// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/optimizing-compile-dispatcher.h" #include "src/base/atomicops.h" #include "src/full-codegen/full-codegen.h" #include "src/hydrogen.h" #include "src/isolate.h" #include "src/v8.h" namespace v8 { namespace internal { namespace { void DisposeOptimizedCompileJob(OptimizedCompileJob* job, bool restore_function_code) { // The recompile job is allocated in the CompilationInfo's zone. CompilationInfo* info = job->info(); if (restore_function_code) { if (info->is_osr()) { if (!job->IsWaitingForInstall()) { // Remove stack check that guards OSR entry on original code. Handle code = info->unoptimized_code(); uint32_t offset = code->TranslateAstIdToPcOffset(info->osr_ast_id()); BackEdgeTable::RemoveStackCheck(code, offset); } } else { Handle function = info->closure(); function->ReplaceCode(function->shared()->code()); } } delete info; } } // namespace class OptimizingCompileDispatcher::CompileTask : public v8::Task { public: explicit CompileTask(Isolate* isolate) : isolate_(isolate) { OptimizingCompileDispatcher* dispatcher = isolate_->optimizing_compile_dispatcher(); base::LockGuard lock_guard(&dispatcher->ref_count_mutex_); ++dispatcher->ref_count_; } virtual ~CompileTask() {} private: // v8::Task overrides. void Run() override { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; OptimizingCompileDispatcher* dispatcher = isolate_->optimizing_compile_dispatcher(); { TimerEventScope timer(isolate_); if (dispatcher->recompilation_delay_ != 0) { base::OS::Sleep(base::TimeDelta::FromMilliseconds( dispatcher->recompilation_delay_)); } dispatcher->CompileNext(dispatcher->NextInput(true)); } { base::LockGuard lock_guard(&dispatcher->ref_count_mutex_); if (--dispatcher->ref_count_ == 0) { dispatcher->ref_count_zero_.NotifyOne(); } } } Isolate* isolate_; DISALLOW_COPY_AND_ASSIGN(CompileTask); }; OptimizingCompileDispatcher::~OptimizingCompileDispatcher() { #ifdef DEBUG { base::LockGuard lock_guard(&ref_count_mutex_); DCHECK_EQ(0, ref_count_); } #endif DCHECK_EQ(0, input_queue_length_); DeleteArray(input_queue_); if (FLAG_concurrent_osr) { #ifdef DEBUG for (int i = 0; i < osr_buffer_capacity_; i++) { CHECK_NULL(osr_buffer_[i]); } #endif DeleteArray(osr_buffer_); } } OptimizedCompileJob* OptimizingCompileDispatcher::NextInput( bool check_if_flushing) { base::LockGuard access_input_queue_(&input_queue_mutex_); if (input_queue_length_ == 0) return NULL; OptimizedCompileJob* job = input_queue_[InputQueueIndex(0)]; DCHECK_NOT_NULL(job); input_queue_shift_ = InputQueueIndex(1); input_queue_length_--; if (check_if_flushing) { if (static_cast(base::Acquire_Load(&mode_)) == FLUSH) { if (!job->info()->is_osr()) { AllowHandleDereference allow_handle_dereference; DisposeOptimizedCompileJob(job, true); } return NULL; } } return job; } void OptimizingCompileDispatcher::CompileNext(OptimizedCompileJob* job) { if (!job) return; // The function may have already been optimized by OSR. Simply continue. OptimizedCompileJob::Status status = job->OptimizeGraph(); USE(status); // Prevent an unused-variable error in release mode. DCHECK(status != OptimizedCompileJob::FAILED); // The function may have already been optimized by OSR. Simply continue. // Use a mutex to make sure that functions marked for install // are always also queued. base::LockGuard access_output_queue_(&output_queue_mutex_); output_queue_.push(job); isolate_->stack_guard()->RequestInstallCode(); } void OptimizingCompileDispatcher::FlushOutputQueue(bool restore_function_code) { for (;;) { OptimizedCompileJob* job = NULL; { base::LockGuard access_output_queue_(&output_queue_mutex_); if (output_queue_.empty()) return; job = output_queue_.front(); output_queue_.pop(); } // OSR jobs are dealt with separately. if (!job->info()->is_osr()) { DisposeOptimizedCompileJob(job, restore_function_code); } } } void OptimizingCompileDispatcher::FlushOsrBuffer(bool restore_function_code) { for (int i = 0; i < osr_buffer_capacity_; i++) { if (osr_buffer_[i] != NULL) { DisposeOptimizedCompileJob(osr_buffer_[i], restore_function_code); osr_buffer_[i] = NULL; } } } void OptimizingCompileDispatcher::Flush() { base::Release_Store(&mode_, static_cast(FLUSH)); if (FLAG_block_concurrent_recompilation) Unblock(); { base::LockGuard lock_guard(&ref_count_mutex_); while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_); base::Release_Store(&mode_, static_cast(COMPILE)); } FlushOutputQueue(true); if (FLAG_concurrent_osr) FlushOsrBuffer(true); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Flushed concurrent recompilation queues.\n"); } } void OptimizingCompileDispatcher::Stop() { base::Release_Store(&mode_, static_cast(FLUSH)); if (FLAG_block_concurrent_recompilation) Unblock(); { base::LockGuard lock_guard(&ref_count_mutex_); while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_); base::Release_Store(&mode_, static_cast(COMPILE)); } if (recompilation_delay_ != 0) { // At this point the optimizing compiler thread's event loop has stopped. // There is no need for a mutex when reading input_queue_length_. while (input_queue_length_ > 0) CompileNext(NextInput()); InstallOptimizedFunctions(); } else { FlushOutputQueue(false); } if (FLAG_concurrent_osr) FlushOsrBuffer(false); if ((FLAG_trace_osr || FLAG_trace_concurrent_recompilation) && FLAG_concurrent_osr) { PrintF("[COSR hit rate %d / %d]\n", osr_hits_, osr_attempts_); } } void OptimizingCompileDispatcher::InstallOptimizedFunctions() { HandleScope handle_scope(isolate_); for (;;) { OptimizedCompileJob* job = NULL; { base::LockGuard access_output_queue_(&output_queue_mutex_); if (output_queue_.empty()) return; job = output_queue_.front(); output_queue_.pop(); } CompilationInfo* info = job->info(); Handle function(*info->closure()); if (info->is_osr()) { if (FLAG_trace_osr) { PrintF("[COSR - "); function->ShortPrint(); PrintF(" is ready for install and entry at AST id %d]\n", info->osr_ast_id().ToInt()); } job->WaitForInstall(); // Remove stack check that guards OSR entry on original code. Handle code = info->unoptimized_code(); uint32_t offset = code->TranslateAstIdToPcOffset(info->osr_ast_id()); BackEdgeTable::RemoveStackCheck(code, offset); } else { if (function->IsOptimized()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Aborting compilation for "); function->ShortPrint(); PrintF(" as it has already been optimized.\n"); } DisposeOptimizedCompileJob(job, false); } else { Handle code = Compiler::GetConcurrentlyOptimizedCode(job); function->ReplaceCode(code.is_null() ? function->shared()->code() : *code); } } } } void OptimizingCompileDispatcher::QueueForOptimization( OptimizedCompileJob* job) { DCHECK(IsQueueAvailable()); CompilationInfo* info = job->info(); if (info->is_osr()) { osr_attempts_++; AddToOsrBuffer(job); // Add job to the front of the input queue. base::LockGuard access_input_queue(&input_queue_mutex_); DCHECK_LT(input_queue_length_, input_queue_capacity_); // Move shift_ back by one. input_queue_shift_ = InputQueueIndex(input_queue_capacity_ - 1); input_queue_[InputQueueIndex(0)] = job; input_queue_length_++; } else { // Add job to the back of the input queue. base::LockGuard access_input_queue(&input_queue_mutex_); DCHECK_LT(input_queue_length_, input_queue_capacity_); input_queue_[InputQueueIndex(input_queue_length_)] = job; input_queue_length_++; } if (FLAG_block_concurrent_recompilation) { blocked_jobs_++; } else { V8::GetCurrentPlatform()->CallOnBackgroundThread( new CompileTask(isolate_), v8::Platform::kShortRunningTask); } } void OptimizingCompileDispatcher::Unblock() { while (blocked_jobs_ > 0) { V8::GetCurrentPlatform()->CallOnBackgroundThread( new CompileTask(isolate_), v8::Platform::kShortRunningTask); blocked_jobs_--; } } OptimizedCompileJob* OptimizingCompileDispatcher::FindReadyOSRCandidate( Handle function, BailoutId osr_ast_id) { for (int i = 0; i < osr_buffer_capacity_; i++) { OptimizedCompileJob* current = osr_buffer_[i]; if (current != NULL && current->IsWaitingForInstall() && current->info()->HasSameOsrEntry(function, osr_ast_id)) { osr_hits_++; osr_buffer_[i] = NULL; return current; } } return NULL; } bool OptimizingCompileDispatcher::IsQueuedForOSR(Handle function, BailoutId osr_ast_id) { for (int i = 0; i < osr_buffer_capacity_; i++) { OptimizedCompileJob* current = osr_buffer_[i]; if (current != NULL && current->info()->HasSameOsrEntry(function, osr_ast_id)) { return !current->IsWaitingForInstall(); } } return false; } bool OptimizingCompileDispatcher::IsQueuedForOSR(JSFunction* function) { for (int i = 0; i < osr_buffer_capacity_; i++) { OptimizedCompileJob* current = osr_buffer_[i]; if (current != NULL && *current->info()->closure() == function) { return !current->IsWaitingForInstall(); } } return false; } void OptimizingCompileDispatcher::AddToOsrBuffer(OptimizedCompileJob* job) { // Find the next slot that is empty or has a stale job. OptimizedCompileJob* stale = NULL; while (true) { stale = osr_buffer_[osr_buffer_cursor_]; if (stale == NULL || stale->IsWaitingForInstall()) break; osr_buffer_cursor_ = (osr_buffer_cursor_ + 1) % osr_buffer_capacity_; } // Add to found slot and dispose the evicted job. if (stale != NULL) { DCHECK(stale->IsWaitingForInstall()); CompilationInfo* info = stale->info(); if (FLAG_trace_osr) { PrintF("[COSR - Discarded "); info->closure()->PrintName(); PrintF(", AST id %d]\n", info->osr_ast_id().ToInt()); } DisposeOptimizedCompileJob(stale, false); } osr_buffer_[osr_buffer_cursor_] = job; osr_buffer_cursor_ = (osr_buffer_cursor_ + 1) % osr_buffer_capacity_; } } // namespace internal } // namespace v8