// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), // // ==================================================== // Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. // // The following is a straightforward translation of fdlibm routines // by Raymond Toy (rtoy@google.com). // Double constants that do not have empty lower 32 bits are found in fdlibm.cc // and exposed through kMath as typed array. We assume the compiler to convert // from decimal to binary accurately enough to produce the intended values. // kMath is initialized to a Float64Array during genesis and not writable. var kMath; const INVPIO2 = kMath[0]; const PIO2_1 = kMath[1]; const PIO2_1T = kMath[2]; const PIO2_2 = kMath[3]; const PIO2_2T = kMath[4]; const PIO2_3 = kMath[5]; const PIO2_3T = kMath[6]; const PIO4 = kMath[32]; const PIO4LO = kMath[33]; // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For // precision, r is returned as two values y0 and y1 such that r = y0 + y1 // to more than double precision. macro REMPIO2(X) var n, y0, y1; var hx = %_DoubleHi(X); var ix = hx & 0x7fffffff; if (ix < 0x4002d97c) { // |X| ~< 3*pi/4, special case with n = +/- 1 if (hx > 0) { var z = X - PIO2_1; if (ix != 0x3ff921fb) { // 33+53 bit pi is good enough y0 = z - PIO2_1T; y1 = (z - y0) - PIO2_1T; } else { // near pi/2, use 33+33+53 bit pi z -= PIO2_2; y0 = z - PIO2_2T; y1 = (z - y0) - PIO2_2T; } n = 1; } else { // Negative X var z = X + PIO2_1; if (ix != 0x3ff921fb) { // 33+53 bit pi is good enough y0 = z + PIO2_1T; y1 = (z - y0) + PIO2_1T; } else { // near pi/2, use 33+33+53 bit pi z += PIO2_2; y0 = z + PIO2_2T; y1 = (z - y0) + PIO2_2T; } n = -1; } } else if (ix <= 0x413921fb) { // |X| ~<= 2^19*(pi/2), medium size var t = MathAbs(X); n = (t * INVPIO2 + 0.5) | 0; var r = t - n * PIO2_1; var w = n * PIO2_1T; // First round good to 85 bit y0 = r - w; if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { // 2nd iteration needed, good to 118 t = r; w = n * PIO2_2; r = t - w; w = n * PIO2_2T - ((t - r) - w); y0 = r - w; if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { // 3rd iteration needed. 151 bits accuracy t = r; w = n * PIO2_3; r = t - w; w = n * PIO2_3T - ((t - r) - w); y0 = r - w; } } y1 = (r - y0) - w; if (hx < 0) { n = -n; y0 = -y0; y1 = -y1; } } else { // Need to do full Payne-Hanek reduction here. var r = %RemPiO2(X); n = r[0]; y0 = r[1]; y1 = r[2]; } endmacro // __kernel_sin(X, Y, IY) // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 // Input X is assumed to be bounded by ~pi/4 in magnitude. // Input Y is the tail of X so that x = X + Y. // // Algorithm // 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. // 2. ieee_sin(x) is approximated by a polynomial of degree 13 on // [0,pi/4] // 3 13 // sin(x) ~ x + S1*x + ... + S6*x // where // // |ieee_sin(x) 2 4 6 8 10 12 | -58 // |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 // | x | // // 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y // ~ ieee_sin(X) + (1-X*X/2)*Y // For better accuracy, let // 3 2 2 2 2 // r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) // then 3 2 // sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) // macro KSIN(x) kMath[7+x] endmacro macro RETURN_KERNELSIN(X, Y, SIGN) var z = X * X; var v = z * X; var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + z * (KSIN(4) + z * KSIN(5)))); return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; endmacro // __kernel_cos(X, Y) // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 // Input X is assumed to be bounded by ~pi/4 in magnitude. // Input Y is the tail of X so that x = X + Y. // // Algorithm // 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. // 2. ieee_cos(x) is approximated by a polynomial of degree 14 on // [0,pi/4] // 4 14 // cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x // where the remez error is // // | 2 4 6 8 10 12 14 | -58 // |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 // | | // // 4 6 8 10 12 14 // 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then // ieee_cos(x) = 1 - x*x/2 + r // since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y // ~ ieee_cos(X) - X*Y, // a correction term is necessary in ieee_cos(x) and hence // cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) // For better accuracy when x > 0.3, let qx = |x|/4 with // the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. // Then // cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). // Note that 1-qx and (X*X/2-qx) is EXACT here, and the // magnitude of the latter is at least a quarter of X*X/2, // thus, reducing the rounding error in the subtraction. // macro KCOS(x) kMath[13+x] endmacro macro RETURN_KERNELCOS(X, Y, SIGN) var ix = %_DoubleHi(X) & 0x7fffffff; var z = X * X; var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); if (ix < 0x3fd33333) { // |x| ~< 0.3 return (1 - (0.5 * z - (z * r - X * Y))) SIGN; } else { var qx; if (ix > 0x3fe90000) { // |x| > 0.78125 qx = 0.28125; } else { qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); } var hz = 0.5 * z - qx; return (1 - qx - (hz - (z * r - X * Y))) SIGN; } endmacro // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 // Input x is assumed to be bounded by ~pi/4 in magnitude. // Input y is the tail of x. // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) // is returned. // // Algorithm // 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. // 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. // 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on // [0,0.67434] // 3 27 // tan(x) ~ x + T1*x + ... + T13*x // where // // |ieee_tan(x) 2 4 26 | -59.2 // |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 // | x | // // Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y // ~ ieee_tan(x) + (1+x*x)*y // Therefore, for better accuracy in computing ieee_tan(x+y), let // 3 2 2 2 2 // r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) // then // 3 2 // tan(x+y) = x + (T1*x + (x *(r+y)+y)) // // 4. For x in [0.67434,pi/4], let y = pi/4 - x, then // tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) // = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) // // Set returnTan to 1 for tan; -1 for cot. Anything else is illegal // and will cause incorrect results. // macro KTAN(x) kMath[19+x] endmacro function KernelTan(x, y, returnTan) { var z; var w; var hx = %_DoubleHi(x); var ix = hx & 0x7fffffff; if (ix < 0x3e300000) { // |x| < 2^-28 if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { // x == 0 && returnTan = -1 return 1 / MathAbs(x); } else { if (returnTan == 1) { return x; } else { // Compute -1/(x + y) carefully var w = x + y; var z = %_ConstructDouble(%_DoubleHi(w), 0); var v = y - (z - x); var a = -1 / w; var t = %_ConstructDouble(%_DoubleHi(a), 0); var s = 1 + t * z; return t + a * (s + t * v); } } } if (ix >= 0x3fe59429) { // |x| > .6744 if (x < 0) { x = -x; y = -y; } z = PIO4 - x; w = PIO4LO - y; x = z + w; y = 0; } z = x * x; w = z * z; // Break x^5 * (T1 + x^2*T2 + ...) into // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); var s = z * x; r = y + z * (s * (r + v) + y); r = r + KTAN(0) * s; w = x + r; if (ix >= 0x3fe59428) { return (1 - ((hx >> 30) & 2)) * (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); } if (returnTan == 1) { return w; } else { z = %_ConstructDouble(%_DoubleHi(w), 0); v = r - (z - x); var a = -1 / w; var t = %_ConstructDouble(%_DoubleHi(a), 0); s = 1 + t * z; return t + a * (s + t * v); } } function MathSinSlow(x) { REMPIO2(x); var sign = 1 - (n & 2); if (n & 1) { RETURN_KERNELCOS(y0, y1, * sign); } else { RETURN_KERNELSIN(y0, y1, * sign); } } function MathCosSlow(x) { REMPIO2(x); if (n & 1) { var sign = (n & 2) - 1; RETURN_KERNELSIN(y0, y1, * sign); } else { var sign = 1 - (n & 2); RETURN_KERNELCOS(y0, y1, * sign); } } // ECMA 262 - 15.8.2.16 function MathSin(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. RETURN_KERNELSIN(x, 0, /* empty */); } return MathSinSlow(x); } // ECMA 262 - 15.8.2.7 function MathCos(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. RETURN_KERNELCOS(x, 0, /* empty */); } return MathCosSlow(x); } // ECMA 262 - 15.8.2.18 function MathTan(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. return KernelTan(x, 0, 1); } REMPIO2(x); return KernelTan(y0, y1, (n & 1) ? -1 : 1); } // ES6 draft 09-27-13, section 20.2.2.20. // Math.log1p // // Method : // 1. Argument Reduction: find k and f such that // 1+x = 2^k * (1+f), // where sqrt(2)/2 < 1+f < sqrt(2) . // // Note. If k=0, then f=x is exact. However, if k!=0, then f // may not be representable exactly. In that case, a correction // term is need. Let u=1+x rounded. Let c = (1+x)-u, then // log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), // and add back the correction term c/u. // (Note: when x > 2**53, one can simply return log(x)) // // 2. Approximation of log1p(f). // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) // = 2s + 2/3 s**3 + 2/5 s**5 + ....., // = 2s + s*R // We use a special Reme algorithm on [0,0.1716] to generate // a polynomial of degree 14 to approximate R The maximum error // of this polynomial approximation is bounded by 2**-58.45. In // other words, // 2 4 6 8 10 12 14 // R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s // (the values of Lp1 to Lp7 are listed in the program) // and // | 2 14 | -58.45 // | Lp1*s +...+Lp7*s - R(z) | <= 2 // | | // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. // In order to guarantee error in log below 1ulp, we compute log // by // log1p(f) = f - (hfsq - s*(hfsq+R)). // // 3. Finally, log1p(x) = k*ln2 + log1p(f). // = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) // Here ln2 is split into two floating point number: // ln2_hi + ln2_lo, // where n*ln2_hi is always exact for |n| < 2000. // // Special cases: // log1p(x) is NaN with signal if x < -1 (including -INF) ; // log1p(+INF) is +INF; log1p(-1) is -INF with signal; // log1p(NaN) is that NaN with no signal. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Constants: // Constants are found in fdlibm.cc. We assume the C++ compiler to convert // from decimal to binary accurately enough to produce the intended values. // // Note: Assuming log() return accurate answer, the following // algorithm can be used to compute log1p(x) to within a few ULP: // // u = 1+x; // if (u==1.0) return x ; else // return log(u)*(x/(u-1.0)); // // See HP-15C Advanced Functions Handbook, p.193. // const LN2_HI = kMath[34]; const LN2_LO = kMath[35]; const TWO54 = kMath[36]; const TWO_THIRD = kMath[37]; macro KLOG1P(x) (kMath[38+x]) endmacro function MathLog1p(x) { x = x * 1; // Convert to number. var hx = %_DoubleHi(x); var ax = hx & 0x7fffffff; var k = 1; var f = x; var hu = 1; var c = 0; var u = x; if (hx < 0x3fda827a) { // x < 0.41422 if (ax >= 0x3ff00000) { // |x| >= 1 if (x === -1) { return -INFINITY; // log1p(-1) = -inf } else { return NAN; // log1p(x<-1) = NaN } } else if (ax < 0x3c900000) { // For |x| < 2^-54 we can return x. return x; } else if (ax < 0x3e200000) { // For |x| < 2^-29 we can use a simple two-term Taylor series. return x - x * x * 0.5; } if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d // -.2929 < x < 0.41422 k = 0; } } // Handle Infinity and NAN if (hx >= 0x7ff00000) return x; if (k !== 0) { if (hx < 0x43400000) { // x < 2^53 u = 1 + x; hu = %_DoubleHi(u); k = (hu >> 20) - 1023; c = (k > 0) ? 1 - (u - x) : x - (u - 1); c = c / u; } else { hu = %_DoubleHi(u); k = (hu >> 20) - 1023; } hu = hu & 0xfffff; if (hu < 0x6a09e) { u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u. } else { ++k; u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2. hu = (0x00100000 - hu) >> 2; } f = u - 1; } var hfsq = 0.5 * f * f; if (hu === 0) { // |f| < 2^-20; if (f === 0) { if (k === 0) { return 0.0; } else { return k * LN2_HI + (c + k * LN2_LO); } } var R = hfsq * (1 - TWO_THIRD * f); if (k === 0) { return f - R; } else { return k * LN2_HI - ((R - (k * LN2_LO + c)) - f); } } var s = f / (2 + f); var z = s * s; var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z * (KLOG1P(2) + z * (KLOG1P(3) + z * (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6))))))); if (k === 0) { return f - (hfsq - s * (hfsq + R)); } else { return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f); } } // ES6 draft 09-27-13, section 20.2.2.14. // Math.expm1 // Returns exp(x)-1, the exponential of x minus 1. // // Method // 1. Argument reduction: // Given x, find r and integer k such that // // x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 // // Here a correction term c will be computed to compensate // the error in r when rounded to a floating-point number. // // 2. Approximating expm1(r) by a special rational function on // the interval [0,0.34658]: // Since // r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... // we define R1(r*r) by // r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) // That is, // R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) // = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) // = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... // We use a special Remes algorithm on [0,0.347] to generate // a polynomial of degree 5 in r*r to approximate R1. The // maximum error of this polynomial approximation is bounded // by 2**-61. In other words, // R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 // where Q1 = -1.6666666666666567384E-2, // Q2 = 3.9682539681370365873E-4, // Q3 = -9.9206344733435987357E-6, // Q4 = 2.5051361420808517002E-7, // Q5 = -6.2843505682382617102E-9; // (where z=r*r, and the values of Q1 to Q5 are listed below) // with error bounded by // | 5 | -61 // | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 // | | // // expm1(r) = exp(r)-1 is then computed by the following // specific way which minimize the accumulation rounding error: // 2 3 // r r [ 3 - (R1 + R1*r/2) ] // expm1(r) = r + --- + --- * [--------------------] // 2 2 [ 6 - r*(3 - R1*r/2) ] // // To compensate the error in the argument reduction, we use // expm1(r+c) = expm1(r) + c + expm1(r)*c // ~ expm1(r) + c + r*c // Thus c+r*c will be added in as the correction terms for // expm1(r+c). Now rearrange the term to avoid optimization // screw up: // ( 2 2 ) // ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) // expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) // ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) // ( ) // // = r - E // 3. Scale back to obtain expm1(x): // From step 1, we have // expm1(x) = either 2^k*[expm1(r)+1] - 1 // = or 2^k*[expm1(r) + (1-2^-k)] // 4. Implementation notes: // (A). To save one multiplication, we scale the coefficient Qi // to Qi*2^i, and replace z by (x^2)/2. // (B). To achieve maximum accuracy, we compute expm1(x) by // (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) // (ii) if k=0, return r-E // (iii) if k=-1, return 0.5*(r-E)-0.5 // (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) // else return 1.0+2.0*(r-E); // (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) // (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else // (vii) return 2^k(1-((E+2^-k)-r)) // // Special cases: // expm1(INF) is INF, expm1(NaN) is NaN; // expm1(-INF) is -1, and // for finite argument, only expm1(0)=0 is exact. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Misc. info. // For IEEE double // if x > 7.09782712893383973096e+02 then expm1(x) overflow // const KEXPM1_OVERFLOW = kMath[45]; const INVLN2 = kMath[46]; macro KEXPM1(x) (kMath[47+x]) endmacro function MathExpm1(x) { x = x * 1; // Convert to number. var y; var hi; var lo; var k; var t; var c; var hx = %_DoubleHi(x); var xsb = hx & 0x80000000; // Sign bit of x var y = (xsb === 0) ? x : -x; // y = |x| hx &= 0x7fffffff; // High word of |x| // Filter out huge and non-finite argument if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2 if (hx >= 0x40862e42) { // if |x| >= 709.78 if (hx >= 0x7ff00000) { // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; return (x === -INFINITY) ? -1 : x; } if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow } if (xsb != 0) return -1; // x < -56 * ln2, return -1. } // Argument reduction if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 if (xsb === 0) { hi = x - LN2_HI; lo = LN2_LO; k = 1; } else { hi = x + LN2_HI; lo = -LN2_LO; k = -1; } } else { k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; t = k; // t * ln2_hi is exact here. hi = x - t * LN2_HI; lo = t * LN2_LO; } x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3c900000) { // When |x| < 2^-54, we can return x. return x; } else { // Fall through. k = 0; } // x is now in primary range var hfx = 0.5 * x; var hxs = x * hfx; var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs * (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4))))); t = 3 - r1 * hfx; var e = hxs * ((r1 - t) / (6 - x * t)); if (k === 0) { // c is 0 return x - (x*e - hxs); } else { e = (x * (e - c) - c); e -= hxs; if (k === -1) return 0.5 * (x - e) - 0.5; if (k === 1) { if (x < -0.25) return -2 * (e - (x + 0.5)); return 1 + 2 * (x - e); } if (k <= -2 || k > 56) { // suffice to return exp(x) + 1 y = 1 - (e - x); // Add k to y's exponent y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); return y - 1; } if (k < 20) { // t = 1 - 2^k t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); y = t - (e - x); // Add k to y's exponent y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); } else { // t = 2^-k t = %_ConstructDouble((0x3ff - k) << 20, 0); y = x - (e + t); y += 1; // Add k to y's exponent y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); } } return y; }