// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "ic-inl.h" #include "codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register name, Register offset, Register extra) { ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); Label miss; if (extra.is_valid()) { // Get the code entry from the cache. __ mov(extra, Operand::StaticArray(offset, times_2, value_offset)); // Check that the key in the entry matches the name. __ cmp(name, Operand::StaticArray(offset, times_2, key_offset)); __ j(not_equal, &miss); // Check that the flags match what we're looking for. __ mov(offset, FieldOperand(extra, Code::kFlagsOffset)); __ and_(offset, ~Code::kFlagsNotUsedInLookup); __ cmp(offset, flags); __ j(not_equal, &miss); // Jump to the first instruction in the code stub. __ add(Operand(extra), Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(Operand(extra)); __ bind(&miss); } else { // Save the offset on the stack. __ push(offset); // Check that the key in the entry matches the name. __ cmp(name, Operand::StaticArray(offset, times_2, key_offset)); __ j(not_equal, &miss); // Get the code entry from the cache. __ mov(offset, Operand::StaticArray(offset, times_2, value_offset)); // Check that the flags match what we're looking for. __ mov(offset, FieldOperand(offset, Code::kFlagsOffset)); __ and_(offset, ~Code::kFlagsNotUsedInLookup); __ cmp(offset, flags); __ j(not_equal, &miss); // Restore offset and re-load code entry from cache. __ pop(offset); __ mov(offset, Operand::StaticArray(offset, times_2, value_offset)); // Jump to the first instruction in the code stub. __ add(Operand(offset), Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(Operand(offset)); // Pop at miss. __ bind(&miss); __ pop(offset); } } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. static MaybeObject* GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, String* name, Register r0, Register r1) { ASSERT(name->IsSymbol()); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ mov(r0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ test_b(FieldOperand(r0, Map::kBitFieldOffset), kInterceptorOrAccessCheckNeededMask); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(r0, FIRST_JS_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = r0; __ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ cmp(FieldOperand(properties, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->hash_table_map())); __ j(not_equal, miss_label); Label done; MaybeObject* result = StringDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, r1); if (result->IsFailure()) return result; __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); return result; } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2) { Isolate* isolate = Isolate::Current(); Label miss; USE(extra2); // The register extra2 is not used on the ia32 platform. // Make sure that code is valid. The shifting code relies on the // entry size being 8. ASSERT(sizeof(Entry) == 8); // Make sure the flags does not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); ASSERT(!extra.is(receiver)); ASSERT(!extra.is(name)); ASSERT(!extra.is(scratch)); // Check scratch and extra registers are valid, and extra2 is unused. ASSERT(!scratch.is(no_reg)); ASSERT(extra2.is(no_reg)); // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, &miss); // Get the map of the receiver and compute the hash. __ mov(scratch, FieldOperand(name, String::kHashFieldOffset)); __ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(scratch, flags); __ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize); // Probe the primary table. ProbeTable(isolate, masm, flags, kPrimary, name, scratch, extra); // Primary miss: Compute hash for secondary probe. __ mov(scratch, FieldOperand(name, String::kHashFieldOffset)); __ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xor_(scratch, flags); __ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize); __ sub(scratch, Operand(name)); __ add(Operand(scratch), Immediate(flags)); __ and_(scratch, (kSecondaryTableSize - 1) << kHeapObjectTagSize); // Probe the secondary table. ProbeTable(isolate, masm, flags, kSecondary, name, scratch, extra); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { __ LoadGlobalFunction(index, prototype); __ LoadGlobalFunctionInitialMap(prototype, prototype); // Load the prototype from the initial map. __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { // Check we're still in the same context. __ cmp(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)), masm->isolate()->global()); __ j(not_equal, miss); // Get the global function with the given index. JSFunction* function = JSFunction::cast(masm->isolate()->global_context()->get(index)); // Load its initial map. The global functions all have initial maps. __ Set(prototype, Immediate(Handle(function->initial_map()))); // Load the prototype from the initial map. __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss_label); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, miss_label); // Load length directly from the JS array. __ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset)); __ ret(0); } // Generate code to check if an object is a string. If the object is // a string, the map's instance type is left in the scratch register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch, Label* smi, Label* non_string_object) { // Check that the object isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, smi); // Check that the object is a string. __ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); ASSERT(kNotStringTag != 0); __ test(scratch, Immediate(kNotStringTag)); __ j(not_zero, non_string_object); } void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss, bool support_wrappers) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch register. GenerateStringCheck(masm, receiver, scratch1, miss, support_wrappers ? &check_wrapper : miss); // Load length from the string and convert to a smi. __ mov(eax, FieldOperand(receiver, String::kLengthOffset)); __ ret(0); if (support_wrappers) { // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmp(scratch1, JS_VALUE_TYPE); __ j(not_equal, miss); // Check if the wrapped value is a string and load the length // directly if it is. __ mov(scratch2, FieldOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch2, scratch1, miss, miss); __ mov(eax, FieldOperand(scratch2, String::kLengthOffset)); __ ret(0); } } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(eax, Operand(scratch1)); __ ret(0); } // Load a fast property out of a holder object (src). In-object properties // are loaded directly otherwise the property is loaded from the properties // fixed array. void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, JSObject* holder, int index) { // Adjust for the number of properties stored in the holder. index -= holder->map()->inobject_properties(); if (index < 0) { // Get the property straight out of the holder. int offset = holder->map()->instance_size() + (index * kPointerSize); __ mov(dst, FieldOperand(src, offset)); } else { // Calculate the offset into the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; __ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset)); __ mov(dst, FieldOperand(dst, offset)); } } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, JSObject* holder_obj) { __ push(name); InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor(); ASSERT(!masm->isolate()->heap()->InNewSpace(interceptor)); Register scratch = name; __ mov(scratch, Immediate(Handle(interceptor))); __ push(scratch); __ push(receiver); __ push(holder); __ push(FieldOperand(scratch, InterceptorInfo::kDataOffset)); } static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Register name, JSObject* holder_obj) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference( ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly), masm->isolate()), 5); } // Number of pointers to be reserved on stack for fast API call. static const int kFastApiCallArguments = 3; // Reserves space for the extra arguments to API function in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : last argument in the internal frame of the caller // ----------------------------------- __ pop(scratch); for (int i = 0; i < kFastApiCallArguments; i++) { __ push(Immediate(Smi::FromInt(0))); } __ push(scratch); } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { // ----------- S t a t e ------------- // -- esp[0] : return address. // -- esp[4] : last fast api call extra argument. // -- ... // -- esp[kFastApiCallArguments * 4] : first fast api call extra argument. // -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal // frame. // ----------------------------------- __ pop(scratch); __ add(Operand(esp), Immediate(kPointerSize * kFastApiCallArguments)); __ push(scratch); } // Generates call to API function. static MaybeObject* GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[4] : object passing the type check // (last fast api call extra argument, // set by CheckPrototypes) // -- esp[8] : api function // (first fast api call extra argument) // -- esp[12] : api call data // -- esp[16] : last argument // -- ... // -- esp[(argc + 3) * 4] : first argument // -- esp[(argc + 4) * 4] : receiver // ----------------------------------- // Get the function and setup the context. JSFunction* function = optimization.constant_function(); __ mov(edi, Immediate(Handle(function))); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Pass the additional arguments. __ mov(Operand(esp, 2 * kPointerSize), edi); Object* call_data = optimization.api_call_info()->data(); Handle api_call_info_handle(optimization.api_call_info()); if (masm->isolate()->heap()->InNewSpace(call_data)) { __ mov(ecx, api_call_info_handle); __ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset)); __ mov(Operand(esp, 3 * kPointerSize), ebx); } else { __ mov(Operand(esp, 3 * kPointerSize), Immediate(Handle(call_data))); } // Prepare arguments. __ lea(eax, Operand(esp, 3 * kPointerSize)); Object* callback = optimization.api_call_info()->callback(); Address api_function_address = v8::ToCData
(callback); ApiFunction fun(api_function_address); const int kApiArgc = 1; // API function gets reference to the v8::Arguments. // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; __ PrepareCallApiFunction(kApiArgc + kApiStackSpace, ebx); __ mov(ApiParameterOperand(1), eax); // v8::Arguments::implicit_args_. __ add(Operand(eax), Immediate(argc * kPointerSize)); __ mov(ApiParameterOperand(2), eax); // v8::Arguments::values_. __ Set(ApiParameterOperand(3), Immediate(argc)); // v8::Arguments::length_. // v8::Arguments::is_construct_call_. __ Set(ApiParameterOperand(4), Immediate(0)); // v8::InvocationCallback's argument. __ lea(eax, ApiParameterOperand(1)); __ mov(ApiParameterOperand(0), eax); // Emitting a stub call may try to allocate (if the code is not // already generated). Do not allow the assembler to perform a // garbage collection but instead return the allocation failure // object. return masm->TryCallApiFunctionAndReturn(&fun, argc + kFastApiCallArguments + 1); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(StubCompiler* stub_compiler, const ParameterCount& arguments, Register name) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name) {} MaybeObject* Compile(MacroAssembler* masm, JSObject* object, JSObject* holder, String* name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { return CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); return masm->isolate()->heap()->undefined_value(); // Success. } } private: MaybeObject* CompileCacheable(MacroAssembler* masm, JSObject* object, Register receiver, Register scratch1, Register scratch2, Register scratch3, JSObject* interceptor_holder, LookupResult* lookup, String* name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType(object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType(interceptor_holder, lookup->holder()); } can_do_fast_api_call = (depth1 != kInvalidProtoDepth) || (depth2 != kInvalidProtoDepth); } Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->call_const_interceptor(), 1); if (can_do_fast_api_call) { __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes(interceptor_holder, receiver, lookup->holder(), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { MaybeObject* result = GenerateFastApiCall(masm, optimization, arguments_.immediate()); if (result->IsFailure()) return result; } else { __ InvokeFunction(optimization.constant_function(), arguments_, JUMP_FUNCTION); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm, scratch1); __ jmp(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm, scratch1); } return masm->isolate()->heap()->undefined_value(); // Success. } void CompileRegular(MacroAssembler* masm, JSObject* object, Register receiver, Register scratch1, Register scratch2, Register scratch3, String* name, JSObject* interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); __ EnterInternalFrame(); // Save the name_ register across the call. __ push(name_); PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder); __ CallExternalReference( ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall), masm->isolate()), 5); // Restore the name_ register. __ pop(name_); __ LeaveInternalFrame(); } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, JSObject* holder_obj, Label* interceptor_succeeded) { __ EnterInternalFrame(); __ push(holder); // Save the holder. __ push(name_); // Save the name. CompileCallLoadPropertyWithInterceptor(masm, receiver, holder, name_, holder_obj); __ pop(name_); // Restore the name. __ pop(receiver); // Restore the holder. __ LeaveInternalFrame(); __ cmp(eax, masm->isolate()->factory()->no_interceptor_result_sentinel()); __ j(not_equal, interceptor_succeeded); } StubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; }; void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); Code* code = NULL; if (kind == Code::LOAD_IC) { code = masm->isolate()->builtins()->builtin(Builtins::kLoadIC_Miss); } else { code = masm->isolate()->builtins()->builtin(Builtins::kKeyedLoadIC_Miss); } Handle ic(code); __ jmp(ic, RelocInfo::CODE_TARGET); } // Both name_reg and receiver_reg are preserved on jumps to miss_label, // but may be destroyed if store is successful. void StubCompiler::GenerateStoreField(MacroAssembler* masm, JSObject* object, int index, Map* transition, Register receiver_reg, Register name_reg, Register scratch, Label* miss_label) { // Check that the object isn't a smi. __ test(receiver_reg, Immediate(kSmiTagMask)); __ j(zero, miss_label); // Check that the map of the object hasn't changed. __ cmp(FieldOperand(receiver_reg, HeapObject::kMapOffset), Immediate(Handle(object->map()))); __ j(not_equal, miss_label); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ pop(scratch); // Return address. __ push(receiver_reg); __ push(Immediate(Handle(transition))); __ push(eax); __ push(scratch); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } if (transition != NULL) { // Update the map of the object; no write barrier updating is // needed because the map is never in new space. __ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), Immediate(Handle(transition))); } // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ mov(FieldOperand(receiver_reg, offset), eax); // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ mov(name_reg, Operand(eax)); __ RecordWrite(receiver_reg, offset, name_reg, scratch); } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ mov(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); __ mov(FieldOperand(scratch, offset), eax); // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ mov(name_reg, Operand(eax)); __ RecordWrite(scratch, offset, name_reg, receiver_reg); } // Return the value (register eax). __ ret(0); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell( MacroAssembler* masm, GlobalObject* global, String* name, Register scratch, Label* miss) { Object* probe; { MaybeObject* maybe_probe = global->EnsurePropertyCell(name); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe); ASSERT(cell->value()->IsTheHole()); if (Serializer::enabled()) { __ mov(scratch, Immediate(Handle(cell))); __ cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset), Immediate(masm->isolate()->factory()->the_hole_value())); } else { __ cmp(Operand::Cell(Handle(cell)), Immediate(masm->isolate()->factory()->the_hole_value())); } __ j(not_equal, miss); return cell; } // Calls GenerateCheckPropertyCell for each global object in the prototype chain // from object to (but not including) holder. MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells( MacroAssembler* masm, JSObject* object, JSObject* holder, String* name, Register scratch, Label* miss) { JSObject* current = object; while (current != holder) { if (current->IsGlobalObject()) { // Returns a cell or a failure. MaybeObject* result = GenerateCheckPropertyCell( masm, GlobalObject::cast(current), name, scratch, miss); if (result->IsFailure()) return result; } ASSERT(current->IsJSObject()); current = JSObject::cast(current->GetPrototype()); } return NULL; } #undef __ #define __ ACCESS_MASM(masm()) Register StubCompiler::CheckPrototypes(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch1, Register scratch2, String* name, int save_at_depth, Label* miss) { // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; JSObject* current = object; int depth = 0; if (save_at_depth == depth) { __ mov(Operand(esp, kPointerSize), reg); } // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (current != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); ASSERT(current->GetPrototype()->IsJSObject()); JSObject* prototype = JSObject::cast(current->GetPrototype()); if (!current->HasFastProperties() && !current->IsJSGlobalObject() && !current->IsJSGlobalProxy()) { if (!name->IsSymbol()) { MaybeObject* maybe_lookup_result = heap()->LookupSymbol(name); Object* lookup_result = NULL; // Initialization to please compiler. if (!maybe_lookup_result->ToObject(&lookup_result)) { set_failure(Failure::cast(maybe_lookup_result)); return reg; } name = String::cast(lookup_result); } ASSERT(current->property_dictionary()->FindEntry(name) == StringDictionary::kNotFound); MaybeObject* negative_lookup = GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); if (negative_lookup->IsFailure()) { set_failure(Failure::cast(negative_lookup)); return reg; } __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // from now the object is in holder_reg __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else if (heap()->InNewSpace(prototype)) { // Get the map of the current object. __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); __ cmp(Operand(scratch1), Immediate(Handle(current->map()))); // Branch on the result of the map check. __ j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); // Restore scratch register to be the map of the object. // We load the prototype from the map in the scratch register. __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); } // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. reg = holder_reg; // from now the object is in holder_reg __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { // Check the map of the current object. __ cmp(FieldOperand(reg, HeapObject::kMapOffset), Immediate(Handle(current->map()))); // Branch on the result of the map check. __ j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // The prototype is in old space; load it directly. reg = holder_reg; // from now the object is in holder_reg __ mov(reg, Handle(prototype)); } if (save_at_depth == depth) { __ mov(Operand(esp, kPointerSize), reg); } // Go to the next object in the prototype chain. current = prototype; } ASSERT(current == holder); // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); // Check the holder map. __ cmp(FieldOperand(reg, HeapObject::kMapOffset), Immediate(Handle(holder->map()))); __ j(not_equal, miss); // Perform security check for access to the global object. ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded()); if (holder->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); }; // If we've skipped any global objects, it's not enough to verify // that their maps haven't changed. We also need to check that the // property cell for the property is still empty. MaybeObject* result = GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss); if (result->IsFailure()) set_failure(Failure::cast(result)); // Return the register containing the holder. return reg; } void StubCompiler::GenerateLoadField(JSObject* object, JSObject* holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, int index, String* name, Label* miss) { // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss); // Check the prototype chain. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Get the value from the properties. GenerateFastPropertyLoad(masm(), eax, reg, holder, index); __ ret(0); } MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object, JSObject* holder, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, AccessorInfo* callback, String* name, Label* miss) { // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); Handle callback_handle(callback); // Insert additional parameters into the stack frame above return address. ASSERT(!scratch3.is(reg)); __ pop(scratch3); // Get return address to place it below. __ push(receiver); // receiver __ mov(scratch2, Operand(esp)); ASSERT(!scratch2.is(reg)); __ push(reg); // holder // Push data from AccessorInfo. if (isolate()->heap()->InNewSpace(callback_handle->data())) { __ mov(scratch1, Immediate(callback_handle)); __ push(FieldOperand(scratch1, AccessorInfo::kDataOffset)); } else { __ push(Immediate(Handle(callback_handle->data()))); } // Save a pointer to where we pushed the arguments pointer. // This will be passed as the const AccessorInfo& to the C++ callback. __ push(scratch2); __ push(name_reg); // name __ mov(ebx, esp); // esp points to reference to name (handler). __ push(scratch3); // Restore return address. // Do call through the api. Address getter_address = v8::ToCData
(callback->getter()); ApiFunction fun(getter_address); // 3 elements array for v8::Agruments::values_, handler for name and pointer // to the values (it considered as smi in GC). const int kStackSpace = 5; const int kApiArgc = 2; __ PrepareCallApiFunction(kApiArgc, eax); __ mov(ApiParameterOperand(0), ebx); // name. __ add(Operand(ebx), Immediate(kPointerSize)); __ mov(ApiParameterOperand(1), ebx); // arguments pointer. // Emitting a stub call may try to allocate (if the code is not // already generated). Do not allow the assembler to perform a // garbage collection but instead return the allocation failure // object. return masm()->TryCallApiFunctionAndReturn(&fun, kStackSpace); } void StubCompiler::GenerateLoadConstant(JSObject* object, JSObject* holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, Object* value, String* name, Label* miss) { // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss); // Check that the maps haven't changed. CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Return the constant value. __ mov(eax, Handle(value)); __ ret(0); } void StubCompiler::GenerateLoadInterceptor(JSObject* object, JSObject* interceptor_holder, LookupResult* lookup, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, String* name, Label* miss) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ test(receiver, Immediate(kSmiTagMask)); __ j(zero, miss); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsProperty() && lookup->IsCacheable()) { if (lookup->type() == FIELD) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsAccessorInfo() && AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) { compile_followup_inline = true; } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. __ EnterInternalFrame(); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { // CALLBACKS case needs a receiver to be passed into C++ callback. __ push(receiver); } __ push(holder_reg); __ push(name_reg); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor(masm(), receiver, holder_reg, name_reg, interceptor_holder); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ cmp(eax, factory()->no_interceptor_result_sentinel()); __ j(equal, &interceptor_failed); __ LeaveInternalFrame(); __ ret(0); __ bind(&interceptor_failed); __ pop(name_reg); __ pop(holder_reg); if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { __ pop(receiver); } __ LeaveInternalFrame(); // Check that the maps from interceptor's holder to lookup's holder // haven't changed. And load lookup's holder into holder_reg. if (interceptor_holder != lookup->holder()) { holder_reg = CheckPrototypes(interceptor_holder, holder_reg, lookup->holder(), scratch1, scratch2, scratch3, name, miss); } if (lookup->type() == FIELD) { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. GenerateFastPropertyLoad(masm(), eax, holder_reg, lookup->holder(), lookup->GetFieldIndex()); __ ret(0); } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); ASSERT(lookup->GetCallbackObject()->IsAccessorInfo()); AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); ASSERT(callback != NULL); ASSERT(callback->getter() != NULL); // Tail call to runtime. // Important invariant in CALLBACKS case: the code above must be // structured to never clobber |receiver| register. __ pop(scratch2); // return address __ push(receiver); __ push(holder_reg); __ mov(holder_reg, Immediate(Handle(callback))); __ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset)); __ push(holder_reg); __ push(name_reg); __ push(scratch2); // restore return address ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadCallbackProperty), masm()->isolate()); __ TailCallExternalReference(ref, 5, 1); } } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); __ pop(scratch2); // save old return address PushInterceptorArguments(masm(), receiver, holder_reg, name_reg, interceptor_holder); __ push(scratch2); // restore old return address ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), isolate()); __ TailCallExternalReference(ref, 5, 1); } } void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ cmp(Operand(ecx), Immediate(Handle(name))); __ j(not_equal, miss); } } void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object, JSObject* holder, String* name, Label* miss) { ASSERT(holder->IsGlobalObject()); // Get the number of arguments. const int argc = arguments().immediate(); // Get the receiver from the stack. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // If the object is the holder then we know that it's a global // object which can only happen for contextual calls. In this case, // the receiver cannot be a smi. if (object != holder) { __ test(edx, Immediate(kSmiTagMask)); __ j(zero, miss); } // Check that the maps haven't changed. CheckPrototypes(object, edx, holder, ebx, eax, edi, name, miss); } void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell, JSFunction* function, Label* miss) { // Get the value from the cell. if (Serializer::enabled()) { __ mov(edi, Immediate(Handle(cell))); __ mov(edi, FieldOperand(edi, JSGlobalPropertyCell::kValueOffset)); } else { __ mov(edi, Operand::Cell(Handle(cell))); } // Check that the cell contains the same function. if (isolate()->heap()->InNewSpace(function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, miss); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx); __ j(not_equal, miss); // Check the shared function info. Make sure it hasn't changed. __ cmp(FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset), Immediate(Handle(function->shared()))); __ j(not_equal, miss); } else { __ cmp(Operand(edi), Immediate(Handle(function))); __ j(not_equal, miss); } } MaybeObject* CallStubCompiler::GenerateMissBranch() { MaybeObject* maybe_obj = isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), kind_); Object* obj; if (!maybe_obj->ToObject(&obj)) return maybe_obj; __ jmp(Handle(Code::cast(obj)), RelocInfo::CODE_TARGET); return obj; } MUST_USE_RESULT MaybeObject* CallStubCompiler::CompileCallField( JSObject* object, JSObject* holder, int index, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); // Do the right check and compute the holder register. Register reg = CheckPrototypes(object, edx, holder, ebx, eax, edi, name, &miss); GenerateFastPropertyLoad(masm(), edi, reg, holder, index); // Check that the function really is a function. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &miss); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx); __ j(not_equal, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); } // Invoke the function. __ InvokeFunction(edi, arguments(), JUMP_FUNCTION); // Handle call cache miss. __ bind(&miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(FIELD, name); } MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || cell != NULL) { return isolate()->heap()->undefined_value(); } Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); if (argc == 0) { // Noop, return the length. __ mov(eax, FieldOperand(edx, JSArray::kLengthOffset)); __ ret((argc + 1) * kPointerSize); } else { Label call_builtin; // Get the elements array of the object. __ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(not_equal, &call_builtin); if (argc == 1) { // Otherwise fall through to call builtin. Label exit, with_write_barrier, attempt_to_grow_elements; // Get the array's length into eax and calculate new length. __ mov(eax, FieldOperand(edx, JSArray::kLengthOffset)); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ add(Operand(eax), Immediate(Smi::FromInt(argc))); // Get the element's length into ecx. __ mov(ecx, FieldOperand(ebx, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmp(eax, Operand(ecx)); __ j(greater, &attempt_to_grow_elements); // Save new length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); // Push the element. __ lea(edx, FieldOperand(ebx, eax, times_half_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ mov(ecx, Operand(esp, argc * kPointerSize)); __ mov(Operand(edx, 0), ecx); // Check if value is a smi. __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &with_write_barrier); __ bind(&exit); __ ret((argc + 1) * kPointerSize); __ bind(&with_write_barrier); __ InNewSpace(ebx, ecx, equal, &exit); __ RecordWriteHelper(ebx, edx, ecx); __ ret((argc + 1) * kPointerSize); __ bind(&attempt_to_grow_elements); if (!FLAG_inline_new) { __ jmp(&call_builtin); } ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); const int kAllocationDelta = 4; // Load top. __ mov(ecx, Operand::StaticVariable(new_space_allocation_top)); // Check if it's the end of elements. __ lea(edx, FieldOperand(ebx, eax, times_half_pointer_size, FixedArray::kHeaderSize - argc * kPointerSize)); __ cmp(edx, Operand(ecx)); __ j(not_equal, &call_builtin); __ add(Operand(ecx), Immediate(kAllocationDelta * kPointerSize)); __ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit)); __ j(above, &call_builtin); // We fit and could grow elements. __ mov(Operand::StaticVariable(new_space_allocation_top), ecx); __ mov(ecx, Operand(esp, argc * kPointerSize)); // Push the argument... __ mov(Operand(edx, 0), ecx); // ... and fill the rest with holes. for (int i = 1; i < kAllocationDelta; i++) { __ mov(Operand(edx, i * kPointerSize), Immediate(factory()->the_hole_value())); } // Restore receiver to edx as finish sequence assumes it's here. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Increment element's and array's sizes. __ add(FieldOperand(ebx, FixedArray::kLengthOffset), Immediate(Smi::FromInt(kAllocationDelta))); __ mov(FieldOperand(edx, JSArray::kLengthOffset), eax); // Elements are in new space, so write barrier is not required. __ ret((argc + 1) * kPointerSize); } __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPush, isolate()), argc + 1, 1); } __ bind(&miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || cell != NULL) { return heap()->undefined_value(); } Label miss, return_undefined, call_builtin; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); // Get the elements array of the object. __ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(not_equal, &call_builtin); // Get the array's length into ecx and calculate new length. __ mov(ecx, FieldOperand(edx, JSArray::kLengthOffset)); __ sub(Operand(ecx), Immediate(Smi::FromInt(1))); __ j(negative, &return_undefined); // Get the last element. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ mov(eax, FieldOperand(ebx, ecx, times_half_pointer_size, FixedArray::kHeaderSize)); __ cmp(Operand(eax), Immediate(factory()->the_hole_value())); __ j(equal, &call_builtin); // Set the array's length. __ mov(FieldOperand(edx, JSArray::kLengthOffset), ecx); // Fill with the hole. __ mov(FieldOperand(ebx, ecx, times_half_pointer_size, FixedArray::kHeaderSize), Immediate(factory()->the_hole_value())); __ ret((argc + 1) * kPointerSize); __ bind(&return_undefined); __ mov(eax, Immediate(factory()->undefined_value())); __ ret((argc + 1) * kPointerSize); __ bind(&call_builtin); __ TailCallExternalReference( ExternalReference(Builtins::c_ArrayPop, isolate()), argc + 1, 1); __ bind(&miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall( Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : function name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || cell != NULL) { return isolate()->heap()->undefined_value(); } const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, eax, &miss); ASSERT(object != holder); CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder, ebx, edx, edi, name, &miss); Register receiver = ebx; Register index = edi; Register scratch = edx; Register result = eax; __ mov(receiver, Operand(esp, (argc + 1) * kPointerSize)); if (argc > 0) { __ mov(index, Operand(esp, (argc - 0) * kPointerSize)); } else { __ Set(index, Immediate(factory()->undefined_value())); } StringCharCodeAtGenerator char_code_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); char_code_at_generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; char_code_at_generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ Set(eax, Immediate(factory()->nan_value())); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in ecx. __ Set(ecx, Immediate(Handle(name))); __ bind(&name_miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileStringCharAtCall( Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : function name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || cell != NULL) { return heap()->undefined_value(); } const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, eax, &miss); ASSERT(object != holder); CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder, ebx, edx, edi, name, &miss); Register receiver = eax; Register index = edi; Register scratch1 = ebx; Register scratch2 = edx; Register result = eax; __ mov(receiver, Operand(esp, (argc + 1) * kPointerSize)); if (argc > 0) { __ mov(index, Operand(esp, (argc - 0) * kPointerSize)); } else { __ Set(index, Immediate(factory()->undefined_value())); } StringCharAtGenerator char_at_generator(receiver, index, scratch1, scratch2, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); char_at_generator.GenerateFast(masm()); __ ret((argc + 1) * kPointerSize); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ Set(eax, Immediate(factory()->empty_string())); __ ret((argc + 1) * kPointerSize); } __ bind(&miss); // Restore function name in ecx. __ Set(ecx, Immediate(Handle(name))); __ bind(&name_miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall( Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : function name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return isolate()->heap()->undefined_value(); } Label miss; GenerateNameCheck(name, &miss); if (cell == NULL) { __ mov(edx, Operand(esp, 2 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); } else { ASSERT(cell->value() == function); GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the char code argument. Register code = ebx; __ mov(code, Operand(esp, 1 * kPointerSize)); // Check the code is a smi. Label slow; STATIC_ASSERT(kSmiTag == 0); __ test(code, Immediate(kSmiTagMask)); __ j(not_zero, &slow); // Convert the smi code to uint16. __ and_(code, Immediate(Smi::FromInt(0xffff))); StringCharFromCodeGenerator char_from_code_generator(code, eax); char_from_code_generator.GenerateFast(masm()); __ ret(2 * kPointerSize); StubRuntimeCallHelper call_helper; char_from_code_generator.GenerateSlow(masm(), call_helper); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction(function, arguments(), JUMP_FUNCTION); __ bind(&miss); // ecx: function name. MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); } MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- if (!CpuFeatures::IsSupported(SSE2)) { return isolate()->heap()->undefined_value(); } CpuFeatures::Scope use_sse2(SSE2); const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return isolate()->heap()->undefined_value(); } Label miss; GenerateNameCheck(name, &miss); if (cell == NULL) { __ mov(edx, Operand(esp, 2 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); } else { ASSERT(cell->value() == function); GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into eax. __ mov(eax, Operand(esp, 1 * kPointerSize)); // Check if the argument is a smi. Label smi; STATIC_ASSERT(kSmiTag == 0); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &smi); // Check if the argument is a heap number and load its value into xmm0. Label slow; __ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK); __ movdbl(xmm0, FieldOperand(eax, HeapNumber::kValueOffset)); // Check if the argument is strictly positive. Note this also // discards NaN. __ xorpd(xmm1, xmm1); __ ucomisd(xmm0, xmm1); __ j(below_equal, &slow); // Do a truncating conversion. __ cvttsd2si(eax, Operand(xmm0)); // Check if the result fits into a smi. Note this also checks for // 0x80000000 which signals a failed conversion. Label wont_fit_into_smi; __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &wont_fit_into_smi); // Smi tag and return. __ SmiTag(eax); __ bind(&smi); __ ret(2 * kPointerSize); // Check if the argument is < 2^kMantissaBits. Label already_round; __ bind(&wont_fit_into_smi); __ LoadPowerOf2(xmm1, ebx, HeapNumber::kMantissaBits); __ ucomisd(xmm0, xmm1); __ j(above_equal, &already_round); // Save a copy of the argument. __ movaps(xmm2, xmm0); // Compute (argument + 2^kMantissaBits) - 2^kMantissaBits. __ addsd(xmm0, xmm1); __ subsd(xmm0, xmm1); // Compare the argument and the tentative result to get the right mask: // if xmm2 < xmm0: // xmm2 = 1...1 // else: // xmm2 = 0...0 __ cmpltsd(xmm2, xmm0); // Subtract 1 if the argument was less than the tentative result. __ LoadPowerOf2(xmm1, ebx, 0); __ andpd(xmm1, xmm2); __ subsd(xmm0, xmm1); // Return a new heap number. __ AllocateHeapNumber(eax, ebx, edx, &slow); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); __ ret(2 * kPointerSize); // Return the argument (when it's an already round heap number). __ bind(&already_round); __ mov(eax, Operand(esp, 1 * kPointerSize)); __ ret(2 * kPointerSize); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction(function, arguments(), JUMP_FUNCTION); __ bind(&miss); // ecx: function name. MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); } MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) { return isolate()->heap()->undefined_value(); } Label miss; GenerateNameCheck(name, &miss); if (cell == NULL) { __ mov(edx, Operand(esp, 2 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); } else { ASSERT(cell->value() == function); GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into eax. __ mov(eax, Operand(esp, 1 * kPointerSize)); // Check if the argument is a smi. Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, ¬_smi); // Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0 // otherwise. __ mov(ebx, eax); __ sar(ebx, kBitsPerInt - 1); // Do bitwise not or do nothing depending on ebx. __ xor_(eax, Operand(ebx)); // Add 1 or do nothing depending on ebx. __ sub(eax, Operand(ebx)); // If the result is still negative, go to the slow case. // This only happens for the most negative smi. Label slow; __ j(negative, &slow); // Smi case done. __ ret(2 * kPointerSize); // Check if the argument is a heap number and load its exponent and // sign into ebx. __ bind(¬_smi); __ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK); __ mov(ebx, FieldOperand(eax, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, // just return it. Label negative_sign; __ test(ebx, Immediate(HeapNumber::kSignMask)); __ j(not_zero, &negative_sign); __ ret(2 * kPointerSize); // If the argument is negative, clear the sign, and return a new // number. __ bind(&negative_sign); __ and_(ebx, ~HeapNumber::kSignMask); __ mov(ecx, FieldOperand(eax, HeapNumber::kMantissaOffset)); __ AllocateHeapNumber(eax, edi, edx, &slow); __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ebx); __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); __ ret(2 * kPointerSize); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction(function, arguments(), JUMP_FUNCTION); __ bind(&miss); // ecx: function name. MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); } MaybeObject* CallStubCompiler::CompileFastApiCall( const CallOptimization& optimization, Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { ASSERT(optimization.is_simple_api_call()); // Bail out if object is a global object as we don't want to // repatch it to global receiver. if (object->IsGlobalObject()) return heap()->undefined_value(); if (cell != NULL) return heap()->undefined_value(); int depth = optimization.GetPrototypeDepthOfExpectedType( JSObject::cast(object), holder); if (depth == kInvalidProtoDepth) return heap()->undefined_value(); Label miss, miss_before_stack_reserved; GenerateNameCheck(name, &miss_before_stack_reserved); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss_before_stack_reserved); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->call_const(), 1); __ IncrementCounter(counters->call_const_fast_api(), 1); // Allocate space for v8::Arguments implicit values. Must be initialized // before calling any runtime function. __ sub(Operand(esp), Immediate(kFastApiCallArguments * kPointerSize)); // Check that the maps haven't changed and find a Holder as a side effect. CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, depth, &miss); // Move the return address on top of the stack. __ mov(eax, Operand(esp, 3 * kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), eax); // esp[2 * kPointerSize] is uninitialized, esp[3 * kPointerSize] contains // duplicate of return address and will be overwritten. MaybeObject* result = GenerateFastApiCall(masm(), optimization, argc); if (result->IsFailure()) return result; __ bind(&miss); __ add(Operand(esp), Immediate(kFastApiCallArguments * kPointerSize)); __ bind(&miss_before_stack_reserved); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileCallConstant(Object* object, JSObject* holder, JSFunction* function, String* name, CheckType check) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- if (HasCustomCallGenerator(function)) { MaybeObject* maybe_result = CompileCustomCall( object, holder, NULL, function, name); Object* result; if (!maybe_result->ToObject(&result)) return maybe_result; // undefined means bail out to regular compiler. if (!result->IsUndefined()) return result; } Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack. const int argc = arguments().immediate(); __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); SharedFunctionInfo* function_info = function->shared(); switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(isolate()->counters()->call_const(), 1); // Check that the maps haven't changed. CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); } break; case STRING_CHECK: if (!function->IsBuiltin() && !function_info->strict_mode()) { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } else { // Check that the object is a string or a symbol. __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, eax); __ j(above_equal, &miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, eax, &miss); CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder, ebx, edx, edi, name, &miss); } break; case NUMBER_CHECK: { if (!function->IsBuiltin() && !function_info->strict_mode()) { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } else { Label fast; // Check that the object is a smi or a heap number. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &fast); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, eax); __ j(not_equal, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, eax, &miss); CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder, ebx, edx, edi, name, &miss); } break; } case BOOLEAN_CHECK: { if (!function->IsBuiltin() && !function_info->strict_mode()) { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } else { Label fast; // Check that the object is a boolean. __ cmp(edx, factory()->true_value()); __ j(equal, &fast); __ cmp(edx, factory()->false_value()); __ j(not_equal, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, eax, &miss); CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder, ebx, edx, edi, name, &miss); } break; } default: UNREACHABLE(); } __ InvokeFunction(function, arguments(), JUMP_FUNCTION); // Handle call cache miss. __ bind(&miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(function); } MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); CallInterceptorCompiler compiler(this, arguments(), ecx); MaybeObject* result = compiler.Compile(masm(), object, holder, name, &lookup, edx, ebx, edi, eax, &miss); if (result->IsFailure()) return result; // Restore receiver. __ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // Check that the function really is a function. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &miss); __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx); __ j(not_equal, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); } // Invoke the function. __ mov(edi, eax); __ InvokeFunction(edi, arguments(), JUMP_FUNCTION); // Handle load cache miss. __ bind(&miss); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(INTERCEPTOR, name); } MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object, GlobalObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* name) { // ----------- S t a t e ------------- // -- ecx : name // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- ... // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- if (HasCustomCallGenerator(function)) { MaybeObject* maybe_result = CompileCustomCall( object, holder, cell, function, name); Object* result; if (!maybe_result->ToObject(&result)) return maybe_result; // undefined means bail out to regular compiler. if (!result->IsUndefined()) return result; } Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); GenerateGlobalReceiverCheck(object, holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); // Patch the receiver on the stack with the global proxy. if (object->IsGlobalObject()) { __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc + 1) * kPointerSize), edx); } // Setup the context (function already in edi). __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Jump to the cached code (tail call). Counters* counters = isolate()->counters(); __ IncrementCounter(counters->call_global_inline(), 1); ASSERT(function->is_compiled()); ParameterCount expected(function->shared()->formal_parameter_count()); if (V8::UseCrankshaft()) { // TODO(kasperl): For now, we always call indirectly through the // code field in the function to allow recompilation to take effect // without changing any of the call sites. __ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), expected, arguments(), JUMP_FUNCTION); } else { Handle code(function->code()); __ InvokeCode(code, expected, arguments(), RelocInfo::CODE_TARGET, JUMP_FUNCTION); } // Handle call cache miss. __ bind(&miss); __ IncrementCounter(counters->call_global_inline_miss(), 1); MaybeObject* maybe_result = GenerateMissBranch(); if (maybe_result->IsFailure()) return maybe_result; // Return the generated code. return GetCode(NORMAL, name); } MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object, int index, Map* transition, String* name) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Generate store field code. Trashes the name register. GenerateStoreField(masm(), object, index, transition, edx, ecx, ebx, &miss); // Handle store cache miss. __ bind(&miss); __ mov(ecx, Immediate(Handle(name))); // restore name Handle ic = isolate()->builtins()->StoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); } MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object, AccessorInfo* callback, String* name) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); // Check that the map of the object hasn't changed. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Handle(object->map()))); __ j(not_equal, &miss); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(edx, ebx, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); __ pop(ebx); // remove the return address __ push(edx); // receiver __ push(Immediate(Handle(callback))); // callback info __ push(ecx); // name __ push(eax); // value __ push(ebx); // restore return address // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver, String* name) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); // Check that the map of the object hasn't changed. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Handle(receiver->map()))); __ j(not_equal, &miss); // Perform global security token check if needed. if (receiver->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(edx, ebx, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); __ pop(ebx); // remove the return address __ push(edx); // receiver __ push(ecx); // name __ push(eax); // value __ push(Immediate(Smi::FromInt(strict_mode_))); __ push(ebx); // restore return address // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate()); __ TailCallExternalReference(store_ic_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(INTERCEPTOR, name); } MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object, JSGlobalPropertyCell* cell, String* name) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Handle(object->map()))); __ j(not_equal, &miss); // Compute the cell operand to use. Operand cell_operand = Operand::Cell(Handle(cell)); if (Serializer::enabled()) { __ mov(ebx, Immediate(Handle(cell))); cell_operand = FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset); } // Check that the value in the cell is not the hole. If it is, this // cell could have been deleted and reintroducing the global needs // to update the property details in the property dictionary of the // global object. We bail out to the runtime system to do that. __ cmp(cell_operand, factory()->the_hole_value()); __ j(equal, &miss); // Store the value in the cell. __ mov(cell_operand, eax); // Return the value (register eax). Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_store_global_inline(), 1); __ ret(0); // Handle store cache miss. __ bind(&miss); __ IncrementCounter(counters->named_store_global_inline_miss(), 1); Handle ic = isolate()->builtins()->StoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, name); } MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object, int index, Map* transition, String* name) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_store_field(), 1); // Check that the name has not changed. __ cmp(Operand(ecx), Immediate(Handle(name))); __ j(not_equal, &miss); // Generate store field code. Trashes the name register. GenerateStoreField(masm(), object, index, transition, edx, ecx, ebx, &miss); // Handle store cache miss. __ bind(&miss); __ DecrementCounter(counters->keyed_store_field(), 1); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); } MaybeObject* KeyedStoreStubCompiler::CompileStoreSpecialized( JSObject* receiver) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); // Check that the map matches. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Handle(receiver->map()))); __ j(not_equal, &miss); // Check that the key is a smi. __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &miss); // Get the elements array and make sure it is a fast element array, not 'cow'. __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset)); __ cmp(FieldOperand(edi, HeapObject::kMapOffset), Immediate(factory()->fixed_array_map())); __ j(not_equal, &miss); // Check that the key is within bounds. if (receiver->IsJSArray()) { __ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // Compare smis. __ j(above_equal, &miss); } else { __ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // Compare smis. __ j(above_equal, &miss); } // Do the store and update the write barrier. Make sure to preserve // the value in register eax. __ mov(edx, Operand(eax)); __ mov(FieldOperand(edi, ecx, times_2, FixedArray::kHeaderSize), eax); __ RecordWrite(edi, 0, edx, ecx); // Done. __ ret(0); // Handle store cache miss. __ bind(&miss); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ jmp(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, NULL); } MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name, JSObject* object, JSObject* last) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the receiver isn't a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &miss); ASSERT(last->IsGlobalObject() || last->HasFastProperties()); // Check the maps of the full prototype chain. Also check that // global property cells up to (but not including) the last object // in the prototype chain are empty. CheckPrototypes(object, eax, last, ebx, edx, edi, name, &miss); // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (last->IsGlobalObject()) { MaybeObject* cell = GenerateCheckPropertyCell(masm(), GlobalObject::cast(last), name, edx, &miss); if (cell->IsFailure()) { miss.Unuse(); return cell; } } // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ mov(eax, isolate()->factory()->undefined_value()); __ ret(0); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NONEXISTENT, isolate()->heap()->empty_string()); } MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object, JSObject* holder, int index, String* name) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; GenerateLoadField(object, holder, eax, ebx, edx, edi, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name, JSObject* object, JSObject* holder, AccessorInfo* callback) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; MaybeObject* result = GenerateLoadCallback(object, holder, eax, ecx, ebx, edx, edi, callback, name, &miss); if (result->IsFailure()) { miss.Unuse(); return result; } __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object, JSObject* holder, Object* value, String* name) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; GenerateLoadConstant(object, holder, eax, ebx, edx, edi, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* receiver, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); // TODO(368): Compile in the whole chain: all the interceptors in // prototypes and ultimate answer. GenerateLoadInterceptor(receiver, holder, &lookup, eax, ecx, edx, ebx, edi, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object, GlobalObject* holder, JSGlobalPropertyCell* cell, String* name, bool is_dont_delete) { // ----------- S t a t e ------------- // -- eax : receiver // -- ecx : name // -- esp[0] : return address // ----------------------------------- Label miss; // If the object is the holder then we know that it's a global // object which can only happen for contextual loads. In this case, // the receiver cannot be a smi. if (object != holder) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &miss); } // Check that the maps haven't changed. CheckPrototypes(object, eax, holder, ebx, edx, edi, name, &miss); // Get the value from the cell. if (Serializer::enabled()) { __ mov(ebx, Immediate(Handle(cell))); __ mov(ebx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset)); } else { __ mov(ebx, Operand::Cell(Handle(cell))); } // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ cmp(ebx, factory()->the_hole_value()); __ j(equal, &miss); } else if (FLAG_debug_code) { __ cmp(ebx, factory()->the_hole_value()); __ Check(not_equal, "DontDelete cells can't contain the hole"); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); __ mov(eax, ebx); __ ret(0); __ bind(&miss); __ IncrementCounter(counters->named_load_global_stub_miss(), 1); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NORMAL, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name, JSObject* receiver, JSObject* holder, int index) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_field(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); GenerateLoadField(receiver, holder, edx, ebx, ecx, edi, index, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_field(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback( String* name, JSObject* receiver, JSObject* holder, AccessorInfo* callback) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_callback(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); MaybeObject* result = GenerateLoadCallback(receiver, holder, edx, eax, ebx, ecx, edi, callback, name, &miss); if (result->IsFailure()) { miss.Unuse(); return result; } __ bind(&miss); __ DecrementCounter(counters->keyed_load_callback(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name, JSObject* receiver, JSObject* holder, Object* value) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_constant_function(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); GenerateLoadConstant(receiver, holder, edx, ebx, ecx, edi, value, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_constant_function(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver, JSObject* holder, String* name) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_interceptor(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); LookupResult lookup; LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(receiver, holder, &lookup, edx, eax, ecx, ebx, edi, name, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_interceptor(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_array_length(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); GenerateLoadArrayLength(masm(), edx, ecx, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_array_length(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_string_length(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); GenerateLoadStringLength(masm(), edx, ecx, ebx, &miss, true); __ bind(&miss); __ DecrementCounter(counters->keyed_load_string_length(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_function_prototype(), 1); // Check that the name has not changed. __ cmp(Operand(eax), Immediate(Handle(name))); __ j(not_equal, &miss); GenerateLoadFunctionPrototype(masm(), edx, ecx, ebx, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_function_prototype(), 1); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } MaybeObject* KeyedLoadStubCompiler::CompileLoadSpecialized(JSObject* receiver) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; // Check that the receiver isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &miss); // Check that the map matches. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Handle(receiver->map()))); __ j(not_equal, &miss); // Check that the key is a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &miss); // Get the elements array. __ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset)); __ AssertFastElements(ecx); // Check that the key is within bounds. __ cmp(eax, FieldOperand(ecx, FixedArray::kLengthOffset)); __ j(above_equal, &miss); // Load the result and make sure it's not the hole. __ mov(ebx, Operand(ecx, eax, times_2, FixedArray::kHeaderSize - kHeapObjectTag)); __ cmp(ebx, factory()->the_hole_value()); __ j(equal, &miss); __ mov(eax, ebx); __ ret(0); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(NORMAL, NULL); } // Specialized stub for constructing objects from functions which only have only // simple assignments of the form this.x = ...; in their body. MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_stub_call; #ifdef ENABLE_DEBUGGER_SUPPORT // Check to see whether there are any break points in the function code. If // there are jump to the generic constructor stub which calls the actual // code for the function thereby hitting the break points. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kDebugInfoOffset)); __ cmp(ebx, factory()->undefined_value()); __ j(not_equal, &generic_stub_call); #endif // Load the initial map and verify that it is in fact a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &generic_stub_call); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ j(not_equal, &generic_stub_call); #ifdef DEBUG // Cannot construct functions this way. // edi: constructor // ebx: initial map __ CmpInstanceType(ebx, JS_FUNCTION_TYPE); __ Assert(not_equal, "Function constructed by construct stub."); #endif // Now allocate the JSObject on the heap by moving the new space allocation // top forward. // edi: constructor // ebx: initial map __ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset)); __ shl(ecx, kPointerSizeLog2); __ AllocateInNewSpace(ecx, edx, ecx, no_reg, &generic_stub_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields and add the heap tag. // ebx: initial map // edx: JSObject (untagged) __ mov(Operand(edx, JSObject::kMapOffset), ebx); __ mov(ebx, factory()->empty_fixed_array()); __ mov(Operand(edx, JSObject::kPropertiesOffset), ebx); __ mov(Operand(edx, JSObject::kElementsOffset), ebx); // Push the allocated object to the stack. This is the object that will be // returned (after it is tagged). __ push(edx); // eax: argc // edx: JSObject (untagged) // Load the address of the first in-object property into edx. __ lea(edx, Operand(edx, JSObject::kHeaderSize)); // Calculate the location of the first argument. The stack contains the // allocated object and the return address on top of the argc arguments. __ lea(ecx, Operand(esp, eax, times_4, 1 * kPointerSize)); // Use edi for holding undefined which is used in several places below. __ mov(edi, factory()->undefined_value()); // eax: argc // ecx: first argument // edx: first in-object property of the JSObject // edi: undefined // Fill the initialized properties with a constant value or a passed argument // depending on the this.x = ...; assignment in the function. SharedFunctionInfo* shared = function->shared(); for (int i = 0; i < shared->this_property_assignments_count(); i++) { if (shared->IsThisPropertyAssignmentArgument(i)) { // Check if the argument assigned to the property is actually passed. // If argument is not passed the property is set to undefined, // otherwise find it on the stack. int arg_number = shared->GetThisPropertyAssignmentArgument(i); __ mov(ebx, edi); __ cmp(eax, arg_number); if (CpuFeatures::IsSupported(CMOV)) { CpuFeatures::Scope use_cmov(CMOV); __ cmov(above, ebx, Operand(ecx, arg_number * -kPointerSize)); } else { Label not_passed; __ j(below_equal, ¬_passed); __ mov(ebx, Operand(ecx, arg_number * -kPointerSize)); __ bind(¬_passed); } // Store value in the property. __ mov(Operand(edx, i * kPointerSize), ebx); } else { // Set the property to the constant value. Handle constant(shared->GetThisPropertyAssignmentConstant(i)); __ mov(Operand(edx, i * kPointerSize), Immediate(constant)); } } // Fill the unused in-object property fields with undefined. ASSERT(function->has_initial_map()); for (int i = shared->this_property_assignments_count(); i < function->initial_map()->inobject_properties(); i++) { __ mov(Operand(edx, i * kPointerSize), edi); } // Move argc to ebx and retrieve and tag the JSObject to return. __ mov(ebx, eax); __ pop(eax); __ or_(Operand(eax), Immediate(kHeapObjectTag)); // Remove caller arguments and receiver from the stack and return. __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize)); __ push(ecx); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1); __ IncrementCounter(counters->constructed_objects_stub(), 1); __ ret(0); // Jump to the generic stub in case the specialized code cannot handle the // construction. __ bind(&generic_stub_call); Handle generic_construct_stub = isolate()->builtins()->JSConstructStubGeneric(); __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(); } MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub( JSObject*receiver, ExternalArrayType array_type, Code::Flags flags) { // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, failed_allocation; // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &slow); // Check that the key is a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &slow); // Check that the map matches. __ CheckMap(edx, Handle(receiver->map()), &slow, DO_SMI_CHECK); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); // eax: key, known to be a smi. // edx: receiver, known to be a JSObject. // ebx: elements object, known to be an external array. // Check that the index is in range. __ mov(ecx, eax); __ SmiUntag(ecx); // Untag the index. __ cmp(ecx, FieldOperand(ebx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); __ mov(ebx, FieldOperand(ebx, ExternalArray::kExternalPointerOffset)); // ebx: base pointer of external storage switch (array_type) { case kExternalByteArray: __ movsx_b(eax, Operand(ebx, ecx, times_1, 0)); break; case kExternalUnsignedByteArray: case kExternalPixelArray: __ movzx_b(eax, Operand(ebx, ecx, times_1, 0)); break; case kExternalShortArray: __ movsx_w(eax, Operand(ebx, ecx, times_2, 0)); break; case kExternalUnsignedShortArray: __ movzx_w(eax, Operand(ebx, ecx, times_2, 0)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ mov(ecx, Operand(ebx, ecx, times_4, 0)); break; case kExternalFloatArray: __ fld_s(Operand(ebx, ecx, times_4, 0)); break; case kExternalDoubleArray: __ fld_d(Operand(ebx, ecx, times_8, 0)); break; default: UNREACHABLE(); break; } // For integer array types: // ecx: value // For floating-point array type: // FP(0): value if (array_type == kExternalIntArray || array_type == kExternalUnsignedIntArray) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; if (array_type == kExternalIntArray) { __ cmp(ecx, 0xC0000000); __ j(sign, &box_int); } else { ASSERT_EQ(array_type, kExternalUnsignedIntArray); // The test is different for unsigned int values. Since we need // the value to be in the range of a positive smi, we can't // handle either of the top two bits being set in the value. __ test(ecx, Immediate(0xC0000000)); __ j(not_zero, &box_int); } __ mov(eax, ecx); __ SmiTag(eax); __ ret(0); __ bind(&box_int); // Allocate a HeapNumber for the int and perform int-to-double // conversion. if (array_type == kExternalIntArray) { __ push(ecx); __ fild_s(Operand(esp, 0)); __ pop(ecx); } else { ASSERT(array_type == kExternalUnsignedIntArray); // Need to zero-extend the value. // There's no fild variant for unsigned values, so zero-extend // to a 64-bit int manually. __ push(Immediate(0)); __ push(ecx); __ fild_d(Operand(esp, 0)); __ pop(ecx); __ pop(ecx); } // FP(0): value __ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation); // Set the value. __ mov(eax, ecx); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); } else if (array_type == kExternalFloatArray || array_type == kExternalDoubleArray) { // For the floating-point array type, we need to always allocate a // HeapNumber. __ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation); // Set the value. __ mov(eax, ecx); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); } else { __ SmiTag(eax); __ ret(0); } // If we fail allocation of the HeapNumber, we still have a value on // top of the FPU stack. Remove it. __ bind(&failed_allocation); __ ffree(); __ fincstp(); // Fall through to slow case. // Slow case: Jump to runtime. __ bind(&slow); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->keyed_load_external_array_slow(), 1); // ----------- S t a t e ------------- // -- eax : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); // receiver __ push(eax); // name __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); // Return the generated code. return GetCode(flags); } MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub( JSObject* receiver, ExternalArrayType array_type, Code::Flags flags) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, check_heap_number; // Check that the object isn't a smi. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &slow); // Check that the map matches. __ CheckMap(edx, Handle(receiver->map()), &slow, DO_SMI_CHECK); // Check that the key is a smi. __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &slow); // Check that the index is in range. __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset)); __ mov(ebx, ecx); __ SmiUntag(ebx); __ cmp(ebx, FieldOperand(edi, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // eax: value // edx: receiver // ecx: key // edi: elements array // ebx: untagged index __ test(eax, Immediate(kSmiTagMask)); if (array_type == kExternalPixelArray) __ j(not_equal, &slow); else __ j(not_equal, &check_heap_number); // smi case __ mov(ecx, eax); // Preserve the value in eax. Key is no longer needed. __ SmiUntag(ecx); __ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset)); // ecx: base pointer of external storage switch (array_type) { case kExternalPixelArray: { // Clamp the value to [0..255]. Label done; __ test(ecx, Immediate(0xFFFFFF00)); __ j(zero, &done, Label::kNear); __ setcc(negative, ecx); // 1 if negative, 0 if positive. __ dec_b(ecx); // 0 if negative, 255 if positive. __ bind(&done); } __ mov_b(Operand(edi, ebx, times_1, 0), ecx); break; case kExternalByteArray: case kExternalUnsignedByteArray: __ mov_b(Operand(edi, ebx, times_1, 0), ecx); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ mov_w(Operand(edi, ebx, times_2, 0), ecx); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ mov(Operand(edi, ebx, times_4, 0), ecx); break; case kExternalFloatArray: case kExternalDoubleArray: // Need to perform int-to-float conversion. __ push(ecx); __ fild_s(Operand(esp, 0)); __ pop(ecx); if (array_type == kExternalFloatArray) { __ fstp_s(Operand(edi, ebx, times_4, 0)); } else { // array_type == kExternalDoubleArray. __ fstp_d(Operand(edi, ebx, times_8, 0)); } break; default: UNREACHABLE(); break; } __ ret(0); // Return the original value. // TODO(danno): handle heap number -> pixel array conversion if (array_type != kExternalPixelArray) { __ bind(&check_heap_number); // eax: value // edx: receiver // ecx: key // edi: elements array // ebx: untagged index __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Immediate(factory()->heap_number_map())); __ j(not_equal, &slow); // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. __ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset)); // ebx: untagged index // edi: base pointer of external storage if (array_type == kExternalFloatArray) { __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ fstp_s(Operand(edi, ebx, times_4, 0)); __ ret(0); } else if (array_type == kExternalDoubleArray) { __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ fstp_d(Operand(edi, ebx, times_8, 0)); __ ret(0); } else { // Perform float-to-int conversion with truncation (round-to-zero) // behavior. // For the moment we make the slow call to the runtime on // processors that don't support SSE2. The code in IntegerConvert // (code-stubs-ia32.cc) is roughly what is needed here though the // conversion failure case does not need to be handled. if (CpuFeatures::IsSupported(SSE2)) { if (array_type != kExternalIntArray && array_type != kExternalUnsignedIntArray) { ASSERT(CpuFeatures::IsSupported(SSE2)); CpuFeatures::Scope scope(SSE2); __ cvttsd2si(ecx, FieldOperand(eax, HeapNumber::kValueOffset)); // ecx: untagged integer value switch (array_type) { case kExternalPixelArray: { // Clamp the value to [0..255]. Label done; __ test(ecx, Immediate(0xFFFFFF00)); __ j(zero, &done, Label::kNear); __ setcc(negative, ecx); // 1 if negative, 0 if positive. __ dec_b(ecx); // 0 if negative, 255 if positive. __ bind(&done); } __ mov_b(Operand(edi, ebx, times_1, 0), ecx); break; case kExternalByteArray: case kExternalUnsignedByteArray: __ mov_b(Operand(edi, ebx, times_1, 0), ecx); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ mov_w(Operand(edi, ebx, times_2, 0), ecx); break; default: UNREACHABLE(); break; } } else { if (CpuFeatures::IsSupported(SSE3)) { CpuFeatures::Scope scope(SSE3); // fisttp stores values as signed integers. To represent the // entire range of int and unsigned int arrays, store as a // 64-bit int and discard the high 32 bits. // If the value is NaN or +/-infinity, the result is 0x80000000, // which is automatically zero when taken mod 2^n, n < 32. __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ sub(Operand(esp), Immediate(2 * kPointerSize)); __ fisttp_d(Operand(esp, 0)); __ pop(ecx); __ add(Operand(esp), Immediate(kPointerSize)); } else { ASSERT(CpuFeatures::IsSupported(SSE2)); CpuFeatures::Scope scope(SSE2); // We can easily implement the correct rounding behavior for the // range [0, 2^31-1]. For the time being, to keep this code simple, // make the slow runtime call for values outside this range. // Note: we could do better for signed int arrays. __ movd(xmm0, FieldOperand(eax, HeapNumber::kValueOffset)); // We will need the key if we have to make the slow runtime call. __ push(ecx); __ LoadPowerOf2(xmm1, ecx, 31); __ pop(ecx); __ ucomisd(xmm1, xmm0); __ j(above_equal, &slow); __ cvttsd2si(ecx, Operand(xmm0)); } // ecx: untagged integer value __ mov(Operand(edi, ebx, times_4, 0), ecx); } __ ret(0); // Return original value. } } } // Slow case: call runtime. __ bind(&slow); // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(Immediate(Smi::FromInt(NONE))); // PropertyAttributes __ push(Immediate(Smi::FromInt( Code::ExtractExtraICStateFromFlags(flags) & kStrictMode))); __ push(ebx); // return address // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); return GetCode(flags); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32