// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "bootstrapper.h" #include "debug.h" #include "execution.h" #include "string-stream.h" #include "platform.h" namespace v8 { namespace internal { ThreadLocalTop Top::thread_local_; Mutex* Top::break_access_ = OS::CreateMutex(); NoAllocationStringAllocator* preallocated_message_space = NULL; Address top_addresses[] = { #define C(name) reinterpret_cast
(Top::name()), TOP_ADDRESS_LIST(C) TOP_ADDRESS_LIST_PROF(C) #undef C NULL }; Address Top::get_address_from_id(Top::AddressId id) { return top_addresses[id]; } char* Top::Iterate(ObjectVisitor* v, char* thread_storage) { ThreadLocalTop* thread = reinterpret_cast(thread_storage); Iterate(v, thread); return thread_storage + sizeof(ThreadLocalTop); } void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { v->VisitPointer(&(thread->pending_exception_)); v->VisitPointer(&(thread->pending_message_obj_)); v->VisitPointer( bit_cast(&(thread->pending_message_script_))); v->VisitPointer(bit_cast(&(thread->context_))); v->VisitPointer(&(thread->scheduled_exception_)); for (v8::TryCatch* block = thread->try_catch_handler_; block != NULL; block = block->next_) { v->VisitPointer(bit_cast(&(block->exception_))); v->VisitPointer(bit_cast(&(block->message_))); } // Iterate over pointers on native execution stack. for (StackFrameIterator it(thread); !it.done(); it.Advance()) { it.frame()->Iterate(v); } } void Top::Iterate(ObjectVisitor* v) { ThreadLocalTop* current_t = &thread_local_; Iterate(v, current_t); } void Top::InitializeThreadLocal() { thread_local_.c_entry_fp_ = 0; thread_local_.handler_ = 0; #ifdef ENABLE_LOGGING_AND_PROFILING thread_local_.js_entry_sp_ = 0; #endif thread_local_.stack_is_cooked_ = false; thread_local_.try_catch_handler_ = NULL; thread_local_.context_ = NULL; thread_local_.thread_id_ = ThreadManager::kInvalidId; thread_local_.external_caught_exception_ = false; thread_local_.failed_access_check_callback_ = NULL; clear_pending_exception(); clear_pending_message(); clear_scheduled_exception(); thread_local_.save_context_ = NULL; thread_local_.catcher_ = NULL; } // Create a dummy thread that will wait forever on a semaphore. The only // purpose for this thread is to have some stack area to save essential data // into for use by a stacks only core dump (aka minidump). class PreallocatedMemoryThread: public Thread { public: PreallocatedMemoryThread() : keep_running_(true) { wait_for_ever_semaphore_ = OS::CreateSemaphore(0); data_ready_semaphore_ = OS::CreateSemaphore(0); } // When the thread starts running it will allocate a fixed number of bytes // on the stack and publish the location of this memory for others to use. void Run() { EmbeddedVector local_buffer; // Initialize the buffer with a known good value. OS::StrNCpy(local_buffer, "Trace data was not generated.\n", local_buffer.length()); // Publish the local buffer and signal its availability. data_ = local_buffer.start(); length_ = local_buffer.length(); data_ready_semaphore_->Signal(); while (keep_running_) { // This thread will wait here until the end of time. wait_for_ever_semaphore_->Wait(); } // Make sure we access the buffer after the wait to remove all possibility // of it being optimized away. OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n", local_buffer.length()); } static char* data() { if (data_ready_semaphore_ != NULL) { // Initial access is guarded until the data has been published. data_ready_semaphore_->Wait(); delete data_ready_semaphore_; data_ready_semaphore_ = NULL; } return data_; } static unsigned length() { if (data_ready_semaphore_ != NULL) { // Initial access is guarded until the data has been published. data_ready_semaphore_->Wait(); delete data_ready_semaphore_; data_ready_semaphore_ = NULL; } return length_; } static void StartThread() { if (the_thread_ != NULL) return; the_thread_ = new PreallocatedMemoryThread(); the_thread_->Start(); } // Stop the PreallocatedMemoryThread and release its resources. static void StopThread() { if (the_thread_ == NULL) return; the_thread_->keep_running_ = false; wait_for_ever_semaphore_->Signal(); // Wait for the thread to terminate. the_thread_->Join(); if (data_ready_semaphore_ != NULL) { delete data_ready_semaphore_; data_ready_semaphore_ = NULL; } delete wait_for_ever_semaphore_; wait_for_ever_semaphore_ = NULL; // Done with the thread entirely. delete the_thread_; the_thread_ = NULL; } private: // Used to make sure that the thread keeps looping even for spurious wakeups. bool keep_running_; // The preallocated memory thread singleton. static PreallocatedMemoryThread* the_thread_; // This semaphore is used by the PreallocatedMemoryThread to wait for ever. static Semaphore* wait_for_ever_semaphore_; // Semaphore to signal that the data has been initialized. static Semaphore* data_ready_semaphore_; // Location and size of the preallocated memory block. static char* data_; static unsigned length_; DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread); }; PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL; Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL; Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL; char* PreallocatedMemoryThread::data_ = NULL; unsigned PreallocatedMemoryThread::length_ = 0; static bool initialized = false; void Top::Initialize() { CHECK(!initialized); InitializeThreadLocal(); // Only preallocate on the first initialization. if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) { // Start the thread which will set aside some memory. PreallocatedMemoryThread::StartThread(); preallocated_message_space = new NoAllocationStringAllocator(PreallocatedMemoryThread::data(), PreallocatedMemoryThread::length()); PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4); } initialized = true; } void Top::TearDown() { if (initialized) { // Remove the external reference to the preallocated stack memory. if (preallocated_message_space != NULL) { delete preallocated_message_space; preallocated_message_space = NULL; } PreallocatedMemoryThread::StopThread(); initialized = false; } } // There are cases where the C stack is separated from JS stack (ARM simulator). // To figure out the order of top-most JS try-catch handler and the top-most C // try-catch handler, the C try-catch handler keeps a reference to the top-most // JS try_catch handler when it was created. // // Here is a picture to explain the idea: // Top::thread_local_.handler_ Top::thread_local_.try_catch_handler_ // // | | // v v // // | JS handler | | C try_catch handler | // | next |--+ +-------- | js_handler_ | // | | | next_ |--+ // | | | // | JS handler |--+ <---------+ | // | next | // // If the top-most JS try-catch handler is not equal to // Top::thread_local_.try_catch_handler_.js_handler_, it means the JS handler // is on the top. Otherwise, it means the C try-catch handler is on the top. // void Top::RegisterTryCatchHandler(v8::TryCatch* that) { StackHandler* handler = reinterpret_cast(thread_local_.handler_); // Find the top-most try-catch handler. while (handler != NULL && !handler->is_try_catch()) { handler = handler->next(); } that->js_handler_ = handler; // casted to void* thread_local_.try_catch_handler_ = that; } void Top::UnregisterTryCatchHandler(v8::TryCatch* that) { ASSERT(thread_local_.try_catch_handler_ == that); thread_local_.try_catch_handler_ = that->next_; thread_local_.catcher_ = NULL; } void Top::MarkCompactPrologue(bool is_compacting) { MarkCompactPrologue(is_compacting, &thread_local_); } void Top::MarkCompactPrologue(bool is_compacting, char* data) { MarkCompactPrologue(is_compacting, reinterpret_cast(data)); } void Top::MarkCompactPrologue(bool is_compacting, ThreadLocalTop* thread) { if (is_compacting) { StackFrame::CookFramesForThread(thread); } } void Top::MarkCompactEpilogue(bool is_compacting, char* data) { MarkCompactEpilogue(is_compacting, reinterpret_cast(data)); } void Top::MarkCompactEpilogue(bool is_compacting) { MarkCompactEpilogue(is_compacting, &thread_local_); } void Top::MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* thread) { if (is_compacting) { StackFrame::UncookFramesForThread(thread); } } static int stack_trace_nesting_level = 0; static StringStream* incomplete_message = NULL; Handle Top::StackTrace() { if (stack_trace_nesting_level == 0) { stack_trace_nesting_level++; HeapStringAllocator allocator; StringStream::ClearMentionedObjectCache(); StringStream accumulator(&allocator); incomplete_message = &accumulator; PrintStack(&accumulator); Handle stack_trace = accumulator.ToString(); incomplete_message = NULL; stack_trace_nesting_level = 0; return stack_trace; } else if (stack_trace_nesting_level == 1) { stack_trace_nesting_level++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message->OutputToStdOut(); return Factory::empty_symbol(); } else { OS::Abort(); // Unreachable return Factory::empty_symbol(); } } void Top::PrintStack() { if (stack_trace_nesting_level == 0) { stack_trace_nesting_level++; StringAllocator* allocator; if (preallocated_message_space == NULL) { allocator = new HeapStringAllocator(); } else { allocator = preallocated_message_space; } NativeAllocationChecker allocation_checker( !FLAG_preallocate_message_memory ? NativeAllocationChecker::ALLOW : NativeAllocationChecker::DISALLOW); StringStream::ClearMentionedObjectCache(); StringStream accumulator(allocator); incomplete_message = &accumulator; PrintStack(&accumulator); accumulator.OutputToStdOut(); accumulator.Log(); incomplete_message = NULL; stack_trace_nesting_level = 0; if (preallocated_message_space == NULL) { // Remove the HeapStringAllocator created above. delete allocator; } } else if (stack_trace_nesting_level == 1) { stack_trace_nesting_level++; OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message->OutputToStdOut(); } } static void PrintFrames(StringStream* accumulator, StackFrame::PrintMode mode) { StackFrameIterator it; for (int i = 0; !it.done(); it.Advance()) { it.frame()->Print(accumulator, mode, i++); } } void Top::PrintStack(StringStream* accumulator) { // The MentionedObjectCache is not GC-proof at the moment. AssertNoAllocation nogc; ASSERT(StringStream::IsMentionedObjectCacheClear()); // Avoid printing anything if there are no frames. if (c_entry_fp(GetCurrentThread()) == 0) return; accumulator->Add( "\n==== Stack trace ============================================\n\n"); PrintFrames(accumulator, StackFrame::OVERVIEW); accumulator->Add( "\n==== Details ================================================\n\n"); PrintFrames(accumulator, StackFrame::DETAILS); accumulator->PrintMentionedObjectCache(); accumulator->Add("=====================\n\n"); } void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) { ASSERT(thread_local_.failed_access_check_callback_ == NULL); thread_local_.failed_access_check_callback_ = callback; } void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) { if (!thread_local_.failed_access_check_callback_) return; ASSERT(receiver->IsAccessCheckNeeded()); ASSERT(Top::context()); // The callers of this method are not expecting a GC. AssertNoAllocation no_gc; // Get the data object from access check info. JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); Object* info = constructor->shared()->function_data(); if (info == Heap::undefined_value()) return; Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); if (data_obj == Heap::undefined_value()) return; HandleScope scope; Handle receiver_handle(receiver); Handle data(AccessCheckInfo::cast(data_obj)->data()); thread_local_.failed_access_check_callback_( v8::Utils::ToLocal(receiver_handle), type, v8::Utils::ToLocal(data)); } enum MayAccessDecision { YES, NO, UNKNOWN }; static MayAccessDecision MayAccessPreCheck(JSObject* receiver, v8::AccessType type) { // During bootstrapping, callback functions are not enabled yet. if (Bootstrapper::IsActive()) return YES; if (receiver->IsJSGlobalProxy()) { Object* receiver_context = JSGlobalProxy::cast(receiver)->context(); if (!receiver_context->IsContext()) return NO; // Get the global context of current top context. // avoid using Top::global_context() because it uses Handle. Context* global_context = Top::context()->global()->global_context(); if (receiver_context == global_context) return YES; if (Context::cast(receiver_context)->security_token() == global_context->security_token()) return YES; } return UNKNOWN; } bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(Top::context()); // The callers of this method are not expecting a GC. AssertNoAllocation no_gc; MayAccessDecision decision = MayAccessPreCheck(receiver, type); if (decision != UNKNOWN) return decision == YES; // Get named access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); Object* info = constructor->shared()->function_data(); if (info == Heap::undefined_value()) return false; Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); if (data_obj == Heap::undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback(); v8::NamedSecurityCallback callback = v8::ToCData(fun_obj); if (!callback) return false; HandleScope scope; Handle receiver_handle(receiver); Handle key_handle(key); Handle data(AccessCheckInfo::cast(data_obj)->data()); LOG(ApiNamedSecurityCheck(key)); bool result = false; { // Leaving JavaScript. VMState state(EXTERNAL); result = callback(v8::Utils::ToLocal(receiver_handle), v8::Utils::ToLocal(key_handle), type, v8::Utils::ToLocal(data)); } return result; } bool Top::MayIndexedAccess(JSObject* receiver, uint32_t index, v8::AccessType type) { ASSERT(receiver->IsAccessCheckNeeded()); // Check for compatibility between the security tokens in the // current lexical context and the accessed object. ASSERT(Top::context()); // The callers of this method are not expecting a GC. AssertNoAllocation no_gc; MayAccessDecision decision = MayAccessPreCheck(receiver, type); if (decision != UNKNOWN) return decision == YES; // Get indexed access check callback JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); Object* info = constructor->shared()->function_data(); if (info == Heap::undefined_value()) return false; Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); if (data_obj == Heap::undefined_value()) return false; Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback(); v8::IndexedSecurityCallback callback = v8::ToCData(fun_obj); if (!callback) return false; HandleScope scope; Handle receiver_handle(receiver); Handle data(AccessCheckInfo::cast(data_obj)->data()); LOG(ApiIndexedSecurityCheck(index)); bool result = false; { // Leaving JavaScript. VMState state(EXTERNAL); result = callback(v8::Utils::ToLocal(receiver_handle), index, type, v8::Utils::ToLocal(data)); } return result; } const char* Top::kStackOverflowMessage = "Uncaught RangeError: Maximum call stack size exceeded"; Failure* Top::StackOverflow() { HandleScope scope; Handle key = Factory::stack_overflow_symbol(); Handle boilerplate = Handle::cast(GetProperty(Top::builtins(), key)); Handle exception = Copy(boilerplate); // TODO(1240995): To avoid having to call JavaScript code to compute // the message for stack overflow exceptions which is very likely to // double fault with another stack overflow exception, we use a // precomputed message. This is somewhat problematic in that it // doesn't use ReportUncaughtException to determine the location // from where the exception occurred. It should probably be // reworked. DoThrow(*exception, NULL, kStackOverflowMessage); return Failure::Exception(); } Failure* Top::TerminateExecution() { DoThrow(Heap::termination_exception(), NULL, NULL); return Failure::Exception(); } Failure* Top::Throw(Object* exception, MessageLocation* location) { DoThrow(exception, location, NULL); return Failure::Exception(); } Failure* Top::ReThrow(Object* exception, MessageLocation* location) { // Set the exception being re-thrown. set_pending_exception(exception); return Failure::Exception(); } Failure* Top::ThrowIllegalOperation() { return Throw(Heap::illegal_access_symbol()); } void Top::ScheduleThrow(Object* exception) { // When scheduling a throw we first throw the exception to get the // error reporting if it is uncaught before rescheduling it. Throw(exception); thread_local_.scheduled_exception_ = pending_exception(); thread_local_.external_caught_exception_ = false; clear_pending_exception(); } Object* Top::PromoteScheduledException() { Object* thrown = scheduled_exception(); clear_scheduled_exception(); // Re-throw the exception to avoid getting repeated error reporting. return ReThrow(thrown); } void Top::PrintCurrentStackTrace(FILE* out) { StackTraceFrameIterator it; while (!it.done()) { HandleScope scope; // Find code position if recorded in relocation info. JavaScriptFrame* frame = it.frame(); int pos = frame->code()->SourcePosition(frame->pc()); Handle pos_obj(Smi::FromInt(pos)); // Fetch function and receiver. Handle fun(JSFunction::cast(frame->function())); Handle recv(frame->receiver()); // Advance to the next JavaScript frame and determine if the // current frame is the top-level frame. it.Advance(); Handle is_top_level = it.done() ? Factory::true_value() : Factory::false_value(); // Generate and print stack trace line. Handle line = Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level); if (line->length() > 0) { line->PrintOn(out); fprintf(out, "\n"); } } } void Top::ComputeLocation(MessageLocation* target) { *target = MessageLocation(empty_script(), -1, -1); StackTraceFrameIterator it; if (!it.done()) { JavaScriptFrame* frame = it.frame(); JSFunction* fun = JSFunction::cast(frame->function()); Object* script = fun->shared()->script(); if (script->IsScript() && !(Script::cast(script)->source()->IsUndefined())) { int pos = frame->code()->SourcePosition(frame->pc()); // Compute the location from the function and the reloc info. Handle