// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_X64 #include "bootstrapper.h" #include "code-stubs.h" #include "regexp-macro-assembler.h" #include "stub-cache.h" #include "runtime.h" namespace v8 { namespace internal { void FastNewClosureStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rbx }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry; } void FastNewContextStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdi }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = NULL; } void ToNumberStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = NULL; } void NumberToStringStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kNumberToString)->entry; } void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax, rbx, rcx }; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry; } void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax, rbx, rcx, rdx }; descriptor->register_param_count_ = 4; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry; } void CreateAllocationSiteStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rbx, rdx }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = NULL; } void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rax }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); } void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rax }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); } void RegExpConstructResultStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rcx, rbx, rax }; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry; } void LoadFieldStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = NULL; } void KeyedLoadFieldStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = NULL; } void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rcx, rax }; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); } void TransitionElementsKindStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax, rbx }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; } static void InitializeArrayConstructorDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor, int constant_stack_parameter_count) { // register state // rax -- number of arguments // rdi -- function // rbx -- allocation site with elements kind static Register registers_variable_args[] = { rdi, rbx, rax }; static Register registers_no_args[] = { rdi, rbx }; if (constant_stack_parameter_count == 0) { descriptor->register_param_count_ = 2; descriptor->register_params_ = registers_no_args; } else { // stack param count needs (constructor pointer, and single argument) descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; descriptor->stack_parameter_count_ = rax; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers_variable_args; } descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; } static void InitializeInternalArrayConstructorDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor, int constant_stack_parameter_count) { // register state // rax -- number of arguments // rdi -- constructor function static Register registers_variable_args[] = { rdi, rax }; static Register registers_no_args[] = { rdi }; if (constant_stack_parameter_count == 0) { descriptor->register_param_count_ = 1; descriptor->register_params_ = registers_no_args; } else { // stack param count needs (constructor pointer, and single argument) descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; descriptor->stack_parameter_count_ = rax; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers_variable_args; } descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; } void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate, descriptor, 0); } void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate, descriptor, 1); } void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate, descriptor, -1); } void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0); } void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1); } void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1); } void CompareNilICStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(CompareNilIC_Miss); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate)); } void ToBooleanStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax }; descriptor->register_param_count_ = 1; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate)); } void StoreGlobalStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rcx, rax }; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(StoreIC_MissFromStubFailure); } void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rax, rbx, rcx, rdx }; descriptor->register_param_count_ = 4; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); } void BinaryOpICStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rax }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate)); } void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rcx, rdx, rax }; descriptor->register_param_count_ = 3; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); } void StringAddStub::InitializeInterfaceDescriptor( Isolate* isolate, CodeStubInterfaceDescriptor* descriptor) { static Register registers[] = { rdx, rax }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->deoptimization_handler_ = Runtime::FunctionForId(Runtime::kStringAdd)->entry; } void CallDescriptors::InitializeForIsolate(Isolate* isolate) { { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::ArgumentAdaptorCall); static Register registers[] = { rdi, // JSFunction rsi, // context rax, // actual number of arguments rbx, // expected number of arguments }; static Representation representations[] = { Representation::Tagged(), // JSFunction Representation::Tagged(), // context Representation::Integer32(), // actual number of arguments Representation::Integer32(), // expected number of arguments }; descriptor->register_param_count_ = 4; descriptor->register_params_ = registers; descriptor->param_representations_ = representations; } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::KeyedCall); static Register registers[] = { rsi, // context rcx, // key }; static Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // key }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->param_representations_ = representations; } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::NamedCall); static Register registers[] = { rsi, // context rcx, // name }; static Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // name }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->param_representations_ = representations; } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::CallHandler); static Register registers[] = { rsi, // context rdx, // receiver }; static Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // receiver }; descriptor->register_param_count_ = 2; descriptor->register_params_ = registers; descriptor->param_representations_ = representations; } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::ApiFunctionCall); static Register registers[] = { rax, // callee rbx, // call_data rcx, // holder rdx, // api_function_address rsi, // context }; static Representation representations[] = { Representation::Tagged(), // callee Representation::Tagged(), // call_data Representation::Tagged(), // holder Representation::External(), // api_function_address Representation::Tagged(), // context }; descriptor->register_param_count_ = 5; descriptor->register_params_ = registers; descriptor->param_representations_ = representations; } } #define __ ACCESS_MASM(masm) void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { // Update the static counter each time a new code stub is generated. Isolate* isolate = masm->isolate(); isolate->counters()->code_stubs()->Increment(); CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate); int param_count = descriptor->register_param_count_; { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); ASSERT(descriptor->register_param_count_ == 0 || rax.is(descriptor->register_params_[param_count - 1])); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor->register_params_[i]); } ExternalReference miss = descriptor->miss_handler(); __ CallExternalReference(miss, descriptor->register_param_count_); } __ Ret(); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { __ PushCallerSaved(save_doubles_); const int argument_count = 1; __ PrepareCallCFunction(argument_count); __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(masm->isolate())); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::store_buffer_overflow_function(masm->isolate()), argument_count); __ PopCallerSaved(save_doubles_); __ ret(0); } class FloatingPointHelper : public AllStatic { public: enum ConvertUndefined { CONVERT_UNDEFINED_TO_ZERO, BAILOUT_ON_UNDEFINED }; // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. // If the operands are not both numbers, jump to not_numbers. // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. // NumberOperands assumes both are smis or heap numbers. static void LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers); }; void DoubleToIStub::Generate(MacroAssembler* masm) { Register input_reg = this->source(); Register final_result_reg = this->destination(); ASSERT(is_truncating()); Label check_negative, process_64_bits, done; int double_offset = offset(); // Account for return address and saved regs if input is rsp. if (input_reg.is(rsp)) double_offset += 3 * kPointerSize; MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); MemOperand exponent_operand(MemOperand(input_reg, double_offset + kDoubleSize / 2)); Register scratch1; Register scratch_candidates[3] = { rbx, rdx, rdi }; for (int i = 0; i < 3; i++) { scratch1 = scratch_candidates[i]; if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; } // Since we must use rcx for shifts below, use some other register (rax) // to calculate the result if ecx is the requested return register. Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead // for the result. Register save_reg = final_result_reg.is(rcx) ? rax : rcx; __ push(scratch1); __ push(save_reg); bool stash_exponent_copy = !input_reg.is(rsp); __ movl(scratch1, mantissa_operand); __ movsd(xmm0, mantissa_operand); __ movl(rcx, exponent_operand); if (stash_exponent_copy) __ push(rcx); __ andl(rcx, Immediate(HeapNumber::kExponentMask)); __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; __ subl(rcx, Immediate(delta)); __ xorl(result_reg, result_reg); __ cmpl(rcx, Immediate(31)); __ j(above, &done); __ shll_cl(scratch1); __ jmp(&check_negative); __ bind(&process_64_bits); __ cvttsd2siq(result_reg, xmm0); __ jmp(&done, Label::kNear); // If the double was negative, negate the integer result. __ bind(&check_negative); __ movl(result_reg, scratch1); __ negl(result_reg); if (stash_exponent_copy) { __ cmpl(MemOperand(rsp, 0), Immediate(0)); } else { __ cmpl(exponent_operand, Immediate(0)); } __ cmovl(greater, result_reg, scratch1); // Restore registers __ bind(&done); if (stash_exponent_copy) { __ addq(rsp, Immediate(kDoubleSize)); } if (!final_result_reg.is(result_reg)) { ASSERT(final_result_reg.is(rcx)); __ movl(final_result_reg, result_reg); } __ pop(save_reg); __ pop(scratch1); __ ret(0); } void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; // Load operand in rdx into xmm0, or branch to not_numbers. __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); __ JumpIfSmi(rdx, &load_smi_rdx); __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); // Argument in rdx is not a number. __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); // Load operand in rax into xmm1, or branch to not_numbers. __ JumpIfSmi(rax, &load_smi_rax); __ bind(&load_nonsmi_rax); __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_rdx); __ SmiToInteger32(kScratchRegister, rdx); __ Cvtlsi2sd(xmm0, kScratchRegister); __ JumpIfNotSmi(rax, &load_nonsmi_rax); __ bind(&load_smi_rax); __ SmiToInteger32(kScratchRegister, rax); __ Cvtlsi2sd(xmm1, kScratchRegister); __ bind(&done); } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = rdx; const Register base = rax; const Register scratch = rcx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ movp(scratch, Immediate(1)); __ Cvtlsi2sd(double_result, scratch); if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack. StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(base, args.GetArgumentOperand(0)); __ movp(exponent, args.GetArgumentOperand(1)); __ JumpIfSmi(base, &base_is_smi, Label::kNear); __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent, Label::kNear); __ bind(&base_is_smi); __ SmiToInteger32(base, base); __ Cvtlsi2sd(double_base, base); __ bind(&unpack_exponent); __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiToInteger32(exponent, exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiToInteger32(exponent, exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label fast_power, try_arithmetic_simplification; // Detect integer exponents stored as double. __ DoubleToI(exponent, double_exponent, double_scratch, TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification); __ jmp(&int_exponent); __ bind(&try_arithmetic_simplification); __ cvttsd2si(exponent, double_exponent); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cmpl(exponent, Immediate(0x80000000u)); __ j(equal, &call_runtime); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label continue_sqrt, continue_rsqrt, not_plus_half; // Test for 0.5. // Load double_scratch with 0.5. __ movq(scratch, V8_UINT64_C(0x3FE0000000000000)); __ movq(double_scratch, scratch); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, ¬_plus_half, Label::kNear); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). // According to IEEE-754, double-precision -Infinity has the highest // 12 bits set and the lowest 52 bits cleared. __ movq(scratch, V8_UINT64_C(0xFFF0000000000000)); __ movq(double_scratch, scratch); __ ucomisd(double_scratch, double_base); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_sqrt, Label::kNear); __ j(carry, &continue_sqrt, Label::kNear); // Set result to Infinity in the special case. __ xorps(double_result, double_result); __ subsd(double_result, double_scratch); __ jmp(&done); __ bind(&continue_sqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_scratch, double_scratch); __ addsd(double_scratch, double_base); // Convert -0 to 0. __ sqrtsd(double_result, double_scratch); __ jmp(&done); // Test for -0.5. __ bind(¬_plus_half); // Load double_scratch with -0.5 by substracting 1. __ subsd(double_scratch, double_result); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, &fast_power, Label::kNear); // Calculates reciprocal of square root of base. Check for the special // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). // According to IEEE-754, double-precision -Infinity has the highest // 12 bits set and the lowest 52 bits cleared. __ movq(scratch, V8_UINT64_C(0xFFF0000000000000)); __ movq(double_scratch, scratch); __ ucomisd(double_scratch, double_base); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_rsqrt, Label::kNear); __ j(carry, &continue_rsqrt, Label::kNear); // Set result to 0 in the special case. __ xorps(double_result, double_result); __ jmp(&done); __ bind(&continue_rsqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_exponent, double_exponent); __ addsd(double_exponent, double_base); // Convert -0 to +0. __ sqrtsd(double_exponent, double_exponent); __ divsd(double_result, double_exponent); __ jmp(&done); } // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ subq(rsp, Immediate(kDoubleSize)); __ movsd(Operand(rsp, 0), double_exponent); __ fld_d(Operand(rsp, 0)); // E __ movsd(Operand(rsp, 0), double_base); __ fld_d(Operand(rsp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(rsp, 0)); __ movsd(double_result, Operand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ addq(rsp, Immediate(kDoubleSize)); __ jmp(&call_runtime); } // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; // Back up exponent as we need to check if exponent is negative later. __ movp(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, while_false; __ testl(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ negl(scratch); __ bind(&no_neg); __ j(zero, &while_false, Label::kNear); __ shrl(scratch, Immediate(1)); // Above condition means CF==0 && ZF==0. This means that the // bit that has been shifted out is 0 and the result is not 0. __ j(above, &while_true, Label::kNear); __ movsd(double_result, double_scratch); __ j(zero, &while_false, Label::kNear); __ bind(&while_true); __ shrl(scratch, Immediate(1)); __ mulsd(double_scratch, double_scratch); __ j(above, &while_true, Label::kNear); __ mulsd(double_result, double_scratch); __ j(not_zero, &while_true); __ bind(&while_false); // If the exponent is negative, return 1/result. __ testl(exponent, exponent); __ j(greater, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // input was a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ Cvtlsi2sd(double_exponent, exponent); // Returning or bailing out. Counters* counters = masm->isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in rax. __ bind(&done); __ AllocateHeapNumber(rax, rcx, &call_runtime); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result); __ IncrementCounter(counters->math_pow(), 1); __ ret(2 * kPointerSize); } else { __ bind(&call_runtime); // Move base to the correct argument register. Exponent is already in xmm1. __ movsd(xmm0, double_base); ASSERT(double_exponent.is(xmm1)); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 2); } // Return value is in xmm0. __ movsd(double_result, xmm0); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1); __ ret(0); } } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver; if (kind() == Code::KEYED_LOAD_IC) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ Cmp(rax, masm->isolate()->factory()->prototype_string()); __ j(not_equal, &miss); receiver = rdx; } else { ASSERT(kind() == Code::LOAD_IC); // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- receiver = rax; } StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, r9, &miss); __ bind(&miss); StubCompiler::TailCallBuiltin( masm, BaseLoadStoreStubCompiler::MissBuiltin(kind())); } void StringLengthStub::Generate(MacroAssembler* masm) { Label miss; Register receiver; if (kind() == Code::KEYED_LOAD_IC) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- __ Cmp(rax, masm->isolate()->factory()->length_string()); __ j(not_equal, &miss); receiver = rdx; } else { ASSERT(kind() == Code::LOAD_IC); // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- receiver = rax; } StubCompiler::GenerateLoadStringLength(masm, receiver, r8, r9, &miss); __ bind(&miss); StubCompiler::TailCallBuiltin( masm, BaseLoadStoreStubCompiler::MissBuiltin(kind())); } void StoreArrayLengthStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- // // This accepts as a receiver anything JSArray::SetElementsLength accepts // (currently anything except for external arrays which means anything with // elements of FixedArray type). Value must be a number, but only smis are // accepted as the most common case. Label miss; Register receiver = rdx; Register value = rax; Register scratch = rbx; if (kind() == Code::KEYED_STORE_IC) { __ Cmp(rcx, masm->isolate()->factory()->length_string()); __ j(not_equal, &miss); } // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, &miss); // Check that elements are FixedArray. // We rely on StoreIC_ArrayLength below to deal with all types of // fast elements (including COW). __ movp(scratch, FieldOperand(receiver, JSArray::kElementsOffset)); __ CmpObjectType(scratch, FIXED_ARRAY_TYPE, scratch); __ j(not_equal, &miss); // Check that the array has fast properties, otherwise the length // property might have been redefined. __ movp(scratch, FieldOperand(receiver, JSArray::kPropertiesOffset)); __ CompareRoot(FieldOperand(scratch, FixedArray::kMapOffset), Heap::kHashTableMapRootIndex); __ j(equal, &miss); // Check that value is a smi. __ JumpIfNotSmi(value, &miss); // Prepare tail call to StoreIC_ArrayLength. __ PopReturnAddressTo(scratch); __ push(receiver); __ push(value); __ PushReturnAddressFrom(scratch); ExternalReference ref = ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); __ bind(&miss); StubCompiler::TailCallBuiltin( masm, BaseLoadStoreStubCompiler::MissBuiltin(kind())); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in rdx and the parameter count is in rax. // Check that the key is a smi. Label slow; __ JumpIfNotSmi(rdx, &slow); // Check if the calling frame is an arguments adaptor frame. We look at the // context offset, and if the frame is not a regular one, then we find a // Smi instead of the context. We can't use SmiCompare here, because that // only works for comparing two smis. Label adaptor; __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register rax. Use unsigned comparison to get negative // check for free. __ cmpq(rdx, rax); __ j(above_equal, &slow); // Read the argument from the stack and return it. __ SmiSub(rax, rax, rdx); __ SmiToInteger32(rax, rax); StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rax, args.GetArgumentOperand(0)); __ Ret(); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmpq(rdx, rcx); __ j(above_equal, &slow); // Read the argument from the stack and return it. __ SmiSub(rcx, rcx, rdx); __ SmiToInteger32(rcx, rcx); StackArgumentsAccessor adaptor_args(rbx, rcx, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rax, adaptor_args.GetArgumentOperand(0)); __ Ret(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ PopReturnAddressTo(rbx); __ push(rdx); __ PushReturnAddressFrom(rbx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { // Stack layout: // rsp[0] : return address // rsp[8] : number of parameters (tagged) // rsp[16] : receiver displacement // rsp[24] : function // Registers used over the whole function: // rbx: the mapped parameter count (untagged) // rax: the allocated object (tagged). Factory* factory = masm->isolate()->factory(); StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ SmiToInteger64(rbx, args.GetArgumentOperand(2)); // rbx = parameter count (untagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // No adaptor, parameter count = argument count. __ movp(rcx, rbx); __ jmp(&try_allocate, Label::kNear); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ SmiToInteger64(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movp(args.GetArgumentOperand(1), rdx); // rbx = parameter count (untagged) // rcx = argument count (untagged) // Compute the mapped parameter count = min(rbx, rcx) in rbx. __ cmpq(rbx, rcx); __ j(less_equal, &try_allocate, Label::kNear); __ movp(rbx, rcx); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; Label no_parameter_map; __ xor_(r8, r8); __ testq(rbx, rbx); __ j(zero, &no_parameter_map, Label::kNear); __ lea(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize)); __ bind(&no_parameter_map); // 2. Backing store. __ lea(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize)); // 3. Arguments object. __ addq(r8, Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ Allocate(r8, rax, rdx, rdi, &runtime, TAG_OBJECT); // rax = address of new object(s) (tagged) // rcx = argument count (untagged) // Get the arguments boilerplate from the current native context into rdi. Label has_mapped_parameters, copy; __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset)); __ testq(rbx, rbx); __ j(not_zero, &has_mapped_parameters, Label::kNear); const int kIndex = Context::ARGUMENTS_BOILERPLATE_INDEX; __ movp(rdi, Operand(rdi, Context::SlotOffset(kIndex))); __ jmp(©, Label::kNear); const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX; __ bind(&has_mapped_parameters); __ movp(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex))); __ bind(©); // rax = address of new object (tagged) // rbx = mapped parameter count (untagged) // rcx = argument count (untagged) // rdi = address of boilerplate object (tagged) // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ movp(rdx, FieldOperand(rdi, i)); __ movp(FieldOperand(rax, i), rdx); } // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ movp(rdx, args.GetArgumentOperand(0)); __ movp(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize), rdx); // Use the length (smi tagged) and set that as an in-object property too. // Note: rcx is tagged from here on. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ Integer32ToSmi(rcx, rcx); __ movp(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), rcx); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, edi will point there, otherwise to the // backing store. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi); // rax = address of new object (tagged) // rbx = mapped parameter count (untagged) // rcx = argument count (tagged) // rdi = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ testq(rbx, rbx); __ j(zero, &skip_parameter_map); __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex); // rbx contains the untagged argument count. Add 2 and tag to write. __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ Integer64PlusConstantToSmi(r9, rbx, 2); __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9); __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi); __ lea(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; // Load tagged parameter count into r9. __ Integer32ToSmi(r9, rbx); __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS)); __ addq(r8, args.GetArgumentOperand(2)); __ subq(r8, r9); __ Move(r11, factory->the_hole_value()); __ movp(rdx, rdi); __ lea(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); // r9 = loop variable (tagged) // r8 = mapping index (tagged) // r11 = the hole value // rdx = address of parameter map (tagged) // rdi = address of backing store (tagged) __ jmp(¶meters_test, Label::kNear); __ bind(¶meters_loop); __ SmiSubConstant(r9, r9, Smi::FromInt(1)); __ SmiToInteger64(kScratchRegister, r9); __ movp(FieldOperand(rdx, kScratchRegister, times_pointer_size, kParameterMapHeaderSize), r8); __ movp(FieldOperand(rdi, kScratchRegister, times_pointer_size, FixedArray::kHeaderSize), r11); __ SmiAddConstant(r8, r8, Smi::FromInt(1)); __ bind(¶meters_test); __ SmiTest(r9); __ j(not_zero, ¶meters_loop, Label::kNear); __ bind(&skip_parameter_map); // rcx = argument count (tagged) // rdi = address of backing store (tagged) // Copy arguments header and remaining slots (if there are any). __ Move(FieldOperand(rdi, FixedArray::kMapOffset), factory->fixed_array_map()); __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); Label arguments_loop, arguments_test; __ movp(r8, rbx); __ movp(rdx, args.GetArgumentOperand(1)); // Untag rcx for the loop below. __ SmiToInteger64(rcx, rcx); __ lea(kScratchRegister, Operand(r8, times_pointer_size, 0)); __ subq(rdx, kScratchRegister); __ jmp(&arguments_test, Label::kNear); __ bind(&arguments_loop); __ subq(rdx, Immediate(kPointerSize)); __ movp(r9, Operand(rdx, 0)); __ movp(FieldOperand(rdi, r8, times_pointer_size, FixedArray::kHeaderSize), r9); __ addq(r8, Immediate(1)); __ bind(&arguments_test); __ cmpq(r8, rcx); __ j(less, &arguments_loop, Label::kNear); // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. // rcx = argument count (untagged) __ bind(&runtime); __ Integer32ToSmi(rcx, rcx); __ movp(args.GetArgumentOperand(2), rcx); // Patch argument count. __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { // rsp[0] : return address // rsp[8] : number of parameters // rsp[16] : receiver displacement // rsp[24] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &runtime); // Patch the arguments.length and the parameters pointer. StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movp(args.GetArgumentOperand(2), rcx); __ SmiToInteger64(rcx, rcx); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movp(args.GetArgumentOperand(1), rdx); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // rsp[0] : return address // rsp[8] : number of parameters // rsp[16] : receiver displacement // rsp[24] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // Get the length from the frame. StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rcx, args.GetArgumentOperand(2)); __ SmiToInteger64(rcx, rcx); __ jmp(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movp(args.GetArgumentOperand(2), rcx); __ SmiToInteger64(rcx, rcx); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movp(args.GetArgumentOperand(1), rdx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ testq(rcx, rcx); __ j(zero, &add_arguments_object, Label::kNear); __ lea(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ addq(rcx, Immediate(Heap::kArgumentsObjectSizeStrict)); // Do the allocation of both objects in one go. __ Allocate(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current native context. __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset)); const int offset = Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX); __ movp(rdi, Operand(rdi, offset)); // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ movp(rbx, FieldOperand(rdi, i)); __ movp(FieldOperand(rax, i), rbx); } // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ movp(rcx, args.GetArgumentOperand(2)); __ movp(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), rcx); // If there are no actual arguments, we're done. Label done; __ testq(rcx, rcx); __ j(zero, &done); // Get the parameters pointer from the stack. __ movp(rdx, args.GetArgumentOperand(1)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSizeStrict)); __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi); __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); // Untag the length for the loop below. __ SmiToInteger64(rcx, rcx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ movp(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver. __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx); __ addq(rdi, Immediate(kPointerSize)); __ subq(rdx, Immediate(kPointerSize)); __ decq(rcx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // rsp[0] : return address // rsp[8] : last_match_info (expected JSArray) // rsp[16] : previous index // rsp[24] : subject string // rsp[32] : JSRegExp object enum RegExpExecStubArgumentIndices { JS_REG_EXP_OBJECT_ARGUMENT_INDEX, SUBJECT_STRING_ARGUMENT_INDEX, PREVIOUS_INDEX_ARGUMENT_INDEX, LAST_MATCH_INFO_ARGUMENT_INDEX, REG_EXP_EXEC_ARGUMENT_COUNT }; StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT, ARGUMENTS_DONT_CONTAIN_RECEIVER); Label runtime; // Ensure that a RegExp stack is allocated. Isolate* isolate = masm->isolate(); ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate); __ Load(kScratchRegister, address_of_regexp_stack_memory_size); __ testq(kScratchRegister, kScratchRegister); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { Condition is_smi = masm->CheckSmi(rax); __ Check(NegateCondition(is_smi), kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // rax: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); __ j(not_equal, &runtime); // rax: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ SmiToInteger32(rdx, FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures <= offsets vector size / 2 - 1 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1)); __ j(above, &runtime); // Reset offset for possibly sliced string. __ Set(r14, 0); __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); __ JumpIfSmi(rdi, &runtime); __ movp(r15, rdi); // Make a copy of the original subject string. __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); // rax: RegExp data (FixedArray) // rdi: subject string // r15: subject string // Handle subject string according to its encoding and representation: // (1) Sequential two byte? If yes, go to (9). // (2) Sequential one byte? If yes, go to (6). // (3) Anything but sequential or cons? If yes, go to (7). // (4) Cons string. If the string is flat, replace subject with first string. // Otherwise bailout. // (5a) Is subject sequential two byte? If yes, go to (9). // (5b) Is subject external? If yes, go to (8). // (6) One byte sequential. Load regexp code for one byte. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (7) Not a long external string? If yes, go to (10). // (8) External string. Make it, offset-wise, look like a sequential string. // (8a) Is the external string one byte? If yes, go to (6). // (9) Two byte sequential. Load regexp code for one byte. Go to (E). // (10) Short external string or not a string? If yes, bail out to runtime. // (11) Sliced string. Replace subject with parent. Go to (5a). Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */, external_string /* 8 */, check_underlying /* 5a */, not_seq_nor_cons /* 7 */, check_code /* E */, not_long_external /* 10 */; // (1) Sequential two byte? If yes, go to (9). __ andb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Go to (9). // (2) Sequential one byte? If yes, go to (6). // Any other sequential string must be one byte. __ andb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6). // (3) Anything but sequential or cons? If yes, go to (7). // We check whether the subject string is a cons, since sequential strings // have already been covered. STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmpq(rbx, Immediate(kExternalStringTag)); __ j(greater_equal, ¬_seq_nor_cons); // Go to (7). // (4) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), Heap::kempty_stringRootIndex); __ j(not_equal, &runtime); __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); __ bind(&check_underlying); __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); // (5a) Is subject sequential two byte? If yes, go to (9). __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask)); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Go to (9). // (5b) Is subject external? If yes, go to (8). __ testb(rbx, Immediate(kStringRepresentationMask)); // The underlying external string is never a short external string. STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength); STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength); __ j(not_zero, &external_string); // Go to (8) // (6) One byte sequential. Load regexp code for one byte. __ bind(&seq_one_byte_string); // rax: RegExp data (FixedArray) __ movp(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset)); __ Set(rcx, 1); // Type is one byte. // (E) Carry on. String handling is done. __ bind(&check_code); // r11: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // smi (code flushing support) __ JumpIfSmi(r11, &runtime); // rdi: sequential subject string (or look-alike, external string) // r15: original subject string // rcx: encoding of subject string (1 if ASCII, 0 if two_byte); // r11: code // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. // We have to use r15 instead of rdi to load the length because rdi might // have been only made to look like a sequential string when it actually // is an external string. __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX)); __ JumpIfNotSmi(rbx, &runtime); __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset)); __ j(above_equal, &runtime); __ SmiToInteger64(rbx, rbx); // rdi: subject string // rbx: previous index // rcx: encoding of subject string (1 if ASCII 0 if two_byte); // r11: code // All checks done. Now push arguments for native regexp code. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->regexp_entry_native(), 1); // Isolates: note we add an additional parameter here (isolate pointer). static const int kRegExpExecuteArguments = 9; int argument_slots_on_stack = masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); __ EnterApiExitFrame(argument_slots_on_stack); // Argument 9: Pass current isolate address. __ LoadAddress(kScratchRegister, ExternalReference::isolate_address(masm->isolate())); __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize), kScratchRegister); // Argument 8: Indicate that this is a direct call from JavaScript. __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize), Immediate(1)); // Argument 7: Start (high end) of backtracking stack memory area. __ Move(kScratchRegister, address_of_regexp_stack_memory_address); __ movp(r9, Operand(kScratchRegister, 0)); __ Move(kScratchRegister, address_of_regexp_stack_memory_size); __ addq(r9, Operand(kScratchRegister, 0)); __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. // Argument 6 is passed in r9 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize), Immediate(0)); #else __ Set(r9, 0); #endif // Argument 5: static offsets vector buffer. __ LoadAddress(r8, ExternalReference::address_of_static_offsets_vector(isolate)); // Argument 5 passed in r8 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8); #endif // rdi: subject string // rbx: previous index // rcx: encoding of subject string (1 if ASCII 0 if two_byte); // r11: code // r14: slice offset // r15: original subject string // Argument 2: Previous index. __ movp(arg_reg_2, rbx); // Argument 4: End of string data // Argument 3: Start of string data Label setup_two_byte, setup_rest, got_length, length_not_from_slice; // Prepare start and end index of the input. // Load the length from the original sliced string if that is the case. __ addq(rbx, r14); __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset)); __ addq(r14, arg_reg_3); // Using arg3 as scratch. // rbx: start index of the input // r14: end index of the input // r15: original subject string __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. __ j(zero, &setup_two_byte, Label::kNear); __ lea(arg_reg_4, FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize)); __ lea(arg_reg_3, FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize)); __ jmp(&setup_rest, Label::kNear); __ bind(&setup_two_byte); __ lea(arg_reg_4, FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize)); __ lea(arg_reg_3, FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); __ bind(&setup_rest); // Argument 1: Original subject string. // The original subject is in the previous stack frame. Therefore we have to // use rbp, which points exactly to one pointer size below the previous rsp. // (Because creating a new stack frame pushes the previous rbp onto the stack // and thereby moves up rsp by one kPointerSize.) __ movp(arg_reg_1, r15); // Locate the code entry and call it. __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(r11); __ LeaveApiExitFrame(true); // Check the result. Label success; Label exception; __ cmpl(rax, Immediate(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ j(equal, &success, Label::kNear); __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); __ j(equal, &exception); __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); // If none of the above, it can only be retry. // Handle that in the runtime system. __ j(not_equal, &runtime); // For failure return null. __ LoadRoot(rax, Heap::kNullValueRootIndex); __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); // Load RegExp data. __ bind(&success); __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); __ SmiToInteger32(rax, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ leal(rdx, Operand(rax, rax, times_1, 2)); // rdx: Number of capture registers // Check that the fourth object is a JSArray object. __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX)); __ JumpIfSmi(r15, &runtime); __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset)); __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. Ensure no overflow in add. STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmpl(rdx, rax); __ j(greater, &runtime); // rbx: last_match_info backing store (FixedArray) // rdx: number of capture registers // Store the capture count. __ Integer32ToSmi(kScratchRegister, rdx); __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), kScratchRegister); // Store last subject and last input. __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); __ movp(rcx, rax); __ RecordWriteField(rbx, RegExpImpl::kLastSubjectOffset, rax, rdi, kDontSaveFPRegs); __ movp(rax, rcx); __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); __ RecordWriteField(rbx, RegExpImpl::kLastInputOffset, rax, rdi, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. __ LoadAddress(rcx, ExternalReference::address_of_static_offsets_vector(isolate)); // rbx: last_match_info backing store (FixedArray) // rcx: offsets vector // rdx: number of capture registers Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ subq(rdx, Immediate(1)); __ j(negative, &done, Label::kNear); // Read the value from the static offsets vector buffer and make it a smi. __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); __ Integer32ToSmi(rdi, rdi); // Store the smi value in the last match info. __ movp(FieldOperand(rbx, rdx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), rdi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ movp(rax, r15); __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); __ bind(&exception); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate); Operand pending_exception_operand = masm->ExternalOperand(pending_exception_address, rbx); __ movp(rax, pending_exception_operand); __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ cmpq(rax, rdx); __ j(equal, &runtime); __ movp(pending_exception_operand, rdx); __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ j(equal, &termination_exception, Label::kNear); __ Throw(rax); __ bind(&termination_exception); __ ThrowUncatchable(rax); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); // Deferred code for string handling. // (7) Not a long external string? If yes, go to (10). __ bind(¬_seq_nor_cons); // Compare flags are still set from (3). __ j(greater, ¬_long_external, Label::kNear); // Go to (10). // (8) External string. Short external strings have been ruled out. __ bind(&external_string); __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ testb(rbx, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kTwoByteStringTag == 0); // (8a) Is the external string one byte? If yes, go to (6). __ testb(rbx, Immediate(kStringEncodingMask)); __ j(not_zero, &seq_one_byte_string); // Goto (6). // rdi: subject string (flat two-byte) // rax: RegExp data (FixedArray) // (9) Two byte sequential. Load regexp code for one byte. Go to (E). __ bind(&seq_two_byte_string); __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); __ Set(rcx, 0); // Type is two byte. __ jmp(&check_code); // Go to (E). // (10) Not a string or a short external string? If yes, bail out to runtime. __ bind(¬_long_external); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask)); __ j(not_zero, &runtime); // (11) Sliced string. Replace subject with parent. Go to (5a). // Load offset into r14 and replace subject string with parent. __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset)); __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset)); __ jmp(&check_underlying); #endif // V8_INTERPRETED_REGEXP } static int NegativeComparisonResult(Condition cc) { ASSERT(cc != equal); ASSERT((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } static void CheckInputType(MacroAssembler* masm, Register input, CompareIC::State expected, Label* fail) { Label ok; if (expected == CompareIC::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareIC::NUMBER) { __ JumpIfSmi(input, &ok); __ CompareMap(input, masm->isolate()->factory()->heap_number_map()); __ j(not_equal, fail); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } static void BranchIfNotInternalizedString(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, label); } void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { Label check_unequal_objects, done; Condition cc = GetCondition(); Factory* factory = masm->isolate()->factory(); Label miss; CheckInputType(masm, rdx, left_, &miss); CheckInputType(masm, rax, right_, &miss); // Compare two smis. Label non_smi, smi_done; __ JumpIfNotBothSmi(rax, rdx, &non_smi); __ subq(rdx, rax); __ j(no_overflow, &smi_done); __ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. __ bind(&smi_done); __ movp(rax, rdx); __ ret(0); __ bind(&non_smi); // The compare stub returns a positive, negative, or zero 64-bit integer // value in rax, corresponding to result of comparing the two inputs. // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Two identical objects are equal unless they are both NaN or undefined. { Label not_identical; __ cmpq(rax, rdx); __ j(not_equal, ¬_identical, Label::kNear); if (cc != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. Label check_for_nan; __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &check_for_nan, Label::kNear); __ Set(rax, NegativeComparisonResult(cc)); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. Label heap_number; // If it's not a heap number, then return equal for (in)equality operator. __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), factory->heap_number_map()); __ j(equal, &heap_number, Label::kNear); if (cc != equal) { // Call runtime on identical objects. Otherwise return equal. __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, ¬_identical, Label::kNear); } __ Set(rax, EQUAL); __ ret(0); __ bind(&heap_number); // It is a heap number, so return equal if it's not NaN. // For NaN, return 1 for every condition except greater and // greater-equal. Return -1 for them, so the comparison yields // false for all conditions except not-equal. __ Set(rax, EQUAL); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm0); __ setcc(parity_even, rax); // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. if (cc == greater_equal || cc == greater) { __ neg(rax); } __ ret(0); __ bind(¬_identical); } if (cc == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict()) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; __ SelectNonSmi(rbx, rax, rdx, ¬_smis); // Check if the non-smi operand is a heap number. __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), factory->heap_number_map()); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal. ebx (the lower half of rbx) is not zero. __ movp(rax, rbx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // If the first object is a JS object, we have done pointer comparison. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(below, &first_non_object, Label::kNear); // Return non-zero (rax (not rax) is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Generate the number comparison code. Label non_number_comparison; Label unordered; FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); __ xorl(rax, rax); __ xorl(rcx, rcx); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. __ setcc(above, rax); __ setcc(below, rcx); __ subq(rax, rcx); __ ret(0); // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc != not_equal); if (cc == less || cc == less_equal) { __ Set(rax, 1); } else { __ Set(rax, -1); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); // Fast negative check for internalized-to-internalized equality. Label check_for_strings; if (cc == equal) { BranchIfNotInternalizedString( masm, &check_for_strings, rax, kScratchRegister); BranchIfNotInternalizedString( masm, &check_for_strings, rdx, kScratchRegister); // We've already checked for object identity, so if both operands are // internalized strings they aren't equal. Register rax (not rax) already // holds a non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings( rdx, rax, rcx, rbx, &check_unequal_objects); // Inline comparison of ASCII strings. if (cc == equal) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, rdx, rax, rcx, rbx); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); } #ifdef DEBUG __ Abort(kUnexpectedFallThroughFromStringComparison); #endif __ bind(&check_unequal_objects); if (cc == equal && !strict()) { // Not strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. Label not_both_objects, return_unequal; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(rcx, Operand(rax, rdx, times_1, 0)); __ testb(rcx, Immediate(kSmiTagMask)); __ j(not_zero, ¬_both_objects, Label::kNear); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx); __ j(below, ¬_both_objects, Label::kNear); __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(below, ¬_both_objects, Label::kNear); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal, Label::kNear); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal, Label::kNear); // The objects are both undetectable, so they both compare as the value // undefined, and are equal. __ Set(rax, EQUAL); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in rax, // or return equal if we fell through to here. __ ret(0); __ bind(¬_both_objects); } // Push arguments below the return address to prepare jump to builtin. __ PopReturnAddressTo(rcx); __ push(rdx); __ push(rax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc == equal) { builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; __ Push(Smi::FromInt(NegativeComparisonResult(cc))); } __ PushReturnAddressFrom(rcx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); __ bind(&miss); GenerateMiss(masm); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // rax : number of arguments to the construct function // rbx : Feedback vector // rdx : slot in feedback vector (Smi) // rdi : the function to call Isolate* isolate = masm->isolate(); Label initialize, done, miss, megamorphic, not_array_function, done_no_smi_convert; // Load the cache state into rcx. __ SmiToInteger32(rdx, rdx); __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmpq(rcx, rdi); __ j(equal, &done); __ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate)); __ j(equal, &done); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. Do a map check on the object in rcx. Handle allocation_site_map = masm->isolate()->factory()->allocation_site_map(); __ Cmp(FieldOperand(rcx, 0), allocation_site_map); __ j(not_equal, &miss); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx); __ cmpq(rdi, rcx); __ j(not_equal, &megamorphic); __ jmp(&done); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate)); __ j(equal, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), TypeFeedbackInfo::MegamorphicSentinel(isolate)); __ jmp(&done); // An uninitialized cache is patched with the function or sentinel to // indicate the ElementsKind if function is the Array constructor. __ bind(&initialize); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx); __ cmpq(rdi, rcx); __ j(not_equal, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the slot. { FrameScope scope(masm, StackFrame::INTERNAL); // Arguments register must be smi-tagged to call out. __ Integer32ToSmi(rax, rax); __ push(rax); __ push(rdi); __ Integer32ToSmi(rdx, rdx); __ push(rdx); __ push(rbx); CreateAllocationSiteStub create_stub; __ CallStub(&create_stub); __ pop(rbx); __ pop(rdx); __ pop(rdi); __ pop(rax); __ SmiToInteger32(rax, rax); } __ jmp(&done_no_smi_convert); __ bind(¬_array_function); __ movp(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), rdi); // We won't need rdx or rbx anymore, just save rdi __ push(rdi); __ push(rbx); __ push(rdx); __ RecordWriteArray(rbx, rdi, rdx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(rdx); __ pop(rbx); __ pop(rdi); __ bind(&done); __ Integer32ToSmi(rdx, rdx); __ bind(&done_no_smi_convert); } void CallFunctionStub::Generate(MacroAssembler* masm) { // rbx : feedback vector // rdx : (only if rbx is not the megamorphic symbol) slot in feedback // vector (Smi) // rdi : the function to call Isolate* isolate = masm->isolate(); Label slow, non_function, wrap, cont; StackArgumentsAccessor args(rsp, argc_); if (NeedsChecks()) { // Check that the function really is a JavaScript function. __ JumpIfSmi(rdi, &non_function); // Goto slow case if we do not have a function. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } } // Fast-case: Just invoke the function. ParameterCount actual(argc_); if (CallAsMethod()) { if (NeedsChecks()) { // Do not transform the receiver for strict mode functions. __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(rcx, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &cont); // Do not transform the receiver for natives. // SharedFunctionInfo is already loaded into rcx. __ testb(FieldOperand(rcx, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_equal, &cont); } // Load the receiver from the stack. __ movp(rax, args.GetReceiverOperand()); if (NeedsChecks()) { __ JumpIfSmi(rax, &wrap); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(below, &wrap); } else { __ jmp(&wrap); } __ bind(&cont); } __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper()); if (NeedsChecks()) { // Slow-case: Non-function called. __ bind(&slow); if (RecordCallTarget()) { // If there is a call target cache, mark it megamorphic in the // non-function case. MegamorphicSentinel is an immortal immovable // object (megamorphic symbol) so no write barrier is needed. __ SmiToInteger32(rdx, rdx); __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), TypeFeedbackInfo::MegamorphicSentinel(isolate)); __ Integer32ToSmi(rdx, rdx); } // Check for function proxy. __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function); __ PopReturnAddressTo(rcx); __ push(rdi); // put proxy as additional argument under return address __ PushReturnAddressFrom(rcx); __ Set(rax, argc_ + 1); __ Set(rbx, 0); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY); { Handle adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(&non_function); __ movp(args.GetReceiverOperand(), rdi); __ Set(rax, argc_); __ Set(rbx, 0); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); Handle adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } if (CallAsMethod()) { __ bind(&wrap); // Wrap the receiver and patch it back onto the stack. { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ push(rdi); __ push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ pop(rdi); } __ movp(args.GetReceiverOperand(), rax); __ jmp(&cont); } } void CallConstructStub::Generate(MacroAssembler* masm) { // rax : number of arguments // rbx : feedback vector // rdx : (only if rbx is not the megamorphic symbol) slot in feedback // vector (Smi) // rdi : constructor function Label slow, non_function_call; // Check that function is not a smi. __ JumpIfSmi(rdi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Jump to the function-specific construct stub. Register jmp_reg = rcx; __ movp(jmp_reg, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(jmp_reg, FieldOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset)); __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize)); __ jmp(jmp_reg); // rdi: called object // rax: number of arguments // rcx: object map Label do_call; __ bind(&slow); __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function_call); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing rax). __ Set(rbx, 0); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } bool CEntryStub::NeedsImmovableCode() { return false; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); // It is important that the store buffer overflow stubs are generated first. ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(1, kDontSaveFPRegs); stub.GetCode(isolate); CEntryStub save_doubles(1, kSaveFPRegs); save_doubles.GetCode(isolate); } static void JumpIfOOM(MacroAssembler* masm, Register value, Register scratch, Label* oom_label) { __ movp(scratch, value); STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); STATIC_ASSERT(kFailureTag == 3); __ and_(scratch, Immediate(0xf)); __ cmpq(scratch, Immediate(0xf)); __ j(equal, oom_label); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // rax: result parameter for PerformGC, if any. // rbx: pointer to C function (C callee-saved). // rbp: frame pointer (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: pointer to the first argument (C callee-saved). // This pointer is reused in LeaveExitFrame(), so it is stored in a // callee-saved register. // Simple results returned in rax (both AMD64 and Win64 calling conventions). // Complex results must be written to address passed as first argument. // AMD64 calling convention: a struct of two pointers in rax+rdx // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } if (do_gc) { // Pass failure code returned from last attempt as first argument to // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the // stack is known to be aligned. This function takes one argument which is // passed in register. __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate())); __ movp(arg_reg_1, rax); __ Move(kScratchRegister, ExternalReference::perform_gc_function(masm->isolate())); __ call(kScratchRegister); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); if (always_allocate_scope) { Operand scope_depth_operand = masm->ExternalOperand(scope_depth); __ incl(scope_depth_operand); } // Call C function. #ifdef _WIN64 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. // Pass argv and argc as two parameters. The arguments object will // be created by stubs declared by DECLARE_RUNTIME_FUNCTION(). if (result_size_ < 2) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax). __ movp(rcx, r14); // argc. __ movp(rdx, r15); // argv. __ Move(r8, ExternalReference::isolate_address(masm->isolate())); } else { ASSERT_EQ(2, result_size_); // Pass a pointer to the result location as the first argument. __ lea(rcx, StackSpaceOperand(2)); // Pass a pointer to the Arguments object as the second argument. __ movp(rdx, r14); // argc. __ movp(r8, r15); // argv. __ Move(r9, ExternalReference::isolate_address(masm->isolate())); } #else // _WIN64 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. __ movp(rdi, r14); // argc. __ movp(rsi, r15); // argv. __ Move(rdx, ExternalReference::isolate_address(masm->isolate())); #endif __ call(rbx); // Result is in rax - do not destroy this register! if (always_allocate_scope) { Operand scope_depth_operand = masm->ExternalOperand(scope_depth); __ decl(scope_depth_operand); } // Check for failure result. Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); #ifdef _WIN64 // If return value is on the stack, pop it to registers. if (result_size_ > 1) { ASSERT_EQ(2, result_size_); // Read result values stored on stack. Result is stored // above the four argument mirror slots and the two // Arguments object slots. __ movq(rax, Operand(rsp, 6 * kRegisterSize)); __ movq(rdx, Operand(rsp, 7 * kRegisterSize)); } #endif __ lea(rcx, Operand(rax, 1)); // Lower 2 bits of rcx are 0 iff rax has failure tag. __ testl(rcx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles_); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry, Label::kNear); // Special handling of out of memory exceptions. JumpIfOOM(masm, rax, kScratchRegister, throw_out_of_memory_exception); // Retrieve the pending exception. ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, masm->isolate()); Operand pending_exception_operand = masm->ExternalOperand(pending_exception_address); __ movp(rax, pending_exception_operand); // See if we just retrieved an OOM exception. JumpIfOOM(masm, rax, kScratchRegister, throw_out_of_memory_exception); // Clear the pending exception. pending_exception_operand = masm->ExternalOperand(pending_exception_address); __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ movp(pending_exception_operand, rdx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::Generate(MacroAssembler* masm) { // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter the exit frame that transitions from JavaScript to C++. #ifdef _WIN64 int arg_stack_space = (result_size_ < 2 ? 2 : 4); #else int arg_stack_space = 0; #endif __ EnterExitFrame(arg_stack_space, save_doubles_); // rax: Holds the context at this point, but should not be used. // On entry to code generated by GenerateCore, it must hold // a failure result if the collect_garbage argument to GenerateCore // is true. This failure result can be the result of code // generated by a previous call to GenerateCore. The value // of rax is then passed to Runtime::PerformGC. // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: argv pointer (C callee-saved). Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ Move(rax, failure, Assembler::RelocInfoNone()); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); // Set external caught exception to false. Isolate* isolate = masm->isolate(); ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, isolate); __ Set(rax, static_cast(false)); __ Store(external_caught, rax); // Set pending exception and rax to out of memory exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate); Label already_have_failure; JumpIfOOM(masm, rax, kScratchRegister, &already_have_failure); __ Move(rax, Failure::OutOfMemoryException(0x1), Assembler::RelocInfoNone()); __ bind(&already_have_failure); __ Store(pending_exception, rax); // Fall through to the next label. __ bind(&throw_termination_exception); __ ThrowUncatchable(rax); __ bind(&throw_normal_exception); __ Throw(rax); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; ProfileEntryHookStub::MaybeCallEntryHook(masm); { // NOLINT. Scope block confuses linter. MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); // Set up frame. __ push(rbp); __ movp(rbp, rsp); // Push the stack frame type marker twice. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; // Scratch register is neither callee-save, nor an argument register on any // platform. It's free to use at this point. // Cannot use smi-register for loading yet. __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone()); __ push(kScratchRegister); // context slot __ push(kScratchRegister); // function slot // Save callee-saved registers (X64/Win64 calling conventions). __ push(r12); __ push(r13); __ push(r14); __ push(r15); #ifdef _WIN64 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. #endif __ push(rbx); #ifdef _WIN64 // On Win64 XMM6-XMM15 are callee-save __ subq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); #endif // Set up the roots and smi constant registers. // Needs to be done before any further smi loads. __ InitializeSmiConstantRegister(); __ InitializeRootRegister(); } Isolate* isolate = masm->isolate(); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate); { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); __ push(c_entry_fp_operand); } // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ Load(rax, js_entry_sp); __ testq(rax, rax); __ j(not_zero, ¬_outermost_js); __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ movp(rax, rbp); __ Store(js_entry_sp, rax); Label cont; __ jmp(&cont); __ bind(¬_outermost_js); __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate); __ Store(pending_exception, rax); __ Move(rax, Failure::Exception(), Assembler::RelocInfoNone()); __ jmp(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); __ PushTryHandler(StackHandler::JS_ENTRY, 0); // Clear any pending exceptions. __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); __ Store(pending_exception, rax); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. We load the address from an // external reference instead of inlining the call target address directly // in the code, because the builtin stubs may not have been generated yet // at the time this code is generated. if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ Load(rax, construct_entry); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); __ Load(rax, entry); } __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); __ call(kScratchRegister); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(rbx); __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ j(not_equal, ¬_outermost_js_2); __ Move(kScratchRegister, js_entry_sp); __ movp(Operand(kScratchRegister, 0), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); __ pop(c_entry_fp_operand); } // Restore callee-saved registers (X64 conventions). #ifdef _WIN64 // On Win64 XMM6-XMM15 are callee-save __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); #endif __ pop(rbx); #ifdef _WIN64 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. __ pop(rsi); __ pop(rdi); #endif __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(rbp); __ ret(0); } void InstanceofStub::Generate(MacroAssembler* masm) { // Implements "value instanceof function" operator. // Expected input state with no inline cache: // rsp[0] : return address // rsp[8] : function pointer // rsp[16] : value // Expected input state with an inline one-element cache: // rsp[0] : return address // rsp[8] : offset from return address to location of inline cache // rsp[16] : function pointer // rsp[24] : value // Returns a bitwise zero to indicate that the value // is and instance of the function and anything else to // indicate that the value is not an instance. static const int kOffsetToMapCheckValue = 2; static const int kOffsetToResultValue = 18; // The last 4 bytes of the instruction sequence // movq(rdi, FieldOperand(rax, HeapObject::kMapOffset)) // Move(kScratchRegister, Factory::the_hole_value()) // in front of the hole value address. static const unsigned int kWordBeforeMapCheckValue = 0xBA49FF78; // The last 4 bytes of the instruction sequence // __ j(not_equal, &cache_miss); // __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex); // before the offset of the hole value in the root array. static const unsigned int kWordBeforeResultValue = 0x458B4906; // Only the inline check flag is supported on X64. ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck()); int extra_argument_offset = HasCallSiteInlineCheck() ? 1 : 0; // Get the object - go slow case if it's a smi. Label slow; StackArgumentsAccessor args(rsp, 2 + extra_argument_offset, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rax, args.GetArgumentOperand(0)); __ JumpIfSmi(rax, &slow); // Check that the left hand is a JS object. Leave its map in rax. __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax); __ j(below, &slow); __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE); __ j(above, &slow); // Get the prototype of the function. __ movp(rdx, args.GetArgumentOperand(1)); // rdx is function, rax is map. // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { // Look up the function and the map in the instanceof cache. Label miss; __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ j(not_equal, &miss, Label::kNear); __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); __ j(not_equal, &miss, Label::kNear); __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); __ ret(2 * kPointerSize); __ bind(&miss); } __ TryGetFunctionPrototype(rdx, rbx, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(rbx, &slow); __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister); __ j(below, &slow); __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE); __ j(above, &slow); // Register mapping: // rax is object map. // rdx is function. // rbx is function prototype. if (!HasCallSiteInlineCheck()) { __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); } else { // Get return address and delta to inlined map check. __ movq(kScratchRegister, StackOperandForReturnAddress(0)); __ subq(kScratchRegister, args.GetArgumentOperand(2)); if (FLAG_debug_code) { __ movl(rdi, Immediate(kWordBeforeMapCheckValue)); __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCheck); } __ movp(kScratchRegister, Operand(kScratchRegister, kOffsetToMapCheckValue)); __ movp(Operand(kScratchRegister, 0), rax); } __ movp(rcx, FieldOperand(rax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. Label loop, is_instance, is_not_instance; __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); __ bind(&loop); __ cmpq(rcx, rbx); __ j(equal, &is_instance, Label::kNear); __ cmpq(rcx, kScratchRegister); // The code at is_not_instance assumes that kScratchRegister contains a // non-zero GCable value (the null object in this case). __ j(equal, &is_not_instance, Label::kNear); __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movp(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ xorl(rax, rax); // Store bitwise zero in the cache. This is a Smi in GC terms. STATIC_ASSERT(kSmiTag == 0); __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); } else { // Store offset of true in the root array at the inline check site. int true_offset = 0x100 + (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias; // Assert it is a 1-byte signed value. ASSERT(true_offset >= 0 && true_offset < 0x100); __ movl(rax, Immediate(true_offset)); __ movq(kScratchRegister, StackOperandForReturnAddress(0)); __ subq(kScratchRegister, args.GetArgumentOperand(2)); __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); if (FLAG_debug_code) { __ movl(rax, Immediate(kWordBeforeResultValue)); __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov); } __ Set(rax, 0); } __ ret((2 + extra_argument_offset) * kPointerSize); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { // We have to store a non-zero value in the cache. __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); } else { // Store offset of false in the root array at the inline check site. int false_offset = 0x100 + (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias; // Assert it is a 1-byte signed value. ASSERT(false_offset >= 0 && false_offset < 0x100); __ movl(rax, Immediate(false_offset)); __ movq(kScratchRegister, StackOperandForReturnAddress(0)); __ subq(kScratchRegister, args.GetArgumentOperand(2)); __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); if (FLAG_debug_code) { __ movl(rax, Immediate(kWordBeforeResultValue)); __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov); } } __ ret((2 + extra_argument_offset) * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); if (HasCallSiteInlineCheck()) { // Remove extra value from the stack. __ PopReturnAddressTo(rcx); __ pop(rax); __ PushReturnAddressFrom(rcx); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } // Passing arguments in registers is not supported. Register InstanceofStub::left() { return no_reg; } Register InstanceofStub::right() { return no_reg; } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; Label sliced_string; // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ testb(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); __ SmiToInteger32(index_, index_); StringCharLoadGenerator::Generate( masm, object_, index_, result_, &call_runtime_); __ Integer32ToSmi(result_, result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); Factory* factory = masm->isolate()->factory(); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, factory->heap_number_map(), index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } if (!index_.is(rax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ movp(index_, rax); } __ pop(object_); // Reload the instance type. __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ Integer32ToSmi(index_, index_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); if (!result_.is(rax)) { __ movp(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. __ JumpIfNotSmi(code_, &slow_case_); __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode)); __ j(above, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); __ movp(result_, FieldOperand(result_, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); if (!result_.is(rax)) { __ movp(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { // Copy characters using rep movs of doublewords. Align destination on 4 byte // boundary before starting rep movs. Copy remaining characters after running // rep movs. // Count is positive int32, dest and src are character pointers. ASSERT(dest.is(rdi)); // rep movs destination ASSERT(src.is(rsi)); // rep movs source ASSERT(count.is(rcx)); // rep movs count // Nothing to do for zero characters. Label done; __ testl(count, count); __ j(zero, &done, Label::kNear); // Make count the number of bytes to copy. if (!ascii) { STATIC_ASSERT(2 == sizeof(uc16)); __ addl(count, count); } // Don't enter the rep movs if there are less than 4 bytes to copy. Label last_bytes; __ testl(count, Immediate(~(kPointerSize - 1))); __ j(zero, &last_bytes, Label::kNear); // Copy from edi to esi using rep movs instruction. __ movl(kScratchRegister, count); __ shr(count, Immediate(kPointerSizeLog2)); // Number of doublewords to copy. __ repmovsq(); // Find number of bytes left. __ movl(count, kScratchRegister); __ and_(count, Immediate(kPointerSize - 1)); // Check if there are more bytes to copy. __ bind(&last_bytes); __ testl(count, count); __ j(zero, &done, Label::kNear); // Copy remaining characters. Label loop; __ bind(&loop); __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ incq(src); __ incq(dest); __ decl(count); __ j(not_zero, &loop); __ bind(&done); } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = (seed + character) + ((seed + character) << 10); __ LoadRoot(scratch, Heap::kHashSeedRootIndex); __ SmiToInteger32(scratch, scratch); __ addl(scratch, character); __ movl(hash, scratch); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ shrl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ addl(hash, character); // hash += hash << 10; __ movl(scratch, hash); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ shrl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ leal(hash, Operand(hash, hash, times_8, 0)); // hash ^= hash >> 11; __ movl(scratch, hash); __ shrl(scratch, Immediate(11)); __ xorl(hash, scratch); // hash += hash << 15; __ movl(scratch, hash); __ shll(scratch, Immediate(15)); __ addl(hash, scratch); __ andl(hash, Immediate(String::kHashBitMask)); // if (hash == 0) hash = 27; Label hash_not_zero; __ j(not_zero, &hash_not_zero); __ Set(hash, StringHasher::kZeroHash); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0] : return address // rsp[8] : to // rsp[16] : from // rsp[24] : string enum SubStringStubArgumentIndices { STRING_ARGUMENT_INDEX, FROM_ARGUMENT_INDEX, TO_ARGUMENT_INDEX, SUB_STRING_ARGUMENT_COUNT }; StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT, ARGUMENTS_DONT_CONTAIN_RECEIVER); // Make sure first argument is a string. __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX)); STATIC_ASSERT(kSmiTag == 0); __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rax: string // rbx: instance type // Calculate length of sub string using the smi values. __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX)); __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX)); __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime); __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen. __ cmpq(rcx, FieldOperand(rax, String::kLengthOffset)); Label not_original_string; // Shorter than original string's length: an actual substring. __ j(below, ¬_original_string, Label::kNear); // Longer than original string's length or negative: unsafe arguments. __ j(above, &runtime); // Return original string. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); __ bind(¬_original_string); Label single_char; __ SmiCompare(rcx, Smi::FromInt(1)); __ j(equal, &single_char); __ SmiToInteger32(rcx, rcx); // rax: string // rbx: instance type // rcx: sub string length // rdx: from index (smi) // Deal with different string types: update the index if necessary // and put the underlying string into edi. Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ testb(rbx, Immediate(kIsIndirectStringMask)); __ j(zero, &seq_or_external_string, Label::kNear); __ testb(rbx, Immediate(kSlicedNotConsMask)); __ j(not_zero, &sliced_string, Label::kNear); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset), Heap::kempty_stringRootIndex); __ j(not_equal, &runtime); __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset)); // Update instance type. __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset)); __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset)); // Update instance type. __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the correct register. __ movp(rdi, rax); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // rdi: underlying subject string // rbx: instance type of underlying subject string // rdx: adjusted start index (smi) // rcx: length // If coming from the make_two_character_string path, the string // is too short to be sliced anyways. __ cmpq(rcx, Immediate(SlicedString::kMinLength)); // Short slice. Copy instead of slicing. __ j(less, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testb(rbx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_slice, Label::kNear); __ AllocateAsciiSlicedString(rax, rbx, r14, &runtime); __ jmp(&set_slice_header, Label::kNear); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime); __ bind(&set_slice_header); __ Integer32ToSmi(rcx, rcx); __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx); __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi); __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(©_routine); } // rdi: underlying subject string // rbx: instance type of underlying subject string // rdx: adjusted start index (smi) // rcx: length // The subject string can only be external or sequential string of either // encoding at this point. Label two_byte_sequential, sequential_string; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ testb(rbx, Immediate(kExternalStringTag)); __ j(zero, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ testb(rbx, Immediate(kShortExternalStringMask)); __ j(not_zero, &runtime); __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ bind(&sequential_string); STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ testb(rbx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_sequential); // Allocate the result. __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime); // rax: result string // rcx: result string length __ movp(r14, rsi); // esi used by following code. { // Locate character of sub string start. SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1); __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale, SeqOneByteString::kHeaderSize - kHeapObjectTag)); } // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize)); // rax: result string // rcx: result length // rdi: first character of result // rsi: character of sub string start // r14: original value of rsi StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); __ movp(rsi, r14); // Restore rsi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); __ bind(&two_byte_sequential); // Allocate the result. __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime); // rax: result string // rcx: result string length __ movp(r14, rsi); // esi used by following code. { // Locate character of sub string start. SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2); __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale, SeqOneByteString::kHeaderSize - kHeapObjectTag)); } // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); // rax: result string // rcx: result length // rdi: first character of result // rsi: character of sub string start // r14: original value of rsi StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); __ movp(rsi, r14); // Restore esi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); __ bind(&single_char); // rax: string // rbx: instance type // rcx: sub string length (smi) // rdx: from index (smi) StringCharAtGenerator generator( rax, rdx, rcx, rax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm); __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize); generator.SkipSlow(masm, &runtime); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label check_zero_length; __ movp(length, FieldOperand(left, String::kLengthOffset)); __ SmiCompare(length, FieldOperand(right, String::kLengthOffset)); __ j(equal, &check_zero_length, Label::kNear); __ Move(rax, Smi::FromInt(NOT_EQUAL)); __ ret(0); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ SmiTest(length); __ j(not_zero, &compare_chars, Label::kNear); __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Compare characters. __ bind(&compare_chars); Label strings_not_equal; GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal, Label::kNear); // Characters are equal. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Characters are not equal. __ bind(&strings_not_equal); __ Move(rax, Smi::FromInt(NOT_EQUAL)); __ ret(0); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Ensure that you can always subtract a string length from a non-negative // number (e.g. another length). STATIC_ASSERT(String::kMaxLength < 0x7fffffff); // Find minimum length and length difference. __ movp(scratch1, FieldOperand(left, String::kLengthOffset)); __ movp(scratch4, scratch1); __ SmiSub(scratch4, scratch4, FieldOperand(right, String::kLengthOffset)); // Register scratch4 now holds left.length - right.length. const Register length_difference = scratch4; Label left_shorter; __ j(less, &left_shorter, Label::kNear); // The right string isn't longer that the left one. // Get the right string's length by subtracting the (non-negative) difference // from the left string's length. __ SmiSub(scratch1, scratch1, length_difference); __ bind(&left_shorter); // Register scratch1 now holds Min(left.length, right.length). const Register min_length = scratch1; Label compare_lengths; // If min-length is zero, go directly to comparing lengths. __ SmiTest(min_length); __ j(zero, &compare_lengths, Label::kNear); // Compare loop. Label result_not_equal; GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal, // In debug-code mode, SmiTest below might push // the target label outside the near range. Label::kFar); // Completed loop without finding different characters. // Compare lengths (precomputed). __ bind(&compare_lengths); __ SmiTest(length_difference); Label length_not_equal; __ j(not_zero, &length_not_equal, Label::kNear); // Result is EQUAL. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); Label result_greater; Label result_less; __ bind(&length_not_equal); __ j(greater, &result_greater, Label::kNear); __ jmp(&result_less, Label::kNear); __ bind(&result_not_equal); // Unequal comparison of left to right, either character or length. __ j(above, &result_greater, Label::kNear); __ bind(&result_less); // Result is LESS. __ Move(rax, Smi::FromInt(LESS)); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Move(rax, Smi::FromInt(GREATER)); __ ret(0); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance near_jump) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiToInteger32(length, length); __ lea(left, FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); __ lea(right, FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); __ neg(length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ movb(scratch, Operand(left, index, times_1, 0)); __ cmpb(scratch, Operand(right, index, times_1, 0)); __ j(not_equal, chars_not_equal, near_jump); __ incq(index); __ j(not_zero, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0] : return address // rsp[8] : right string // rsp[16] : left string StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rdx, args.GetArgumentOperand(0)); // left __ movp(rax, args.GetArgumentOperand(1)); // right // Check for identity. Label not_same; __ cmpq(rdx, rax); __ j(not_equal, ¬_same, Label::kNear); __ Move(rax, Smi::FromInt(EQUAL)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_compare_native(), 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); // Inline comparison of ASCII strings. __ IncrementCounter(counters->string_compare_native(), 1); // Drop arguments from the stack __ PopReturnAddressTo(rcx); __ addq(rsp, Immediate(2 * kPointerSize)); __ PushReturnAddressFrom(rcx); GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void ArrayPushStub::Generate(MacroAssembler* masm) { int argc = arguments_count(); StackArgumentsAccessor args(rsp, argc); if (argc == 0) { // Noop, return the length. __ movp(rax, FieldOperand(rdx, JSArray::kLengthOffset)); __ ret((argc + 1) * kPointerSize); return; } Isolate* isolate = masm->isolate(); if (argc != 1) { __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); return; } Label call_builtin, attempt_to_grow_elements, with_write_barrier; // Get the elements array of the object. __ movp(rdi, FieldOperand(rdx, JSArray::kElementsOffset)); if (IsFastSmiOrObjectElementsKind(elements_kind())) { // Check that the elements are in fast mode and writable. __ Cmp(FieldOperand(rdi, HeapObject::kMapOffset), isolate->factory()->fixed_array_map()); __ j(not_equal, &call_builtin); } // Get the array's length into rax and calculate new length. __ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset)); STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue); __ addl(rax, Immediate(argc)); // Get the elements' length into rcx. __ SmiToInteger32(rcx, FieldOperand(rdi, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmpl(rax, rcx); if (IsFastSmiOrObjectElementsKind(elements_kind())) { __ j(greater, &attempt_to_grow_elements); // Check if value is a smi. __ movp(rcx, args.GetArgumentOperand(1)); __ JumpIfNotSmi(rcx, &with_write_barrier); // Store the value. __ movp(FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize), rcx); } else { __ j(greater, &call_builtin); __ movp(rcx, args.GetArgumentOperand(1)); __ StoreNumberToDoubleElements( rcx, rdi, rax, xmm0, &call_builtin, argc * kDoubleSize); } // Save new length. __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax); __ Integer32ToSmi(rax, rax); // Return new length as smi. __ ret((argc + 1) * kPointerSize); if (IsFastDoubleElementsKind(elements_kind())) { __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); return; } __ bind(&with_write_barrier); if (IsFastSmiElementsKind(elements_kind())) { if (FLAG_trace_elements_transitions) __ jmp(&call_builtin); __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset), isolate->factory()->heap_number_map()); __ j(equal, &call_builtin); ElementsKind target_kind = IsHoleyElementsKind(elements_kind()) ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; __ movp(rbx, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX)); __ movp(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset)); __ movp(rbx, ContextOperand(rbx, Context::JS_ARRAY_MAPS_INDEX)); const int header_size = FixedArrayBase::kHeaderSize; // Verify that the object can be transitioned in place. const int origin_offset = header_size + elements_kind() * kPointerSize; __ movp(rdi, FieldOperand(rbx, origin_offset)); __ cmpq(rdi, FieldOperand(rdx, HeapObject::kMapOffset)); __ j(not_equal, &call_builtin); const int target_offset = header_size + target_kind * kPointerSize; __ movp(rbx, FieldOperand(rbx, target_offset)); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, DONT_TRACK_ALLOCATION_SITE, NULL); __ movp(rdi, FieldOperand(rdx, JSArray::kElementsOffset)); } // Save new length. __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax); // Store the value. __ lea(rdx, FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ movp(Operand(rdx, 0), rcx); __ RecordWrite(rdi, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Integer32ToSmi(rax, rax); // Return new length as smi. __ ret((argc + 1) * kPointerSize); __ bind(&attempt_to_grow_elements); if (!FLAG_inline_new) { __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); return; } __ movp(rbx, args.GetArgumentOperand(1)); // Growing elements that are SMI-only requires special handling in case the // new element is non-Smi. For now, delegate to the builtin. Label no_fast_elements_check; __ JumpIfSmi(rbx, &no_fast_elements_check); __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ CheckFastObjectElements(rcx, &call_builtin, Label::kFar); __ bind(&no_fast_elements_check); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate); const int kAllocationDelta = 4; ASSERT(kAllocationDelta >= argc); // Load top. __ Load(rcx, new_space_allocation_top); // Check if it's the end of elements. __ lea(rdx, FieldOperand(rdi, rax, times_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ cmpq(rdx, rcx); __ j(not_equal, &call_builtin); __ addq(rcx, Immediate(kAllocationDelta * kPointerSize)); Operand limit_operand = masm->ExternalOperand(new_space_allocation_limit); __ cmpq(rcx, limit_operand); __ j(above, &call_builtin); // We fit and could grow elements. __ Store(new_space_allocation_top, rcx); // Push the argument... __ movp(Operand(rdx, 0), rbx); // ... and fill the rest with holes. __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); for (int i = 1; i < kAllocationDelta; i++) { __ movp(Operand(rdx, i * kPointerSize), kScratchRegister); } if (IsFastObjectElementsKind(elements_kind())) { // We know the elements array is in new space so we don't need the // remembered set, but we just pushed a value onto it so we may have to tell // the incremental marker to rescan the object that we just grew. We don't // need to worry about the holes because they are in old space and already // marked black. __ RecordWrite(rdi, rdx, rbx, kDontSaveFPRegs, OMIT_REMEMBERED_SET); } // Restore receiver to rdx as finish sequence assumes it's here. __ movp(rdx, args.GetReceiverOperand()); // Increment element's and array's sizes. __ SmiAddConstant(FieldOperand(rdi, FixedArray::kLengthOffset), Smi::FromInt(kAllocationDelta)); // Make new length a smi before returning it. __ Integer32ToSmi(rax, rax); __ movp(FieldOperand(rdx, JSArray::kLengthOffset), rax); __ ret((argc + 1) * kPointerSize); __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rdx : left // -- rax : right // -- rsp[0] : return address // ----------------------------------- Isolate* isolate = masm->isolate(); // Load rcx with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ Move(rcx, handle(isolate->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ testb(rcx, Immediate(kSmiTagMask)); __ Assert(not_equal, kExpectedAllocationSite); __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset), isolate->factory()->allocation_site_map()); __ Assert(equal, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(state_); __ TailCallStub(&stub); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMI); Label miss; __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ subq(rax, rdx); } else { Label done; __ subq(rdx, rax); __ j(no_overflow, &done, Label::kNear); // Correct sign of result in case of overflow. __ not_(rdx); __ bind(&done); __ movp(rax, rdx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left_ == CompareIC::SMI) { __ JumpIfNotSmi(rdx, &miss); } if (right_ == CompareIC::SMI) { __ JumpIfNotSmi(rax, &miss); } // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(rax, &right_smi, Label::kNear); __ CompareMap(rax, masm->isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined1, Label::kNear); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&left, Label::kNear); __ bind(&right_smi); __ SmiToInteger32(rcx, rax); // Can't clobber rax yet. __ Cvtlsi2sd(xmm1, rcx); __ bind(&left); __ JumpIfSmi(rdx, &left_smi, Label::kNear); __ CompareMap(rdx, masm->isolate()->factory()->heap_number_map()); __ j(not_equal, &maybe_undefined2, Label::kNear); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&left_smi); __ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet. __ Cvtlsi2sd(xmm0, rcx); __ bind(&done); // Compare operands __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ movl(rax, Immediate(0)); __ movl(rcx, Immediate(0)); __ setcc(above, rax); // Add one to zero if carry clear and not equal. __ sbbq(rax, rcx); // Subtract one if below (aka. carry set). __ ret(0); __ bind(&unordered); __ bind(&generic_stub); ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, CompareIC::GENERIC); __ jmp(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ Cmp(rax, masm->isolate()->factory()->undefined_value()); __ j(not_equal, &miss); __ JumpIfSmi(rdx, &unordered); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &maybe_undefined2, Label::kNear); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ Cmp(rdx, masm->isolate()->factory()->undefined_value()); __ j(equal, &unordered); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::INTERNALIZED_STRING); ASSERT(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; Register tmp1 = rcx; Register tmp2 = rbx; // Check that both operands are heap objects. Label miss; Condition cond = masm->CheckEitherSmi(left, right, tmp1); __ j(cond, &miss, Label::kNear); // Check that both operands are internalized strings. __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ or_(tmp1, tmp2); __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); __ j(not_zero, &miss, Label::kNear); // Internalized strings are compared by identity. Label done; __ cmpq(left, right); // Make sure rax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(rax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(rax, Smi::FromInt(EQUAL)); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { ASSERT(state_ == CompareIC::UNIQUE_NAME); ASSERT(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; Register tmp1 = rcx; Register tmp2 = rbx; // Check that both operands are heap objects. Label miss; Condition cond = masm->CheckEitherSmi(left, right, tmp1); __ j(cond, &miss, Label::kNear); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueName(tmp1, &miss, Label::kNear); __ JumpIfNotUniqueName(tmp2, &miss, Label::kNear); // Unique names are compared by identity. Label done; __ cmpq(left, right); // Make sure rax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(rax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(rax, Smi::FromInt(EQUAL)); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRING); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; Register tmp1 = rcx; Register tmp2 = rbx; Register tmp3 = rdi; // Check that both operands are heap objects. Condition cond = masm->CheckEitherSmi(left, right, tmp1); __ j(cond, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ movp(tmp3, tmp1); STATIC_ASSERT(kNotStringTag != 0); __ or_(tmp3, tmp2); __ testb(tmp3, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Fast check for identical strings. Label not_same; __ cmpq(left, right); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Handle not identical strings. __ bind(¬_same); // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We also know they are both // strings. if (equality) { Label do_compare; STATIC_ASSERT(kInternalizedTag == 0); __ or_(tmp1, tmp2); __ testb(tmp1, Immediate(kIsNotInternalizedMask)); __ j(not_zero, &do_compare, Label::kNear); // Make sure rax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(rax)); __ ret(0); __ bind(&do_compare); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3, kScratchRegister); } // Handle more complex cases in runtime. __ bind(&runtime); __ PopReturnAddressTo(tmp1); __ push(left); __ push(right); __ PushReturnAddressFrom(tmp1); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECT); Label miss; Condition either_smi = masm->CheckEitherSmi(rdx, rax); __ j(either_smi, &miss, Label::kNear); __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, Label::kNear); __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, Label::kNear); ASSERT(GetCondition() == equal); __ subq(rax, rdx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; Condition either_smi = masm->CheckEitherSmi(rdx, rax); __ j(either_smi, &miss, Label::kNear); __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ Cmp(rcx, known_map_); __ j(not_equal, &miss, Label::kNear); __ Cmp(rbx, known_map_); __ j(not_equal, &miss, Label::kNear); __ subq(rax, rdx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ push(rdx); __ push(rax); __ push(rdx); __ push(rax); __ Push(Smi::FromInt(op_)); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ lea(rdi, FieldOperand(rax, Code::kHeaderSize)); __ pop(rax); __ pop(rdx); } // Do a tail call to the rewritten stub. __ jmp(rdi); } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle name, Register r0) { ASSERT(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // r0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = r0; // Capacity is smi 2^n. __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset)); __ decl(index); __ and_(index, Immediate(name->Hash() + NameDictionary::GetProbeOffset(i))); // Scale the index by multiplying by the entry size. ASSERT(NameDictionary::kEntrySize == 3); __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. Register entity_name = r0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); __ movp(entity_name, Operand(properties, index, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ Cmp(entity_name, masm->isolate()->factory()->undefined_value()); __ j(equal, done); // Stop if found the property. __ Cmp(entity_name, Handle(name)); __ j(equal, miss); Label good; // Check for the hole and skip. __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex); __ j(equal, &good, Label::kNear); // Check if the entry name is not a unique name. __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); __ JumpIfNotUniqueName(FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); __ bind(&good); } NameDictionaryLookupStub stub(properties, r0, r0, NEGATIVE_LOOKUP); __ Push(Handle(name)); __ push(Immediate(name->Hash())); __ CallStub(&stub); __ testq(r0, r0); __ j(not_zero, miss); __ jmp(done); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found leaving the // index into the dictionary in |r1|. Jump to the |miss| label // otherwise. void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1) { ASSERT(!elements.is(r0)); ASSERT(!elements.is(r1)); ASSERT(!name.is(r0)); ASSERT(!name.is(r1)); __ AssertName(name); __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset)); __ decl(r0); for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movl(r1, FieldOperand(name, Name::kHashFieldOffset)); __ shrl(r1, Immediate(Name::kHashShift)); if (i > 0) { __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i))); } __ and_(r1, r0); // Scale the index by multiplying by the entry size. ASSERT(NameDictionary::kEntrySize == 3); __ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 // Check if the key is identical to the name. __ cmpq(name, Operand(elements, r1, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ j(equal, done); } NameDictionaryLookupStub stub(elements, r0, r1, POSITIVE_LOOKUP); __ push(name); __ movl(r0, FieldOperand(name, Name::kHashFieldOffset)); __ shrl(r0, Immediate(Name::kHashShift)); __ push(r0); __ CallStub(&stub); __ testq(r0, r0); __ j(zero, miss); __ jmp(done); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Stack frame on entry: // rsp[0 * kPointerSize] : return address. // rsp[1 * kPointerSize] : key's hash. // rsp[2 * kPointerSize] : key. // Registers: // dictionary_: NameDictionary to probe. // result_: used as scratch. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Label in_dictionary, maybe_in_dictionary, not_in_dictionary; Register scratch = result_; __ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset)); __ decl(scratch); __ push(scratch); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER, kPointerSize); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movp(scratch, args.GetArgumentOperand(1)); if (i > 0) { __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i))); } __ and_(scratch, Operand(rsp, 0)); // Scale the index by multiplying by the entry size. ASSERT(NameDictionary::kEntrySize == 3); __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3. // Having undefined at this place means the name is not contained. __ movp(scratch, Operand(dictionary_, index_, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ Cmp(scratch, masm->isolate()->factory()->undefined_value()); __ j(equal, ¬_in_dictionary); // Stop if found the property. __ cmpq(scratch, args.GetArgumentOperand(0)); __ j(equal, &in_dictionary); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // If we hit a key that is not a unique name during negative // lookup we have to bailout as this key might be equal to the // key we are looking for. // Check if the entry name is not a unique name. __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ JumpIfNotUniqueName(FieldOperand(scratch, Map::kInstanceTypeOffset), &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ movp(scratch, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } __ bind(&in_dictionary); __ movp(scratch, Immediate(1)); __ Drop(1); __ ret(2 * kPointerSize); __ bind(¬_in_dictionary); __ movp(scratch, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(kDontSaveFPRegs); stub1.GetCode(isolate); StoreBufferOverflowStub stub2(kSaveFPRegs); stub2.GetCode(isolate); } bool CodeStub::CanUseFPRegisters() { return true; // Always have SSE2 on x64. } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. __ jmp(&skip_to_incremental_noncompacting, Label::kNear); __ jmp(&skip_to_incremental_compacting, Label::kFar); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. masm->set_byte_at(0, kTwoByteNopInstruction); masm->set_byte_at(2, kFiveByteNopInstruction); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, not_zero, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ ret(0); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); Register address = arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address(); ASSERT(!address.is(regs_.object())); ASSERT(!address.is(arg_reg_1)); __ Move(address, regs_.address()); __ Move(arg_reg_1, regs_.object()); // TODO(gc) Can we just set address arg2 in the beginning? __ Move(arg_reg_2, address); __ LoadAddress(arg_reg_3, ExternalReference::isolate_address(masm->isolate())); int argument_count = 3; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count); __ CallCFunction( ExternalReference::incremental_marking_record_write_function( masm->isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_object; __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask)); __ and_(regs_.scratch0(), regs_.object()); __ movp(regs_.scratch1(), Operand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ subq(regs_.scratch1(), Immediate(1)); __ movp(Operand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset), regs_.scratch1()); __ j(negative, &need_incremental); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black, Label::kNear); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&on_black); // Get the value from the slot. __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, zero, &ensure_not_white, Label::kNear); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, zero, &need_incremental); __ bind(&ensure_not_white); } // We need an extra register for this, so we push the object register // temporarily. __ push(regs_.object()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. &need_incremental_pop_object, Label::kNear); __ pop(regs_.object()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&need_incremental_pop_object); __ pop(regs_.object()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : element value to store // -- rcx : element index as smi // -- rsp[0] : return address // -- rsp[8] : array literal index in function // -- rsp[16] : array literal // clobbers rbx, rdx, rdi // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; // Get array literal index, array literal and its map. StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rdx, args.GetArgumentOperand(1)); __ movp(rbx, args.GetArgumentOperand(0)); __ movp(rdi, FieldOperand(rbx, JSObject::kMapOffset)); __ CheckFastElements(rdi, &double_elements); // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS __ JumpIfSmi(rax, &smi_element); __ CheckFastSmiElements(rdi, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); __ PopReturnAddressTo(rdi); __ push(rbx); __ push(rcx); __ push(rax); __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ push(rdx); __ PushReturnAddressFrom(rdi); __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. __ bind(&fast_elements); __ SmiToInteger32(kScratchRegister, rcx); __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); __ lea(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size, FixedArrayBase::kHeaderSize)); __ movp(Operand(rcx, 0), rax); // Update the write barrier for the array store. __ RecordWrite(rbx, rcx, rax, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or // FAST_*_ELEMENTS, and value is Smi. __ bind(&smi_element); __ SmiToInteger32(kScratchRegister, rcx); __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); __ movp(FieldOperand(rbx, kScratchRegister, times_pointer_size, FixedArrayBase::kHeaderSize), rax); __ ret(0); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ movp(r9, FieldOperand(rbx, JSObject::kElementsOffset)); __ SmiToInteger32(r11, rcx); __ StoreNumberToDoubleElements(rax, r9, r11, xmm0, &slow_elements); __ ret(0); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs); __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ movp(rbx, MemOperand(rbp, parameter_count_offset)); masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ PopReturnAddressTo(rcx); int additional_offset = function_mode_ == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; __ lea(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset)); __ jmp(rcx); // Return to IC Miss stub, continuation still on stack. } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub; masm->CallStub(&stub); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // This stub can be called from essentially anywhere, so it needs to save // all volatile and callee-save registers. const size_t kNumSavedRegisters = 2; __ push(arg_reg_1); __ push(arg_reg_2); // Calculate the original stack pointer and store it in the second arg. __ lea(arg_reg_2, Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize)); // Calculate the function address to the first arg. __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize)); __ subq(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); // Save the remainder of the volatile registers. masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); // Call the entry hook function. __ Move(rax, FUNCTION_ADDR(masm->isolate()->function_entry_hook()), Assembler::RelocInfoNone()); AllowExternalCallThatCantCauseGC scope(masm); const int kArgumentCount = 2; __ PrepareCallCFunction(kArgumentCount); __ CallCFunction(rax, kArgumentCount); // Restore volatile regs. masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); __ pop(arg_reg_2); __ pop(arg_reg_1); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmpl(rdx, Immediate(kind)); __ j(not_equal, &next); T stub(kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES) // rdx - kind (if mode != DISABLE_ALLOCATION_SITES) // rax - number of arguments // rdi - constructor? // rsp[0] - return address // rsp[8] - last argument Handle undefined_sentinel( masm->isolate()->heap()->undefined_value(), masm->isolate()); Label normal_sequence; if (mode == DONT_OVERRIDE) { ASSERT(FAST_SMI_ELEMENTS == 0); ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); ASSERT(FAST_ELEMENTS == 2); ASSERT(FAST_HOLEY_ELEMENTS == 3); ASSERT(FAST_DOUBLE_ELEMENTS == 4); ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ testb(rdx, Immediate(1)); __ j(not_zero, &normal_sequence); } // look at the first argument StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rcx, args.GetArgumentOperand(0)); __ testq(rcx, rcx); __ j(zero, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ incl(rdx); if (FLAG_debug_code) { Handle allocation_site_map = masm->isolate()->factory()->allocation_site_map(); __ Cmp(FieldOperand(rbx, 0), allocation_site_map); __ Assert(equal, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset), Smi::FromInt(kFastElementsKindPackedToHoley)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmpl(rdx, Immediate(kind)); __ j(not_equal, &next); ArraySingleArgumentConstructorStub stub(kind); __ TailCallStub(&stub); __ bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(kind); stub.GetCode(isolate); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(isolate); } } } void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); } void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( Isolate* isolate) { ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(kinds[i]); stubh1.GetCode(isolate); InternalArraySingleArgumentConstructorStub stubh2(kinds[i]); stubh2.GetCode(isolate); InternalArrayNArgumentsConstructorStub stubh3(kinds[i]); stubh3.GetCode(isolate); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (argument_count_ == ANY) { Label not_zero_case, not_one_case; __ testq(rax, rax); __ j(not_zero, ¬_zero_case); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ cmpl(rax, Immediate(1)); __ j(greater, ¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); CreateArrayDispatch(masm, mode); } else if (argument_count_ == NONE) { CreateArrayDispatch(masm, mode); } else if (argument_count_ == ONE) { CreateArrayDispatchOneArgument(masm, mode); } else if (argument_count_ == MORE_THAN_ONE) { CreateArrayDispatch(masm, mode); } else { UNREACHABLE(); } } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rbx : feedback vector (fixed array or megamorphic symbol) // -- rdx : slot index (if ebx is fixed array) // -- rdi : constructor // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Handle megamorphic_sentinel = TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()); if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(rcx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForArrayFunction); // We should either have the megamorphic symbol in rbx or a valid // fixed array. Label okay_here; Handle fixed_array_map = masm->isolate()->factory()->fixed_array_map(); __ Cmp(rbx, megamorphic_sentinel); __ j(equal, &okay_here); __ Cmp(FieldOperand(rbx, 0), fixed_array_map); __ Assert(equal, kExpectedFixedArrayInRegisterRbx); // rdx should be a smi if we don't have the megamorphic symbol in rbx. __ AssertSmi(rdx); __ bind(&okay_here); } Label no_info; // If the feedback slot is the megamorphic sentinel, or contains anything // other than an AllocationSite, call an array constructor that doesn't use // AllocationSites. __ Cmp(rbx, megamorphic_sentinel); __ j(equal, &no_info); __ SmiToInteger32(rdx, rdx); __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); __ Integer32ToSmi(rdx, rdx); __ Cmp(FieldOperand(rbx, 0), masm->isolate()->factory()->allocation_site_map()); __ j(not_equal, &no_info); // Only look at the lower 16 bits of the transition info. __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset)); __ SmiToInteger32(rdx, rdx); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ and_(rdx, Immediate(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { Label not_zero_case, not_one_case; Label normal_sequence; __ testq(rax, rax); __ j(not_zero, ¬_zero_case); InternalArrayNoArgumentConstructorStub stub0(kind); __ TailCallStub(&stub0); __ bind(¬_zero_case); __ cmpl(rax, Immediate(1)); __ j(greater, ¬_one_case); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(rcx, args.GetArgumentOperand(0)); __ testq(rcx, rcx); __ j(zero, &normal_sequence); InternalArraySingleArgumentConstructorStub stub1_holey(GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey); } __ bind(&normal_sequence); InternalArraySingleArgumentConstructorStub stub1(kind); __ TailCallStub(&stub1); __ bind(¬_one_case); InternalArrayNArgumentsConstructorStub stubN(kind); __ TailCallStub(&stubN); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rdi : constructor // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(rcx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ movzxbq(rcx, FieldOperand(rcx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(rcx, Immediate(Map::kElementsKindMask)); __ shr(rcx, Immediate(Map::kElementsKindShift)); if (FLAG_debug_code) { Label done; __ cmpl(rcx, Immediate(FAST_ELEMENTS)); __ j(equal, &done); __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS)); __ Assert(equal, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmpl(rcx, Immediate(FAST_ELEMENTS)); __ j(equal, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void CallApiFunctionStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : callee // -- rbx : call_data // -- rcx : holder // -- rdx : api_function_address // -- rsi : context // -- // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[argc * 8] : first argument // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- Register callee = rax; Register call_data = rbx; Register holder = rcx; Register api_function_address = rdx; Register return_address = rdi; Register context = rsi; int argc = ArgumentBits::decode(bit_field_); bool is_store = IsStoreBits::decode(bit_field_); bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kArgsLength == 7); __ PopReturnAddressTo(return_address); // context save __ push(context); // load context from callee __ movp(context, FieldOperand(callee, JSFunction::kContextOffset)); // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // return value __ push(scratch); // return value default __ push(scratch); // isolate __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ push(scratch); // holder __ push(holder); __ movp(scratch, rsp); // Push return address back on stack. __ PushReturnAddressFrom(return_address); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; __ PrepareCallApiFunction(kApiStackSpace); // FunctionCallbackInfo::implicit_args_. __ movp(StackSpaceOperand(0), scratch); __ addq(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize)); __ movp(StackSpaceOperand(1), scratch); // FunctionCallbackInfo::values_. __ Set(StackSpaceOperand(2), argc); // FunctionCallbackInfo::length_. // FunctionCallbackInfo::is_construct_call_. __ Set(StackSpaceOperand(3), 0); #if defined(__MINGW64__) || defined(_WIN64) Register arguments_arg = rcx; Register callback_arg = rdx; #else Register arguments_arg = rdi; Register callback_arg = rsi; #endif // It's okay if api_function_address == callback_arg // but not arguments_arg ASSERT(!api_function_address.is(arguments_arg)); // v8::InvocationCallback's argument. __ lea(arguments_arg, StackSpaceOperand(0)); Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); // Accessor for FunctionCallbackInfo and first js arg. StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); Operand context_restore_operand = args_from_rbp.GetArgumentOperand( FCA::kArgsLength - FCA::kContextSaveIndex); // Stores return the first js argument Operand return_value_operand = args_from_rbp.GetArgumentOperand( is_store ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset); __ CallApiFunctionAndReturn( api_function_address, thunk_address, callback_arg, argc + FCA::kArgsLength + 1, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : name // -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object // -- ... // -- r8 : api_function_address // ----------------------------------- #if defined(__MINGW64__) || defined(_WIN64) Register getter_arg = r8; Register accessor_info_arg = rdx; Register name_arg = rcx; #else Register getter_arg = rdx; Register accessor_info_arg = rsi; Register name_arg = rdi; #endif Register api_function_address = r8; Register scratch = rax; // v8::Arguments::values_ and handler for name. const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1; // Allocate v8::AccessorInfo in non-GCed stack space. const int kArgStackSpace = 1; __ lea(name_arg, Operand(rsp, kPCOnStackSize)); __ PrepareCallApiFunction(kArgStackSpace); __ lea(scratch, Operand(name_arg, 1 * kPointerSize)); // v8::PropertyAccessorInfo::args_. __ movp(StackSpaceOperand(0), scratch); // The context register (rsi) has been saved in PrepareCallApiFunction and // could be used to pass arguments. __ lea(accessor_info_arg, StackSpaceOperand(0)); Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); // It's okay if api_function_address == getter_arg // but not accessor_info_arg or name_arg ASSERT(!api_function_address.is(accessor_info_arg) && !api_function_address.is(name_arg)); // The name handler is counted as an argument. StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength); Operand return_value_operand = args.GetArgumentOperand( PropertyCallbackArguments::kArgsLength - 1 - PropertyCallbackArguments::kReturnValueOffset); __ CallApiFunctionAndReturn(api_function_address, thunk_address, getter_arg, kStackSpace, return_value_operand, NULL); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64