_int); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ cmp(right, Operand::Zero()); __ cmp(left, Operand::Zero(), mi); // "right" can't be null because the code would have already been // deoptimized. The Z flag is set only if (right < 0) and (left == 0). // In this case we need to deoptimize to produce a -0. DeoptimizeIf(eq, instr->environment()); } Label done; __ sdiv(result, left, right); // If both operands have the same sign then we are done. __ eor(remainder, left, Operand(right), SetCC); __ b(pl, &done); // Check if the result needs to be corrected. __ mls(remainder, result, right, left); __ cmp(remainder, Operand::Zero()); __ sub(result, result, Operand(1), LeaveCC, ne); __ bind(&done); } } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->left()); LOperand* right_op = instr->right(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); if (right_op->IsConstantOperand() && !can_overflow) { // Use optimized code for specific constants. int32_t constant = ToRepresentation( LConstantOperand::cast(right_op), instr->hydrogen()->right()->representation()); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. __ cmp(left, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); } switch (constant) { case -1: __ rsb(result, left, Operand::Zero()); break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. __ cmp(left, Operand::Zero()); DeoptimizeIf(mi, instr->environment()); } __ mov(result, Operand::Zero()); break; case 1: __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (IsPowerOf2(constant_abs) || IsPowerOf2(constant_abs - 1) || IsPowerOf2(constant_abs + 1)) { if (IsPowerOf2(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ mov(result, Operand(left, LSL, shift)); } else if (IsPowerOf2(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ add(result, left, Operand(left, LSL, shift)); } else if (IsPowerOf2(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ rsb(result, left, Operand(left, LSL, shift)); } // Correct the sign of the result is the constant is negative. if (constant < 0) __ rsb(result, result, Operand::Zero()); } else { // Generate standard code. __ mov(ip, Operand(constant)); __ mul(result, left, ip); } } } else { Register right = EmitLoadRegister(right_op, scratch); if (bailout_on_minus_zero) { __ orr(ToRegister(instr->temp()), left, right); } if (can_overflow) { // scratch:result = left * right. if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ smull(result, scratch, result, right); } else { __ smull(result, scratch, left, right); } __ cmp(scratch, Operand(result, ASR, 31)); DeoptimizeIf(ne, instr->environment()); } else { if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ mul(result, result, right); } else { __ mul(result, left, right); } } if (bailout_on_minus_zero) { // Bail out if the result is supposed to be negative zero. Label done; __ cmp(result, Operand::Zero()); __ b(ne, &done); __ cmp(ToRegister(instr->temp()), Operand::Zero()); DeoptimizeIf(mi, instr->environment()); __ bind(&done); } } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left_op = instr->left(); LOperand* right_op = instr->right(); ASSERT(left_op->IsRegister()); Register left = ToRegister(left_op); Register result = ToRegister(instr->result()); Operand right(no_reg); if (right_op->IsStackSlot() || right_op->IsArgument()) { right = Operand(EmitLoadRegister(right_op, ip)); } else { ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); right = ToOperand(right_op); } switch (instr->op()) { case Token::BIT_AND: __ and_(result, left, right); break; case Token::BIT_OR: __ orr(result, left, right); break; case Token::BIT_XOR: __ eor(result, left, right); break; default: UNREACHABLE(); break; } } void LCodeGen::DoShiftI(LShiftI* instr) { // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so // result may alias either of them. LOperand* right_op = instr->right(); Register left = ToRegister(instr->left()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); if (right_op->IsRegister()) { // Mask the right_op operand. __ and_(scratch, ToRegister(right_op), Operand(0x1F)); switch (instr->op()) { case Token::ROR: __ mov(result, Operand(left, ROR, scratch)); break; case Token::SAR: __ mov(result, Operand(left, ASR, scratch)); break; case Token::SHR: if (instr->can_deopt()) { __ mov(result, Operand(left, LSR, scratch), SetCC); DeoptimizeIf(mi, instr->environment()); } else { __ mov(result, Operand(left, LSR, scratch)); } break; case Token::SHL: __ mov(result, Operand(left, LSL, scratch)); break; default: UNREACHABLE(); break; } } else { // Mask the right_op operand. int value = ToInteger32(LConstantOperand::cast(right_op)); uint8_t shift_count = static_cast(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count != 0) { __ mov(result, Operand(left, ROR, shift_count)); } else { __ Move(result, left); } break; case Token::SAR: if (shift_count != 0) { __ mov(result, Operand(left, ASR, shift_count)); } else { __ Move(result, left); } break; case Token::SHR: if (shift_count != 0) { __ mov(result, Operand(left, LSR, shift_count)); } else { if (instr->can_deopt()) { __ tst(left, Operand(0x80000000)); DeoptimizeIf(ne, instr->environment()); } __ Move(result, left); } break; case Token::SHL: if (shift_count != 0) { if (instr->hydrogen_value()->representation().IsSmi() && instr->can_deopt()) { if (shift_count != 1) { __ mov(result, Operand(left, LSL, shift_count - 1)); __ SmiTag(result, result, SetCC); } else { __ SmiTag(result, left, SetCC); } DeoptimizeIf(vs, instr->environment()); } else { __ mov(result, Operand(left, LSL, shift_count)); } } else { __ Move(result, left); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); SBit set_cond = can_overflow ? SetCC : LeaveCC; if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); } if (can_overflow) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoRSubI(LRSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); SBit set_cond = can_overflow ? SetCC : LeaveCC; if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); } if (can_overflow) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoConstantI(LConstantI* instr) { __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); DwVfpRegister result = ToDoubleRegister(instr->result()); double v = instr->value(); __ Vmov(result, v, scratch0()); } void LCodeGen::DoConstantE(LConstantE* instr) { __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle value = instr->value(); AllowDeferredHandleDereference smi_check; __ LoadObject(ToRegister(instr->result()), value); } void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { Register result = ToRegister(instr->result()); Register map = ToRegister(instr->value()); __ EnumLength(result, map); } void LCodeGen::DoElementsKind(LElementsKind* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->value()); // Load map into |result|. __ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ ldr(result, FieldMemOperand(result, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Register map = ToRegister(instr->temp()); Label done; if (!instr->hydrogen()->value()->IsHeapObject()) { // If the object is a smi return the object. __ SmiTst(input); __ Move(result, input, eq); __ b(eq, &done); } // If the object is not a value type, return the object. __ CompareObjectType(input, map, map, JS_VALUE_TYPE); __ Move(result, input, ne); __ b(ne, &done); __ ldr(result, FieldMemOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoDateField(LDateField* instr) { Register object = ToRegister(instr->date()); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp()); Smi* index = instr->index(); Label runtime, done; ASSERT(object.is(result)); ASSERT(object.is(r0)); ASSERT(!scratch.is(scratch0())); ASSERT(!scratch.is(object)); __ SmiTst(object); DeoptimizeIf(eq, instr->environment()); __ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE); DeoptimizeIf(ne, instr->environment()); if (index->value() == 0) { __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ mov(scratch, Operand(stamp)); __ ldr(scratch, MemOperand(scratch)); __ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); __ cmp(scratch, scratch0()); __ b(ne, &runtime); __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2, scratch); __ mov(r1, Operand(index)); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ bind(&done); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { Register string = ToRegister(instr->string()); Register index = ToRegister(instr->index()); Register value = ToRegister(instr->value()); String::Encoding encoding = instr->encoding(); if (FLAG_debug_code) { __ ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); __ and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ cmp(ip, Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(eq, "Unexpected string type"); } __ add(ip, string, Operand(SeqString::kHeaderSize - kHeapObjectTag)); if (encoding == String::ONE_BYTE_ENCODING) { __ strb(value, MemOperand(ip, index)); } else { // MemOperand with ip as the base register is not allowed for strh, so // we do the address calculation explicitly. __ add(ip, ip, Operand(index, LSL, 1)); __ strh(value, MemOperand(ip)); } } void LCodeGen::DoBitNotI(LBitNotI* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ mvn(result, Operand(input)); } void LCodeGen::DoThrow(LThrow* instr) { Register input_reg = EmitLoadRegister(instr->value(), ip); __ push(input_reg); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { __ stop("Unreachable code."); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); SBit set_cond = can_overflow ? SetCC : LeaveCC; if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, ip); __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); } if (can_overflow) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); HMathMinMax::Operation operation = instr->hydrogen()->operation(); if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge; Register left_reg = ToRegister(left); Operand right_op = (right->IsRegister() || right->IsConstantOperand()) ? ToOperand(right) : Operand(EmitLoadRegister(right, ip)); Register result_reg = ToRegister(instr->result()); __ cmp(left_reg, right_op); __ Move(result_reg, left_reg, condition); __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition)); } else { ASSERT(instr->hydrogen()->representation().IsDouble()); DwVfpRegister left_reg = ToDoubleRegister(left); DwVfpRegister right_reg = ToDoubleRegister(right); DwVfpRegister result_reg = ToDoubleRegister(instr->result()); Label result_is_nan, return_left, return_right, check_zero, done; __ VFPCompareAndSetFlags(left_reg, right_reg); if (operation == HMathMinMax::kMathMin) { __ b(mi, &return_left); __ b(gt, &return_right); } else { __ b(mi, &return_right); __ b(gt, &return_left); } __ b(vs, &result_is_nan); // Left equals right => check for -0. __ VFPCompareAndSetFlags(left_reg, 0.0); if (left_reg.is(result_reg) || right_reg.is(result_reg)) { __ b(ne, &done); // left == right != 0. } else { __ b(ne, &return_left); // left == right != 0. } // At this point, both left and right are either 0 or -0. if (operation == HMathMinMax::kMathMin) { // We could use a single 'vorr' instruction here if we had NEON support. __ vneg(left_reg, left_reg); __ vsub(result_reg, left_reg, right_reg); __ vneg(result_reg, result_reg); } else { // Since we operate on +0 and/or -0, vadd and vand have the same effect; // the decision for vadd is easy because vand is a NEON instruction. __ vadd(result_reg, left_reg, right_reg); } __ b(&done); __ bind(&result_is_nan); __ vadd(result_reg, left_reg, right_reg); __ b(&done); __ bind(&return_right); __ Move(result_reg, right_reg); if (!left_reg.is(result_reg)) { __ b(&done); } __ bind(&return_left); __ Move(result_reg, left_reg); __ bind(&done); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DwVfpRegister left = ToDoubleRegister(instr->left()); DwVfpRegister right = ToDoubleRegister(instr->right()); DwVfpRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: __ vadd(result, left, right); break; case Token::SUB: __ vsub(result, left, right); break; case Token::MUL: __ vmul(result, left, right); break; case Token::DIV: __ vdiv(result, left, right); break; case Token::MOD: { // Save r0-r3 on the stack. __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); __ PrepareCallCFunction(0, 2, scratch0()); __ SetCallCDoubleArguments(left, right); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 0, 2); // Move the result in the double result register. __ GetCFunctionDoubleResult(result); // Restore r0-r3. __ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->left()).is(r1)); ASSERT(ToRegister(instr->right()).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); BinaryOpStub stub(instr->op(), NO_OVERWRITE); // Block literal pool emission to ensure nop indicating no inlined smi code // is in the correct position. Assembler::BlockConstPoolScope block_const_pool(masm()); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); __ nop(); // Signals no inlined code. } int LCodeGen::GetNextEmittedBlock() const { for (int i = current_block_ + 1; i < graph()->blocks()->length(); ++i) { if (!chunk_->GetLabel(i)->HasReplacement()) return i; } return -1; } template void LCodeGen::EmitBranch(InstrType instr, Condition cc) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || cc == al) { EmitGoto(left_block); } else if (left_block == next_block) { __ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ b(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ b(cc, chunk_->GetAssemblyLabel(left_block)); __ b(chunk_->GetAssemblyLabel(right_block)); } } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); } void LCodeGen::DoIsNumberAndBranch(LIsNumberAndBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsSmiOrInteger32() || r.IsDouble()) { EmitBranch(instr, al); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsTaggedNumber()) { EmitBranch(instr, al); } __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); __ ldr(scratch0(), FieldMemOperand(reg, HeapObject::kMapOffset)); __ CompareRoot(scratch0(), Heap::kHeapNumberMapRootIndex); EmitBranch(instr, eq); } } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32() || r.IsSmi()) { ASSERT(!info()->IsStub()); Register reg = ToRegister(instr->value()); __ cmp(reg, Operand::Zero()); EmitBranch(instr, ne); } else if (r.IsDouble()) { ASSERT(!info()->IsStub()); DwVfpRegister reg = ToDoubleRegister(instr->value()); // Test the double value. Zero and NaN are false. __ VFPCompareAndSetFlags(reg, 0.0); __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false) EmitBranch(instr, ne); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { ASSERT(!info()->IsStub()); __ CompareRoot(reg, Heap::kTrueValueRootIndex); EmitBranch(instr, eq); } else if (type.IsSmi()) { ASSERT(!info()->IsStub()); __ cmp(reg, Operand::Zero()); EmitBranch(instr, ne); } else if (type.IsJSArray()) { ASSERT(!info()->IsStub()); EmitBranch(instr, al); } else if (type.IsHeapNumber()) { ASSERT(!info()->IsStub()); DwVfpRegister dbl_scratch = double_scratch0(); __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); // Test the double value. Zero and NaN are false. __ VFPCompareAndSetFlags(dbl_scratch, 0.0); __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN) EmitBranch(instr, ne); } else if (type.IsString()) { ASSERT(!info()->IsStub()); __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); __ cmp(ip, Operand::Zero()); EmitBranch(instr, ne); } else { ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); if (expected.Contains(ToBooleanStub::UNDEFINED)) { // undefined -> false. __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ b(eq, instr->FalseLabel(chunk_)); } if (expected.Contains(ToBooleanStub::BOOLEAN)) { // Boolean -> its value. __ CompareRoot(reg, Heap::kTrueValueRootIndex); __ b(eq, instr->TrueLabel(chunk_)); __ CompareRoot(reg, Heap::kFalseValueRootIndex); __ b(eq, instr->FalseLabel(chunk_)); } if (expected.Contains(ToBooleanStub::NULL_TYPE)) { // 'null' -> false. __ CompareRoot(reg, Heap::kNullValueRootIndex); __ b(eq, instr->FalseLabel(chunk_)); } if (expected.Contains(ToBooleanStub::SMI)) { // Smis: 0 -> false, all other -> true. __ cmp(reg, Operand::Zero()); __ b(eq, instr->FalseLabel(chunk_)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected.NeedsMap()) { // If we need a map later and have a Smi -> deopt. __ SmiTst(reg); DeoptimizeIf(eq, instr->environment()); } const Register map = scratch0(); if (expected.NeedsMap()) { __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset)); if (expected.CanBeUndetectable()) { // Undetectable -> false. __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); __ b(ne, instr->FalseLabel(chunk_)); } } if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { // spec object -> true. __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE); __ b(ge, instr->TrueLabel(chunk_)); } if (expected.Contains(ToBooleanStub::STRING)) { // String value -> false iff empty. Label not_string; __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); __ b(ge, ¬_string); __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); __ cmp(ip, Operand::Zero()); __ b(ne, instr->TrueLabel(chunk_)); __ b(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected.Contains(ToBooleanStub::SYMBOL)) { // Symbol value -> true. __ CompareInstanceType(map, ip, SYMBOL_TYPE); __ b(eq, instr->TrueLabel(chunk_)); } if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. DwVfpRegister dbl_scratch = double_scratch0(); Label not_heap_number; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ b(ne, ¬_heap_number); __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); __ VFPCompareAndSetFlags(dbl_scratch, 0.0); __ cmp(r0, r0, vs); // NaN -> false. __ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false. __ b(instr->TrueLabel(chunk_)); __ bind(¬_heap_number); } if (!expected.IsGeneric()) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(al, instr->environment()); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); Condition cond = TokenToCondition(instr->op(), false); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { // Compare left and right operands as doubles and load the // resulting flags into the normal status register. __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); // If a NaN is involved, i.e. the result is unordered (V set), // jump to false block label. __ b(vs, instr->FalseLabel(chunk_)); } else { if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); if (instr->hydrogen_value()->representation().IsSmi()) { __ cmp(ToRegister(left), Operand(Smi::FromInt(value))); } else { __ cmp(ToRegister(left), Operand(value)); } } else if (left->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(left)); if (instr->hydrogen_value()->representation().IsSmi()) { __ cmp(ToRegister(right), Operand(Smi::FromInt(value))); } else { __ cmp(ToRegister(right), Operand(value)); } // We transposed the operands. Reverse the condition. cond = ReverseCondition(cond); } else { __ cmp(ToRegister(left), ToRegister(right)); } } EmitBranch(instr, cond); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); __ cmp(left, Operand(right)); EmitBranch(instr, eq); } Condition LCodeGen::EmitIsObject(Register input, Register temp1, Label* is_not_object, Label* is_object) { Register temp2 = scratch0(); __ JumpIfSmi(input, is_not_object); __ LoadRoot(temp2, Heap::kNullValueRootIndex); __ cmp(input, temp2); __ b(eq, is_object); // Load map. __ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); __ tst(temp2, Operand(1 << Map::kIsUndetectable)); __ b(ne, is_not_object); // Load instance type and check that it is in object type range. __ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); __ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ b(lt, is_not_object); __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); return le; } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); Condition true_cond = EmitIsObject(reg, temp1, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_)); EmitBranch(instr, true_cond); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Register input_reg = EmitLoadRegister(instr->value(), ip); __ SmiTst(input_reg); EmitBranch(instr, eq); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); __ tst(temp, Operand(1 << Map::kIsUndetectable)); EmitBranch(instr, ne); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { Token::Value op = instr->op(); Handle ic = CompareIC::GetUninitialized(isolate(), op); CallCode(ic, RelocInfo::CODE_TARGET, instr); // This instruction also signals no smi code inlined. __ cmp(r0, Operand::Zero()); Condition condition = ComputeCompareCondition(op); EmitBranch(instr, condition); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); if (!instr->hydrogen()->value()->IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); EmitBranch(instr, BranchCondition(instr->hydrogen())); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ AssertString(input); __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset)); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ ldr(scratch, FieldMemOperand(input, String::kHashFieldOffset)); __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); EmitBranch(instr, eq); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handleclass_name, Register input, Register temp, Register temp2) { ASSERT(!input.is(temp)); ASSERT(!input.is(temp2)); ASSERT(!temp.is(temp2)); __ JumpIfSmi(input, is_false); if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) { // Assuming the following assertions, we can use the same compares to test // for both being a function type and being in the object type range. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE); __ b(lt, is_false); __ b(eq, is_true); __ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE)); __ b(eq, is_true); } else { // Faster code path to avoid two compares: subtract lower bound from the // actual type and do a signed compare with the width of the type range. __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset)); __ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ b(gt, is_false); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset)); // Objects with a non-function constructor have class 'Object'. __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE); if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) { __ b(ne, is_true); } else { __ b(ne, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ ldr(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. __ cmp(temp, Operand(class_name)); // End with the answer in flags. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = scratch0(); Register temp2 = ToRegister(instr->temp()); Handle class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, eq); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); __ cmp(temp, Operand(instr->map())); EmitBranch(instr, eq); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { ASSERT(ToRegister(instr->left()).is(r0)); // Object is in r0. ASSERT(ToRegister(instr->right()).is(r1)); // Function is in r1. InstanceofStub stub(InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); __ cmp(r0, Operand::Zero()); __ mov(r0, Operand(factory()->false_value()), LeaveCC, ne); __ mov(r0, Operand(factory()->true_value()), LeaveCC, eq); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); } virtual LInstruction* instr() { return instr_; } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); Register result = ToRegister(instr->result()); ASSERT(object.is(r0)); ASSERT(result.is(r0)); // A Smi is not instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; Register map = temp; __ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); { // Block constant pool emission to ensure the positions of instructions are // as expected by the patcher. See InstanceofStub::Generate(). Assembler::BlockConstPoolScope block_const_pool(masm()); __ bind(deferred->map_check()); // Label for calculating code patching. // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch with // the cached map. PredictableCodeSizeScope predictable(masm_, 5 * Assembler::kInstrSize); Handle cell = factory()->NewCell(factory()->the_hole_value()); __ mov(ip, Operand(Handle(cell))); __ ldr(ip, FieldMemOperand(ip, PropertyCell::kValueOffset)); __ cmp(map, Operand(ip)); __ b(ne, &cache_miss); // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch // with true or false. __ mov(result, Operand(factory()->the_hole_value())); } __ b(&done); // The inlined call site cache did not match. Check null and string before // calling the deferred code. __ bind(&cache_miss); // Null is not instance of anything. __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(object, Operand(ip)); __ b(eq, &false_result); // String values is not instance of anything. Condition is_string = masm_->IsObjectStringType(object, temp); __ b(is_string, &false_result); // Go to the deferred code. __ b(deferred->entry()); __ bind(&false_result); __ LoadRoot(result, Heap::kFalseValueRootIndex); // Here result has either true or false. Deferred code also produces true or // false object. __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { Register result = ToRegister(instr->result()); ASSERT(result.is(r0)); InstanceofStub::Flags flags = InstanceofStub::kNoFlags; flags = static_cast( flags | InstanceofStub::kArgsInRegisters); flags = static_cast( flags | InstanceofStub::kCallSiteInlineCheck); flags = static_cast( flags | InstanceofStub::kReturnTrueFalseObject); InstanceofStub stub(flags); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Get the temp register reserved by the instruction. This needs to be r4 as // its slot of the pushing of safepoint registers is used to communicate the // offset to the location of the map check. Register temp = ToRegister(instr->temp()); ASSERT(temp.is(r4)); __ LoadHeapObject(InstanceofStub::right(), instr->function()); static const int kAdditionalDelta = 5; // Make sure that code size is predicable, since we use specific constants // offsets in the code to find embedded values.. PredictableCodeSizeScope predictable(masm_, 6 * Assembler::kInstrSize); int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; Label before_push_delta; __ bind(&before_push_delta); __ BlockConstPoolFor(kAdditionalDelta); __ mov(temp, Operand(delta * kPointerSize)); // The mov above can generate one or two instructions. The delta was computed // for two instructions, so we need to pad here in case of one instruction. if (masm_->InstructionsGeneratedSince(&before_push_delta) != 2) { ASSERT_EQ(1, masm_->InstructionsGeneratedSince(&before_push_delta)); __ nop(); } __ StoreToSafepointRegisterSlot(temp, temp); CallCodeGeneric(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); // Put the result value into the result register slot and // restore all registers. __ StoreToSafepointRegisterSlot(result, result); } void LCodeGen::DoInstanceSize(LInstanceSize* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); __ ldr(result, FieldMemOperand(object, HeapObject::kMapOffset)); __ ldrb(result, FieldMemOperand(result, Map::kInstanceSizeOffset)); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle ic = CompareIC::GetUninitialized(isolate(), op); CallCode(ic, RelocInfo::CODE_TARGET, instr); // This instruction also signals no smi code inlined. __ cmp(r0, Operand::Zero()); Condition condition = ComputeCompareCondition(op); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex, condition); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex, NegateCondition(condition)); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r0. __ push(r0); __ CallRuntime(Runtime::kTraceExit, 1); } if (info()->saves_caller_doubles()) { ASSERT(NeedsEagerFrame()); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } int no_frame_start = -1; if (NeedsEagerFrame()) { __ mov(sp, fp); no_frame_start = masm_->pc_offset(); __ ldm(ia_w, sp, fp.bit() | lr.bit()); } if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); int32_t sp_delta = (parameter_count + 1) * kPointerSize; if (sp_delta != 0) { __ add(sp, sp, Operand(sp_delta)); } } else { Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi __ SmiUntag(reg); __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2)); } __ Jump(lr); if (no_frame_start != -1) { info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); } } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ mov(ip, Operand(Handle(instr->hydrogen()->cell()))); __ ldr(result, FieldMemOperand(ip, Cell::kValueOffset)); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); DeoptimizeIf(eq, instr->environment()); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r2, Operand(instr->name())); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->value()); Register cell = scratch0(); // Load the cell. __ mov(cell, Operand(instr->hydrogen()->cell())); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. if (instr->hydrogen()->RequiresHoleCheck()) { // We use a temp to check the payload (CompareRoot might clobber ip). Register payload = ToRegister(instr->temp()); __ ldr(payload, FieldMemOperand(cell, Cell::kValueOffset)); __ CompareRoot(payload, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr->environment()); } // Store the value. __ str(value, FieldMemOperand(cell, Cell::kValueOffset)); // Cells are always rescanned, so no write barrier here. } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); __ mov(r2, Operand(instr->name())); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ldr(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr->environment()); } else { __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); MemOperand target = ContextOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ ldr(scratch, target); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch, ip); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr->environment()); } else { __ b(ne, &skip_assignment); } } __ str(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, target.offset(), value, scratch, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); Register object = ToRegister(instr->object()); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); __ ldr(result, MemOperand(object, offset)); return; } if (instr->hydrogen()->representation().IsDouble()) { DwVfpRegister result = ToDoubleRegister(instr->result()); __ vldr(result, FieldMemOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (access.IsInobject()) { __ ldr(result, FieldMemOperand(object, offset)); } else { __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ ldr(result, FieldMemOperand(result, offset)); } } void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, Register object, Handle type, Handle name, LEnvironment* env) { LookupResult lookup(isolate()); type->LookupDescriptor(NULL, *name, &lookup); ASSERT(lookup.IsFound() || lookup.IsCacheable()); if (lookup.IsField()) { int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ ldr(result, FieldMemOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ ldr(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); } } else if (lookup.IsConstant()) { Handle constant(lookup.GetConstantFromMap(*type), isolate()); __ LoadObject(result, constant); } else { // Negative lookup. // Check prototypes. Handle current(HeapObject::cast((*type)->prototype())); Heap* heap = type->GetHeap(); while (*current != heap->null_value()) { __ LoadHeapObject(result, current); __ ldr(result, FieldMemOperand(result, HeapObject::kMapOffset)); __ cmp(result, Operand(Handle(current->map()))); DeoptimizeIf(ne, env); current = Handle(HeapObject::cast(current->map()->prototype())); } __ LoadRoot(result, Heap::kUndefinedValueRootIndex); } } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); Register object_map = scratch0(); int map_count = instr->hydrogen()->types()->length(); bool need_generic = instr->hydrogen()->need_generic(); if (map_count == 0 && !need_generic) { DeoptimizeIf(al, instr->environment()); return; } Handle name = instr->hydrogen()->name(); Label done; __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); for (int i = 0; i < map_count; ++i) { bool last = (i == map_count - 1); Handle map = instr->hydrogen()->types()->at(i); Label check_passed; __ CompareMap(object_map, map, &check_passed); if (last && !need_generic) { DeoptimizeIf(ne, instr->environment()); __ bind(&check_passed); EmitLoadFieldOrConstantFunction( result, object, map, name, instr->environment()); } else { Label next; __ b(ne, &next); __ bind(&check_passed); EmitLoadFieldOrConstantFunction( result, object, map, name, instr->environment()); __ b(&done); __ bind(&next); } } if (need_generic) { __ mov(r2, Operand(name)); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); } __ bind(&done); } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r0)); ASSERT(ToRegister(instr->result()).is(r0)); // Name is always in r2. __ mov(r2, Operand(instr->name())); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Check that the function really is a function. Load map into the // result register. __ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); DeoptimizeIf(ne, instr->environment()); // Make sure that the function has an instance prototype. Label non_instance; __ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); __ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); __ b(ne, &non_instance); // Get the prototype or initial map from the function. __ ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); DeoptimizeIf(eq, instr->environment()); // If the function does not have an initial map, we're done. Label done; __ CompareObjectType(result, scratch, scratch, MAP_TYPE); __ b(ne, &done); // Get the prototype from the initial map. __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); __ jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. __ bind(&non_instance); __ ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register to_reg = ToRegister(instr->result()); Register from_reg = ToRegister(instr->object()); __ ldr(to_reg, FieldMemOperand(from_reg, ExternalArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); if (instr->length()->IsConstantOperand() && instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int const_length = ToInteger32(LConstantOperand::cast(instr->length())); int index = (const_length - const_index) + 1; __ ldr(result, MemOperand(arguments, index * kPointerSize)); } else { Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. __ sub(length, length, index); __ add(length, length, Operand(1)); __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; int additional_offset = instr->additional_index() << element_size_shift; if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { DwVfpRegister result = ToDoubleRegister(instr->result()); Operand operand = key_is_constant ? Operand(constant_key << element_size_shift) : Operand(key, LSL, shift_size); __ add(scratch0(), external_pointer, operand); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ vldr(double_scratch0().low(), scratch0(), additional_offset); __ vcvt_f64_f32(result, double_scratch0().low()); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ vldr(result, scratch0(), additional_offset); } } else { Register result = ToRegister(instr->result()); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, instr->additional_index(), additional_offset); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ ldrsb(result, mem_operand); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ ldrb(result, mem_operand); break; case EXTERNAL_SHORT_ELEMENTS: __ ldrsh(result, mem_operand); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ ldrh(result, mem_operand); break; case EXTERNAL_INT_ELEMENTS: __ ldr(result, mem_operand); break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ ldr(result, mem_operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { __ cmp(result, Operand(0x80000000)); DeoptimizeIf(cs, instr->environment()); } break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; DwVfpRegister result = ToDoubleRegister(instr->result()); Register scratch = scratch0(); int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int base_offset = (FixedDoubleArray::kHeaderSize - kHeapObjectTag) + ((constant_key + instr->additional_index()) << element_size_shift); if (!key_is_constant) { __ add(elements, elements, Operand(key, LSL, shift_size)); } __ add(elements, elements, Operand(base_offset)); __ vldr(result, elements, 0); if (instr->hydrogen()->RequiresHoleCheck()) { __ ldr(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); __ cmp(scratch, Operand(kHoleNanUpper32)); DeoptimizeIf(eq, instr->environment()); } } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Register store_base = scratch; int offset = 0; if (instr->key()->IsConstantOperand()) { LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + instr->additional_index()); store_base = elements; } else { Register key = EmitLoadRegister(instr->key(), scratch0()); // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); } else { __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); } offset = FixedArray::OffsetOfElementAt(instr->additional_index()); } __ ldr(result, FieldMemOperand(store_base, offset)); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { __ SmiTst(result); DeoptimizeIf(ne, instr->environment()); } else { __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ cmp(result, scratch); DeoptimizeIf(eq, instr->environment()); } } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_external()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base, bool key_is_constant, int constant_key, int element_size, int shift_size, int additional_index, int additional_offset) { if (additional_index != 0 && !key_is_constant) { additional_index *= 1 << (element_size - shift_size); __ add(scratch0(), key, Operand(additional_index)); } if (key_is_constant) { return MemOperand(base, (constant_key << element_size) + additional_offset); } if (additional_index == 0) { if (shift_size >= 0) { return MemOperand(base, key, LSL, shift_size); } else { ASSERT_EQ(-1, shift_size); return MemOperand(base, key, LSR, 1); } } if (shift_size >= 0) { return MemOperand(base, scratch0(), LSL, shift_size); } else { ASSERT_EQ(-1, shift_size); return MemOperand(base, scratch0(), LSR, 1); } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r1)); ASSERT(ToRegister(instr->key()).is(r0)); Handle ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ sub(result, sp, Operand(2 * kPointerSize)); } else { // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ mov(result, fp, LeaveCC, ne); __ mov(result, scratch, LeaveCC, eq); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ cmp(fp, elem); __ mov(result, Operand(scope()->num_parameters())); __ b(eq, &done); // Arguments adaptor frame present. Get argument length from there. __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register scratch = scratch0(); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, receiver_ok; // Do not transform the receiver to object for strict mode // functions. __ ldr(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ ldr(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); __ tst(scratch, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ b(ne, &receiver_ok); // Do not transform the receiver to object for builtins. __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ b(ne, &receiver_ok); // Normal function. Replace undefined or null with global receiver. __ LoadRoot(scratch, Heap::kNullValueRootIndex); __ cmp(receiver, scratch); __ b(eq, &global_object); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ cmp(receiver, scratch); __ b(eq, &global_object); // Deoptimize if the receiver is not a JS object. __ SmiTst(receiver); DeoptimizeIf(eq, instr->environment()); __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE); DeoptimizeIf(lt, instr->environment()); __ jmp(&receiver_ok); __ bind(&global_object); __ ldr(receiver, GlobalObjectOperand()); __ ldr(receiver, FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); __ bind(&receiver_ok); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); ASSERT(receiver.is(r0)); // Used for parameter count. ASSERT(function.is(r1)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(r0)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmp(length, Operand(kArgumentsLimit)); DeoptimizeIf(hi, instr->environment()); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ mov(receiver, length); // The arguments are at a one pointer size offset from elements. __ add(elements, elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ cmp(length, Operand::Zero()); __ b(eq, &invoke); __ bind(&loop); __ ldr(scratch, MemOperand(elements, length, LSL, 2)); __ push(scratch); __ sub(length, length, Operand(1), SetCC); __ b(ne, &loop); __ bind(&invoke); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in receiver which is r0, as expected // by InvokeFunction. ParameterCount actual(receiver); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator, CALL_AS_METHOD); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort("DoPushArgument not implemented for double type."); } else { Register argument_reg = EmitLoadRegister(argument, ip); __ push(argument_reg); } } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { // If there is a non-return use, the context must be moved to a register. Register result = ToRegister(instr->result()); for (HUseIterator it(instr->hydrogen()->uses()); !it.Done(); it.Advance()) { if (!it.value()->IsReturn()) { __ mov(result, cp); return; } } } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ldr(result, MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { __ push(cp); // The context is the first argument. __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs()); __ push(scratch0()); __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); __ push(scratch0()); CallRuntime(Runtime::kDeclareGlobals, 3, instr); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register result = ToRegister(instr->result()); __ ldr(result, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global_object()); Register result = ToRegister(instr->result()); __ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle function, int formal_parameter_count, int arity, LInstruction* instr, CallKind call_kind, R1State r1_state) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); if (can_invoke_directly) { if (r1_state == R1_UNINITIALIZED) { __ LoadHeapObject(r1, function); } // Change context. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Set r0 to arguments count if adaption is not needed. Assumes that r0 // is available to write to at this point. if (dont_adapt_arguments) { __ mov(r0, Operand(arity)); } // Invoke function. __ SetCallKind(r5, call_kind); __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); __ Call(ip); // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(arity); ParameterCount expected(formal_parameter_count); __ InvokeFunction( function, expected, count, CALL_FUNCTION, generator, call_kind); } // Restore context. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(r0)); CallKnownFunction(instr->hydrogen()->function(), instr->hydrogen()->formal_parameter_count(), instr->arity(), instr, CALL_AS_METHOD, R1_UNINITIALIZED); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Deoptimize if not a heap number. __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); DeoptimizeIf(ne, instr->environment()); Label done; Register exponent = scratch0(); scratch = no_reg; __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. __ tst(exponent, Operand(HeapNumber::kSignMask)); // Move the input to the result if necessary. __ Move(result, input); __ b(eq, &done); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(r1) ? r0 : r1; Register tmp2 = input.is(r2) ? r0 : r2; Register tmp3 = input.is(r3) ? r0 : r3; Register tmp4 = input.is(r4) ? r0 : r4; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ b(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Set the pointer to the new heap number in tmp. if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0)); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. __ bic(exponent, exponent, Operand(HeapNumber::kSignMask)); __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, result); } __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ cmp(input, Operand::Zero()); __ Move(result, input, pl); // We can make rsb conditional because the previous cmp instruction // will clear the V (overflow) flag and rsb won't set this flag // if input is positive. __ rsb(result, input, Operand::Zero(), SetCC, mi); // Deoptimize on overflow. DeoptimizeIf(vs, instr->environment()); } void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } virtual LInstruction* instr() { return instr_; } private: LMathAbs* instr_; }; Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { DwVfpRegister input = ToDoubleRegister(instr->value()); DwVfpRegister result = ToDoubleRegister(instr->result()); __ vabs(result, input); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LMathFloor* instr) { DwVfpRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); Register input_high = scratch0(); Label done, exact; __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact); DeoptimizeIf(al, instr->environment()); __ bind(&exact); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. __ cmp(result, Operand::Zero()); __ b(ne, &done); __ cmp(input_high, Operand::Zero()); DeoptimizeIf(mi, instr->environment()); } __ bind(&done); } void LCodeGen::DoMathRound(LMathRound* instr) { DwVfpRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp()); DwVfpRegister input_plus_dot_five = double_scratch1; Register input_high = scratch0(); DwVfpRegister dot_five = double_scratch0(); Label convert, done; __ Vmov(dot_five, 0.5, scratch0()); __ vabs(double_scratch1, input); __ VFPCompareAndSetFlags(double_scratch1, dot_five); // If input is in [-0.5, -0], the result is -0. // If input is in [+0, +0.5[, the result is +0. // If the input is +0.5, the result is 1. __ b(hi, &convert); // Out of [-0.5, +0.5]. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ VmovHigh(input_high, input); __ cmp(input_high, Operand::Zero()); DeoptimizeIf(mi, instr->environment()); // [-0.5, -0]. } __ VFPCompareAndSetFlags(input, dot_five); __ mov(result, Operand(1), LeaveCC, eq); // +0.5. // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on // flag kBailoutOnMinusZero. __ mov(result, Operand::Zero(), LeaveCC, ne); __ b(&done); __ bind(&convert); __ vadd(input_plus_dot_five, input, dot_five); // Reuse dot_five (double_scratch0) as we no longer need this value. __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(), &done, &done); DeoptimizeIf(al, instr->environment()); __ bind(&done); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { DwVfpRegister input = ToDoubleRegister(instr->value()); DwVfpRegister result = ToDoubleRegister(instr->result()); __ vsqrt(result, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { DwVfpRegister input = ToDoubleRegister(instr->value()); DwVfpRegister result = ToDoubleRegister(instr->result()); DwVfpRegister temp = ToDoubleRegister(instr->temp()); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done; __ vmov(temp, -V8_INFINITY, scratch0()); __ VFPCompareAndSetFlags(input, temp); __ vneg(result, temp, eq); __ b(&done, eq); // Add +0 to convert -0 to +0. __ vadd(result, input, kDoubleRegZero); __ vsqrt(result, result); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. ASSERT(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(d2)); ASSERT(!instr->right()->IsRegister() || ToRegister(instr->right()).is(r2)); ASSERT(ToDoubleRegister(instr->left()).is(d1)); ASSERT(ToDoubleRegister(instr->result()).is(d3)); if (exponent_type.IsSmi()) { MathPowStub stub(MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(r2, &no_deopt); __ ldr(r7, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(r7, Operand(ip)); DeoptimizeIf(ne, instr->environment()); __ bind(&no_deopt); MathPowStub stub(MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(MathPowStub::INTEGER); __ CallStub(&stub); } else { ASSERT(exponent_type.IsDouble()); MathPowStub stub(MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoRandom(LRandom* instr) { class DeferredDoRandom: public LDeferredCode { public: DeferredDoRandom(LCodeGen* codegen, LRandom* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredRandom(instr_); } virtual LInstruction* instr() { return instr_; } private: LRandom* instr_; }; DeferredDoRandom* deferred = new(zone()) DeferredDoRandom(this, instr); // Having marked this instruction as a call we can use any // registers. ASSERT(ToDoubleRegister(instr->result()).is(d7)); ASSERT(ToRegister(instr->global_object()).is(r0)); static const int kSeedSize = sizeof(uint32_t); STATIC_ASSERT(kPointerSize == kSeedSize); __ ldr(r0, FieldMemOperand(r0, GlobalObject::kNativeContextOffset)); static const int kRandomSeedOffset = FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; __ ldr(r2, FieldMemOperand(r0, kRandomSeedOffset)); // r2: FixedArray of the native context's random seeds // Load state[0]. __ ldr(r1, FieldMemOperand(r2, ByteArray::kHeaderSize)); __ cmp(r1, Operand::Zero()); __ b(eq, deferred->entry()); // Load state[1]. __ ldr(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize)); // r1: state[0]. // r0: state[1]. // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) __ and_(r3, r1, Operand(0xFFFF)); __ mov(r4, Operand(18273)); __ mul(r3, r3, r4); __ add(r1, r3, Operand(r1, LSR, 16)); // Save state[0]. __ str(r1, FieldMemOperand(r2, ByteArray::kHeaderSize)); // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) __ and_(r3, r0, Operand(0xFFFF)); __ mov(r4, Operand(36969)); __ mul(r3, r3, r4); __ add(r0, r3, Operand(r0, LSR, 16)); // Save state[1]. __ str(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize)); // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) __ and_(r0, r0, Operand(0x3FFFF)); __ add(r0, r0, Operand(r1, LSL, 14)); __ bind(deferred->exit()); // 0x41300000 is the top half of 1.0 x 2^20 as a double. // Create this constant using mov/orr to avoid PC relative load. __ mov(r1, Operand(0x41000000)); __ orr(r1, r1, Operand(0x300000)); // Move 0x41300000xxxxxxxx (x = random bits) to VFP. __ vmov(d7, r0, r1); // Move 0x4130000000000000 to VFP. __ mov(r0, Operand::Zero()); __ vmov(d8, r0, r1); // Subtract and store the result in the heap number. __ vsub(d7, d7, d8); } void LCodeGen::DoDeferredRandom(LRandom* instr) { __ PrepareCallCFunction(1, scratch0()); __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); // Return value is in r0. } void LCodeGen::DoMathExp(LMathExp* instr) { DwVfpRegister input = ToDoubleRegister(instr->value()); DwVfpRegister result = ToDoubleRegister(instr->result()); DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp()); DwVfpRegister double_scratch2 = double_scratch0(); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); MathExpGenerator::EmitMathExp( masm(), input, result, double_scratch1, double_scratch2, temp1, temp2, scratch0()); } void LCodeGen::DoMathLog(LMathLog* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathTan(LMathTan* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LMathCos* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LMathSin* instr) { ASSERT(ToDoubleRegister(instr->result()).is(d2)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { ASSERT(ToRegister(instr->function()).is(r1)); ASSERT(instr->HasPointerMap()); Handle known_function = instr->hydrogen()->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(instr->arity()); __ InvokeFunction(r1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { CallKnownFunction(known_function, instr->hydrogen()->formal_parameter_count(), instr->arity(), instr, CALL_AS_METHOD, R1_CONTAINS_TARGET); } } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); Handle ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ mov(r2, Operand(instr->name())); CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->function()).is(r1)); ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->result()).is(r0)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ mov(r2, Operand(instr->name())); CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(r0)); CallKnownFunction(instr->hydrogen()->target(), instr->hydrogen()->formal_parameter_count(), instr->arity(), instr, CALL_AS_FUNCTION, R1_UNINITIALIZED); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->constructor()).is(r1)); ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r0, Operand(instr->arity())); // No cell in r2 for construct type feedback in optimized code Handle undefined_value(isolate()->factory()->undefined_value()); __ mov(r2, Operand(undefined_value)); CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { ASSERT(ToRegister(instr->constructor()).is(r1)); ASSERT(ToRegister(instr->result()).is(r0)); __ mov(r0, Operand(instr->arity())); __ mov(r2, Operand(instr->hydrogen()->property_cell())); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; ContextCheckMode context_mode = CONTEXT_CHECK_NOT_REQUIRED; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(kind, context_mode, override_mode); CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here // look at the first argument __ ldr(r5, MemOperand(sp, 0)); __ cmp(r5, Operand::Zero()); __ b(eq, &packed_case); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(holey_kind, context_mode, override_mode); CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); __ jmp(&done); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(kind, context_mode, override_mode); CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(kind, context_mode, override_mode); CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); __ add(result, base, Operand(instr->offset())); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Representation representation = instr->representation(); Register object = ToRegister(instr->object()); Register scratch = scratch0(); HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register value = ToRegister(instr->value()); __ str(value, MemOperand(object, offset)); return; } Handle transition = instr->transition(); if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { Register value = ToRegister(instr->value()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ SmiTst(value); DeoptimizeIf(eq, instr->environment()); } } else if (FLAG_track_double_fields && representation.IsDouble()) { ASSERT(transition.is_null()); ASSERT(access.IsInobject()); ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); DwVfpRegister value = ToDoubleRegister(instr->value()); __ vstr(value, FieldMemOperand(object, offset)); return; } if (!transition.is_null()) { __ mov(scratch, Operand(transition)); __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); if (instr->hydrogen()->NeedsWriteBarrierForMap()) { Register temp = ToRegister(instr->temp()); // Update the write barrier for the map field. __ RecordWriteField(object, HeapObject::kMapOffset, scratch, temp, GetLinkRegisterState(), kSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } } // Do the store. Register value = ToRegister(instr->value()); ASSERT(!object.is(value)); SmiCheck check_needed = instr->hydrogen()->value()->IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; if (access.IsInobject()) { __ str(value, FieldMemOperand(object, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the object for in-object properties. __ RecordWriteField(object, offset, value, scratch, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } else { __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ str(value, FieldMemOperand(scratch, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWriteField(scratch, offset, value, object, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); // Name is always in r2. __ mov(r2, Operand(instr->name())); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); } void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) { if (FLAG_debug_code && check->hydrogen()->skip_check()) { Label done; __ b(NegateCondition(cc), &done); __ stop("eliminated bounds check failed"); __ bind(&done); } else { DeoptimizeIf(cc, check->environment()); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { if (instr->hydrogen()->skip_check()) return; if (instr->index()->IsConstantOperand()) { int constant_index = ToInteger32(LConstantOperand::cast(instr->index())); if (instr->hydrogen()->length()->representation().IsSmi()) { __ mov(ip, Operand(Smi::FromInt(constant_index))); } else { __ mov(ip, Operand(constant_index)); } __ cmp(ip, ToRegister(instr->length())); } else { __ cmp(ToRegister(instr->index()), ToRegister(instr->length())); } Condition condition = instr->hydrogen()->allow_equality() ? hi : hs; ApplyCheckIf(condition, instr); } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; int additional_offset = instr->additional_index() << element_size_shift; if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { DwVfpRegister value(ToDoubleRegister(instr->value())); Operand operand(key_is_constant ? Operand(constant_key << element_size_shift) : Operand(key, LSL, shift_size)); __ add(scratch0(), external_pointer, operand); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ vcvt_f32_f64(double_scratch0().low(), value); __ vstr(double_scratch0().low(), scratch0(), additional_offset); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ vstr(value, scratch0(), additional_offset); } } else { Register value(ToRegister(instr->value())); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, instr->additional_index(), additional_offset); switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ strb(value, mem_operand); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ strh(value, mem_operand); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ str(value, mem_operand); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { DwVfpRegister value = ToDoubleRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = no_reg; Register scratch = scratch0(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; // Calculate the effective address of the slot in the array to store the // double value. if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - kSmiTagSize) : element_size_shift; Operand operand = key_is_constant ? Operand((constant_key << element_size_shift) + FixedDoubleArray::kHeaderSize - kHeapObjectTag) : Operand(key, LSL, shift_size); __ add(scratch, elements, operand); if (!key_is_constant) { __ add(scratch, scratch, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); } if (instr->NeedsCanonicalization()) { // Force a canonical NaN. if (masm()->emit_debug_code()) { __ vmrs(ip); __ tst(ip, Operand(kVFPDefaultNaNModeControlBit)); __ Assert(ne, "Default NaN mode not set"); } __ VFPCanonicalizeNaN(value); } __ vstr(value, scratch, instr->additional_index() << element_size_shift); } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); Register store_base = scratch; int offset = 0; // Do the store. if (instr->key()->IsConstantOperand()) { ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + instr->additional_index()); store_base = elements; } else { // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); } else { __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); } offset = FixedArray::OffsetOfElementAt(instr->additional_index()); } __ str(value, FieldMemOperand(store_base, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ add(key, store_base, Operand(offset - kHeapObjectTag)); __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { // By cases: external, fast double if (instr->is_external()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(r2)); ASSERT(ToRegister(instr->key()).is(r1)); ASSERT(ToRegister(instr->value()).is(r0)); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register scratch = scratch0(); Handle from_map = instr->original_map(); Handle to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); __ cmp(scratch, Operand(from_map)); __ b(ne, ¬_applicable); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ mov(new_map_reg, Operand(to_map)); __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, scratch, GetLinkRegisterState(), kDontSaveFPRegs); } else { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ Move(r0, object_reg); __ Move(r1, to_map); TransitionElementsKindStub stub(from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); } __ bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp = ToRegister(instr->temp()); __ TestJSArrayForAllocationMemento(object, temp); DeoptimizeIf(eq, instr->environment()); } void LCodeGen::DoStringAdd(LStringAdd* instr) { __ push(ToRegister(instr->left())); __ push(ToRegister(instr->right())); StringAddStub stub(instr->hydrogen()->flags()); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, Operand::Zero()); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ mov(scratch, Operand(Smi::FromInt(const_index))); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); __ AssertSmi(r0); __ SmiUntag(r0); __ StoreToSafepointRegisterSlot(r0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); ASSERT(!char_code.is(result)); __ cmp(char_code, Operand(String::kMaxOneByteCharCode)); __ b(hi, deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(result, ip); __ b(eq, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, Operand::Zero()); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); __ StoreToSafepointRegisterSlot(r0, result); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); SwVfpRegister single_scratch = double_scratch0().low(); if (input->IsStackSlot()) { Register scratch = scratch0(); __ ldr(scratch, ToMemOperand(input)); __ vmov(single_scratch, scratch); } else { __ vmov(single_scratch, ToRegister(input)); } __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch); } void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister()); LOperand* output = instr->result(); ASSERT(output->IsRegister()); __ SmiTag(ToRegister(output), ToRegister(input), SetCC); if (!instr->hydrogen()->value()->HasRange() || !instr->hydrogen()->value()->range()->IsInSmiRange()) { DeoptimizeIf(vs, instr->environment()); } } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); SwVfpRegister flt_scratch = double_scratch0().low(); __ vmov(flt_scratch, ToRegister(input)); __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI: public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_, instr_->value(), SIGNED_INT32); } virtual LInstruction* instr() { return instr_; } private: LNumberTagI* instr_; }; Register src = ToRegister(instr->value()); Register dst = ToRegister(instr->result()); DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); __ SmiTag(dst, src, SetCC); __ b(vs, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU: public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_, instr_->value(), UNSIGNED_INT32); } virtual LInstruction* instr() { return instr_; } private: LNumberTagU* instr_; }; LOperand* input = instr->value(); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ cmp(reg, Operand(Smi::kMaxValue)); __ b(hi, deferred->entry()); __ SmiTag(reg, reg); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagI(LInstruction* instr, LOperand* value, IntegerSignedness signedness) { Label slow; Register src = ToRegister(value); Register dst = ToRegister(instr->result()); LowDwVfpRegister dbl_scratch = double_scratch0(); // Preserve the value of all registers. PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); Label done; if (signedness == SIGNED_INT32) { // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. if (dst.is(src)) { __ SmiUntag(src, dst); __ eor(src, src, Operand(0x80000000)); } __ vmov(dbl_scratch.low(), src); __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low()); } else { __ vmov(dbl_scratch.low(), src); __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low()); } if (FLAG_inline_new) { __ LoadRoot(scratch0(), Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r5, r3, r4, scratch0(), &slow, DONT_TAG_RESULT); __ Move(dst, r5); __ b(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); // TODO(3095996): Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ mov(ip, Operand::Zero()); __ StoreToSafepointRegisterSlot(ip, dst); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); __ Move(dst, r0); __ sub(dst, dst, Operand(kHeapObjectTag)); // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ vstr(dbl_scratch, dst, HeapNumber::kValueOffset); __ add(dst, dst, Operand(kHeapObjectTag)); __ StoreToSafepointRegisterSlot(dst, dst); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagD* instr_; }; DwVfpRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); bool convert_hole = false; HValue* change_input = instr->hydrogen()->value(); if (change_input->IsLoadKeyed()) { HLoadKeyed* load = HLoadKeyed::cast(change_input); convert_hole = load->UsesMustHandleHole(); } Label no_special_nan_handling; Label done; if (convert_hole) { DwVfpRegister input_reg = ToDoubleRegister(instr->value()); __ VFPCompareAndSetFlags(input_reg, input_reg); __ b(vc, &no_special_nan_handling); __ VmovHigh(scratch, input_reg); __ cmp(scratch, Operand(kHoleNanUpper32)); // If not the hole NaN, force the NaN to be canonical. __ VFPCanonicalizeNaN(input_reg, ne); __ b(ne, &no_special_nan_handling); __ Move(reg, factory()->the_hole_value()); __ b(&done); } __ bind(&no_special_nan_handling); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); // We want the untagged address first for performance __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(), DONT_TAG_RESULT); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ vstr(input_reg, reg, HeapNumber::kValueOffset); // Now that we have finished with the object's real address tag it __ add(reg, reg, Operand(kHeapObjectTag)); __ bind(&done); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ mov(reg, Operand::Zero()); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); __ sub(r0, r0, Operand(kHeapObjectTag)); __ StoreToSafepointRegisterSlot(r0, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ SmiTag(ToRegister(instr->result()), ToRegister(instr->value())); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); if (instr->needs_check()) { STATIC_ASSERT(kHeapObjectTag == 1); // If the input is a HeapObject, SmiUntag will set the carry flag. __ SmiUntag(result, input, SetCC); DeoptimizeIf(cs, instr->environment()); } else { __ SmiUntag(result, input); } } void LCodeGen::EmitNumberUntagD(Register input_reg, DwVfpRegister result_reg, bool allow_undefined_as_nan, bool deoptimize_on_minus_zero, LEnvironment* env, NumberUntagDMode mode) { Register scratch = scratch0(); SwVfpRegister flt_scratch = double_scratch0().low(); ASSERT(!result_reg.is(double_scratch0())); Label load_smi, heap_number, done; STATIC_ASSERT(NUMBER_CANDIDATE_IS_ANY_TAGGED_CONVERT_HOLE > NUMBER_CANDIDATE_IS_ANY_TAGGED); if (mode >= NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); // Heap number map check. __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, Operand(ip)); if (!allow_undefined_as_nan) { DeoptimizeIf(ne, env); } else { Label heap_number, convert; __ b(eq, &heap_number); // Convert undefined (and hole) to NaN. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(input_reg, Operand(ip)); if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED_CONVERT_HOLE) { __ b(eq, &convert); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(input_reg, Operand(ip)); } DeoptimizeIf(ne, env); __ bind(&convert); __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag); __ jmp(&done); __ bind(&heap_number); } // Heap number to double register conversion. __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag); if (deoptimize_on_minus_zero) { __ VmovLow(scratch, result_reg); __ cmp(scratch, Operand::Zero()); __ b(ne, &done); __ VmovHigh(scratch, result_reg); __ cmp(scratch, Operand(HeapNumber::kSignMask)); DeoptimizeIf(eq, env); } __ jmp(&done); } else { __ SmiUntag(scratch, input_reg); ASSERT(mode == NUMBER_CANDIDATE_IS_SMI); } // Smi to double register conversion __ bind(&load_smi); // scratch: untagged value of input_reg __ vmov(flt_scratch, scratch); __ vcvt_f64_s32(result_reg, flt_scratch); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->value()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); LowDwVfpRegister double_scratch = double_scratch0(); DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp3()); ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // The input was optimistically untagged; revert it. // The carry flag is set when we reach this deferred code as we just executed // SmiUntag(heap_object, SetCC) STATIC_ASSERT(kHeapObjectTag == 1); __ adc(input_reg, input_reg, Operand(input_reg)); // Heap number map check. __ ldr(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch1, Operand(ip)); if (instr->truncating()) { Register scratch3 = ToRegister(instr->temp2()); ASSERT(!scratch3.is(input_reg) && !scratch3.is(scratch1) && !scratch3.is(scratch2)); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. Label heap_number; __ b(eq, &heap_number); // Check for undefined. Undefined is converted to zero for truncating // conversions. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(input_reg, Operand(ip)); DeoptimizeIf(ne, instr->environment()); __ mov(input_reg, Operand::Zero()); __ b(&done); __ bind(&heap_number); __ sub(scratch1, input_reg, Operand(kHeapObjectTag)); __ vldr(double_scratch2, scratch1, HeapNumber::kValueOffset); __ ECMAToInt32(input_reg, double_scratch2, scratch1, scratch2, scratch3, double_scratch); } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(ne, instr->environment()); __ sub(ip, input_reg, Operand(kHeapObjectTag)); __ vldr(double_scratch2, ip, HeapNumber::kValueOffset); __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch); DeoptimizeIf(ne, instr->environment()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ cmp(input_reg, Operand::Zero()); __ b(ne, &done); __ VmovHigh(scratch1, double_scratch2); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } virtual LInstruction* instr() { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); // Optimistically untag the input. // If the input is a HeapObject, SmiUntag will set the carry flag. __ SmiUntag(input_reg, SetCC); // Branch to deferred code if the input was tagged. // The deferred code will take care of restoring the tag. __ b(cs, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DwVfpRegister result_reg = ToDoubleRegister(result); NumberUntagDMode mode = NUMBER_CANDIDATE_IS_ANY_TAGGED; HValue* value = instr->hydrogen()->value(); if (value->type().IsSmi()) { mode = NUMBER_CANDIDATE_IS_SMI; } else if (value->IsLoadKeyed()) { HLoadKeyed* load = HLoadKeyed::cast(value); if (load->UsesMustHandleHole()) { if (load->hole_mode() == ALLOW_RETURN_HOLE) { mode = NUMBER_CANDIDATE_IS_ANY_TAGGED_CONVERT_HOLE; } } } EmitNumberUntagD(input_reg, result_reg, instr->hydrogen()->allow_undefined_as_nan(), instr->hydrogen()->deoptimize_on_minus_zero(), instr->environment(), mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); DwVfpRegister double_input = ToDoubleRegister(instr->value()); LowDwVfpRegister double_scratch = double_scratch0(); if (instr->truncating()) { Register scratch3 = ToRegister(instr->temp2()); __ ECMAToInt32(result_reg, double_input, scratch1, scratch2, scratch3, double_scratch); } else { __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); // Deoptimize if the input wasn't a int32 (inside a double). DeoptimizeIf(ne, instr->environment()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ cmp(result_reg, Operand::Zero()); __ b(ne, &done); __ VmovHigh(scratch1, double_input); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); __ bind(&done); } } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); DwVfpRegister double_input = ToDoubleRegister(instr->value()); LowDwVfpRegister double_scratch = double_scratch0(); if (instr->truncating()) { Register scratch3 = ToRegister(instr->temp2()); __ ECMAToInt32(result_reg, double_input, scratch1, scratch2, scratch3, double_scratch); } else { __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); // Deoptimize if the input wasn't a int32 (inside a double). DeoptimizeIf(ne, instr->environment()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ cmp(result_reg, Operand::Zero()); __ b(ne, &done); __ VmovHigh(scratch1, double_input); __ tst(scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment()); __ bind(&done); } } __ SmiTag(result_reg, SetCC); DeoptimizeIf(vs, instr->environment()); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input)); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->IsHeapObject()) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input)); DeoptimizeIf(eq, instr->environment()); } } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmp(scratch, Operand(first)); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr->environment()); } else { DeoptimizeIf(lo, instr->environment()); // Omit check for the last type. if (last != LAST_TYPE) { __ cmp(scratch, Operand(last)); DeoptimizeIf(hi, instr->environment()); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (IsPowerOf2(mask)) { ASSERT(tag == 0 || IsPowerOf2(tag)); __ tst(scratch, Operand(mask)); DeoptimizeIf(tag == 0 ? ne : eq, instr->environment()); } else { __ and_(scratch, scratch, Operand(mask)); __ cmp(scratch, Operand(tag)); DeoptimizeIf(ne, instr->environment()); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { Register reg = ToRegister(instr->value()); Handle target = instr->hydrogen()->target(); AllowDeferredHandleDereference smi_check; if (isolate()->heap()->InNewSpace(*target)) { Register reg = ToRegister(instr->value()); Handle cell = isolate()->factory()->NewPropertyCell(target); __ mov(ip, Operand(Handle(cell))); __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset)); __ cmp(reg, ip); } else { __ cmp(reg, Operand(target)); } DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoCheckMapCommon(Register map_reg, Handle map, LEnvironment* env) { Label success; __ CompareMap(map_reg, map, &success); DeoptimizeIf(ne, env); __ bind(&success); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { if (instr->hydrogen()->CanOmitMapChecks()) return; Register map_reg = scratch0(); LOperand* input = instr->value(); ASSERT(input->IsRegister()); Register reg = ToRegister(input); Label success; SmallMapList* map_set = instr->hydrogen()->map_set(); __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); for (int i = 0; i < map_set->length() - 1; i++) { Handle map = map_set->at(i); __ CompareMap(map_reg, map, &success); __ b(eq, &success); } Handle map = map_set->last(); DoCheckMapCommon(map_reg, map, instr->environment()); __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0()); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register unclamped_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampUint8(result_reg, unclamped_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register scratch = scratch0(); Register input_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DwVfpRegister temp_reg = ToDoubleRegister(instr->temp()); Label is_smi, done, heap_number; // Both smi and heap number cases are handled. __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi); // Check for heap number __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ cmp(scratch, Operand(factory()->heap_number_map())); __ b(eq, &heap_number); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ cmp(input_reg, Operand(factory()->undefined_value())); DeoptimizeIf(ne, instr->environment()); __ mov(result_reg, Operand::Zero()); __ jmp(&done); // Heap number __ bind(&heap_number); __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0()); __ jmp(&done); // smi __ bind(&is_smi); __ ClampUint8(result_reg, result_reg); __ bind(&done); } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { if (instr->hydrogen()->CanOmitPrototypeChecks()) return; Register prototype_reg = ToRegister(instr->temp()); Register map_reg = ToRegister(instr->temp2()); ZoneList >* prototypes = instr->prototypes(); ZoneList >* maps = instr->maps(); ASSERT(prototypes->length() == maps->length()); for (int i = 0; i < prototypes->length(); i++) { __ LoadHeapObject(prototype_reg, prototypes->at(i)); __ ldr(map_reg, FieldMemOperand(prototype_reg, HeapObject::kMapOffset)); DoCheckMapCommon(map_reg, maps->at(i), instr->environment()); } } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate: public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } virtual LInstruction* instr() { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); // Allocate memory for the object. AllocationFlags flags = TAG_OBJECT; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE_OLD_POINTER_SPACE); } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE_OLD_DATA_SPACE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ mov(scratch, Operand(size)); } else { scratch = ToRegister(instr->size()); } __ sub(scratch, scratch, Operand(kPointerSize)); __ sub(result, result, Operand(kHeapObjectTag)); Label loop; __ bind(&loop); __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); __ str(scratch2, MemOperand(result, scratch)); __ sub(scratch, scratch, Operand(kPointerSize)); __ cmp(scratch, Operand(0)); __ b(ge, &loop); __ add(result, result, Operand(kHeapObjectTag)); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, Operand(Smi::FromInt(0))); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); ASSERT(!size.is(result)); __ SmiTag(size); __ push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ Push(Smi::FromInt(size)); } if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); CallRuntimeFromDeferred(Runtime::kAllocateInOldPointerSpace, 1, instr); } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); CallRuntimeFromDeferred(Runtime::kAllocateInOldDataSpace, 1, instr); } else { CallRuntimeFromDeferred(Runtime::kAllocateInNewSpace, 1, instr); } __ StoreToSafepointRegisterSlot(r0, result); } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->value()).is(r0)); __ push(r0); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { Label materialized; // Registers will be used as follows: // r7 = literals array. // r1 = regexp literal. // r0 = regexp literal clone. // r2 and r4-r6 are used as temporaries. int literal_offset = FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); __ LoadHeapObject(r7, instr->hydrogen()->literals()); __ ldr(r1, FieldMemOperand(r7, literal_offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r1, ip); __ b(ne, &materialized); // Create regexp literal using runtime function // Result will be in r0. __ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ mov(r5, Operand(instr->hydrogen()->pattern())); __ mov(r4, Operand(instr->hydrogen()->flags())); __ Push(r7, r6, r5, r4); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ mov(r1, r0); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ mov(r0, Operand(Smi::FromInt(size))); __ Push(r1, r0); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(r1); __ bind(&allocated); // Copy the content into the newly allocated memory. __ CopyFields(r0, r1, double_scratch0(), size / kPointerSize); } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && instr->hydrogen()->has_no_literals()) { FastNewClosureStub stub(instr->hydrogen()->language_mode(), instr->hydrogen()->is_generator()); __ mov(r1, Operand(instr->hydrogen()->shared_info())); __ push(r1); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); } else { __ mov(r2, Operand(instr->hydrogen()->shared_info())); __ mov(r1, Operand(pretenure ? factory()->true_value() : factory()->false_value())); __ Push(cp, r2, r1); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { Register input = ToRegister(instr->value()); __ push(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input, instr->type_literal()); if (final_branch_condition != kNoCondition) { EmitBranch(instr, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle type_name) { Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); if (type_name->Equals(heap()->number_string())) { __ JumpIfSmi(input, true_label); __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(input, Operand(ip)); final_branch_condition = eq; } else if (type_name->Equals(heap()->string_string())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE); __ b(ge, false_label); __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = eq; } else if (type_name->Equals(heap()->symbol_string())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, input, scratch, SYMBOL_TYPE); final_branch_condition = eq; } else if (type_name->Equals(heap()->boolean_string())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ b(eq, true_label); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = eq; } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) { __ CompareRoot(input, Heap::kNullValueRootIndex); final_branch_condition = eq; } else if (type_name->Equals(heap()->undefined_string())) { __ CompareRoot(input, Heap::kUndefinedValueRootIndex); __ b(eq, true_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = ne; } else if (type_name->Equals(heap()->function_string())) { STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfSmi(input, false_label); __ CompareObjectType(input, scratch, input, JS_FUNCTION_TYPE); __ b(eq, true_label); __ cmp(input, Operand(JS_FUNCTION_PROXY_TYPE)); final_branch_condition = eq; } else if (type_name->Equals(heap()->object_string())) { __ JumpIfSmi(input, false_label); if (!FLAG_harmony_typeof) { __ CompareRoot(input, Heap::kNullValueRootIndex); __ b(eq, true_label); } __ CompareObjectType(input, input, scratch, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); __ b(lt, false_label); __ CompareInstanceType(input, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ b(gt, false_label); // Check for undetectable objects => false. __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsUndetectable)); final_branch_condition = eq; } else { __ b(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp1 = ToRegister(instr->temp()); EmitIsConstructCall(temp1, scratch0()); EmitBranch(instr, eq); } void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { ASSERT(!temp1.is(temp2)); // Get the frame pointer for the calling frame. __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &check_frame_marker); __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); } void LCodeGen::EnsureSpaceForLazyDeopt() { if (info()->IsStub()) return; // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); int patch_size = Deoptimizer::patch_size(); if (current_pc < last_lazy_deopt_pc_ + patch_size) { // Block literal pool emission for duration of padding. Assembler::BlockConstPoolScope block_const_pool(masm()); int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; ASSERT_EQ(0, padding_size % Assembler::kInstrSize); while (padding_size > 0) { __ nop(); padding_size -= Assembler::kInstrSize; } } } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { EnsureSpaceForLazyDeopt(); last_lazy_deopt_pc_ = masm()->pc_offset(); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(al, instr->environment(), type); } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() { return instr_; } private: LStackCheck* instr_; }; ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &done); StackCheckStub stub; PredictableCodeSizeScope predictable(masm_, 2 * Assembler::kInstrSize); CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); EnsureSpaceForLazyDeopt(); last_lazy_deopt_pc_ = masm()->pc_offset(); __ bind(&done); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } else { ASSERT(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(lo, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(); last_lazy_deopt_pc_ = masm()->pc_offset(); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); // Normally we record the first unknown OSR value as the entrypoint to the OSR // code, but if there were none, record the entrypoint here. if (osr_pc_offset_ == -1) osr_pc_offset_ = masm()->pc_offset(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); DeoptimizeIf(eq, instr->environment()); Register null_value = r5; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ cmp(r0, null_value); DeoptimizeIf(eq, instr->environment()); __ SmiTst(r0); DeoptimizeIf(eq, instr->environment()); STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); DeoptimizeIf(le, instr->environment()); Label use_cache, call_runtime; __ CheckEnumCache(null_value, &call_runtime); __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); __ b(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(r0); CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kMetaMapRootIndex); __ cmp(r1, ip); DeoptimizeIf(ne, instr->environment()); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ cmp(result, Operand(Smi::FromInt(0))); __ b(ne, &load_cache); __ mov(result, Operand(isolate()->factory()->empty_fixed_array())); __ jmp(&done); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); __ ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); __ cmp(result, Operand::Zero()); DeoptimizeIf(eq, instr->environment()); __ bind(&done); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); __ cmp(map, scratch0()); DeoptimizeIf(ne, instr->environment()); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Label out_of_object, done; __ cmp(index, Operand::Zero()); __ b(lt, &out_of_object); __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index)); __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); __ b(&done); __ bind(&out_of_object); __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index)); __ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize)); __ bind(&done); } #undef __ } } // namespace v8::internal